
IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 1, FEBRUARY 2009 147

Performance Evaluation for Multi-arm Manipulation
of Hollow Suspended Organs
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Abstract—This paper presents a unified mathematical frame-
work for modeling and evaluating the performance of multiple
robotic arms that operate on hollow suspended organs. This frame-
work is applied to a novel two-armed hybrid robotic system being
developed for ophthalmic vitreous surgeries. Four cases are des-
ignated to capture the general movements required for any surgi-
cal procedure associated with hollow suspended organs. Dexterity
measures, based on multiple characteristic lengths, are presented
for procedures corresponding to these manipulation cases. Simula-
tion results of the dual-arm robotic system for ophthalmic surgery
are presented for all four manipulation cases. A comparison of
this robotic system with current surgical tools shows a significant
improvement in intraocular dexterity.

Index Terms—Dexterity, hybrid robots, medical robotics,
multiple-arm manipulation, ophthalmic surgery.

I. INTRODUCTION

DUE to the micron scale and delicacy of retinal tissues,
only highly experienced ophthalmic surgeons can suc-

cessfully perform these demanding, yet common, procedures.
Robot-assisted ophthalmic surgery has been proposed to ad-
dress this challenge. Grace [1] presented a miniature telesurgi-
cal parallel robot for the treatment of retinal venous occlusion
in ophthalmic surgery. Das et al. [2] and Charles et al. [3] devel-
oped robot assisted micro surgery (RAMS) workstation, which
is a cable-driven master/slave telerobotic system. Ang et al. [4]
developed a hand-held microsurgical instrument for vitreoreti-
nal microsurgery via tremor canceling. Taylor et al. and Kumar
et al. [5], [6] presented a cooperative manipulation robot for
microsurgical applications. Ikuta and Kato [7] designed a hand-
held forceps with an active joint and fiberscope to address the
lack of dexterity inside the eye.

Previous works addressed major challenges of statistically
characterizing hand tremor [8], [9], providing active tremor
cancellation [4], high precision [1], [2], [6], and force mon-
itoring in eye surgery [10]. However, the surgical need to
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Fig. 1. Proposed dual-arm robotic system for orbital and intraocular dexterity.

Fig. 2. Multi-armed manipulation and operation inside a hollow suspended
organ.

manipulate several instruments with high precision in the
vitreous body, while stabilizing or manipulating the eye under
the microscope presents a novel integrated challenge. This
need led to our recent paper [11] and ongoing development
of a robotic system that is capable of intraocular and orbital
manipulations of the eye (see Fig. 1).

The problem of stabilizing the eye while manipulating struc-
tures within [11] can be generalized to any operation on hollow
organs with a stability not guaranteed by anatomic constraints,
e.g., eye, stomach, bladder, etc., as illustrated in Fig. 2. The
suspended organ is manipulated and stabilized using several
robotic arms that are inserted into the organ. The literature ad-
dresses the modeling and evaluation of constrained multibody
system [12]–[15] and multifingered hands [16]–[18]. However,
these mathematical models cannot be directly applied to sys-
tems, as in Fig. 2, due to assumption in the grasping literature
that the stabilizing bodies do not penetrate the grasped object.

Performance evaluation of this system required an updated
metric due to its hybrid structure. Although many works have
focused on performance measures including manipulability

1552-3098/$25.00 © 2009 IEEE

Authorized licensed use limited to: Columbia University. Downloaded on March 26, 2009 at 11:32 from IEEE Xplore.  Restrictions apply.



148 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 1, FEBRUARY 2009

Fig. 3. Typical surgical setup for ophthalmic surgery.

ellipsoids [13], [19], [20], manipulability polytopes [21], [22],
isotropy measures [23], [24], kinematic conditioning [25]–[27],
and dexterity [28], [29], these metrics do not address the problem
of dexterity evaluation for systems with multiple parallel and
serial sections. Wang and Chirikjian presented the error propa-
gation problem of hybrid robots in [30]; however, an effective
method to evaluate the hybrid robot’s performance is still miss-
ing. Furthermore, there is no work done to systematically model
and evaluate the dexterity of surgical procedures on hollow sus-
pended organs while considering the dexterity in manipulating
the organ and operating inside it.

The contributions of this paper are the following. A unified
kinematic model is developed to analyze a partially constrained
hollow object manipulated by several inserted robotic arms. This
model is applicable to robotic assistance on hollow suspended
organs, such as the eye. The paper applies this framework to
justify the design of a dual-arm telerobotic slave for ophthalmic
surgery. This slave is aimed at answering the unaddressed chal-
lenge of orbital manipulation and dexterous bi-manual opera-
tions inside the eye. Further, our approach adds to existing work
on dexterity evaluation of multifingered hands and cooperative
manipulation systems by analyzing the constrained motion of
a hollow object through four manipulation cases. These cases
model the dexterity in manipulating the object and operating
inside it via insertion constraints. The paper defines dexterity
measures for each of these four cases and identifies the clinical
relevance of each case in ophthalmic surgery.

II. CURRENT SURGICAL SETUP FOR OPHTHALMIC SURGERY

The typical surgical setup for ophthalmic surgery is shown
in Fig. 3. Two surgeons coordinate to perform the ophthalmic
surgical procedures. The main surgeon sits superior to the pa-
tient’s head and performs most of the surgical tasks, including
manipulation of the surgical instruments and the light source.
The assistant surgeon sits beside the patient’s head to provide
irrigation and removal of fluids and adjust the placement of the
external visualization lenses. A second assistant delivers tools
and supplies to the surgeons.

Three incisions are typically made in the sclera to provide
access to the vitreous body for an irrigation tube, a surgical
instrument, and a light source. The light source occasionally
performs double duty as a second surgical tool. The irrigation
tube injects liquid to maintain intraocular pressure. The light
source illuminates the retina for proper visualization under the
microscope. The surgical tools, including picks, forceps, vitrec-
tomy cutters, and other laser ablation devices, vary depending

Fig. 4. Kinematic demonstration of the four manipulation cases. Solid lines
denote the first arm, while the dotted lines denote the second arm; the thick lines
and solid circles denote the final position of the arms and the entry ports.

on the requirements of the procedure [31]. The surgeons oper-
ate using a microscope while visualizing the retina through a
dilated iris. Because the visual field does not contain the entire
retinal surface, procedures often require tilting the eye under the
microscope in order to view peripheral areas of the retina.

The repertoire of manipulation tasks in ophthalmic surgical
procedures is segmented into four cases of intraocular and or-
bital manipulations (see Fig. 4). Although Fig. 4 describes these
cases with reference to ophthalmic surgery, they are applicable
to manipulation of any hollow suspended organ.

Case 1: Intraocular operation with eye stabilization. This
case quantifies the ability of the robotic system to perform a
specified surgical task inside the eye (Fig. 4(a)).

Case 2: Eye manipulation with constrained intraocular mo-
tions. This case evaluates orbital dexterity, a measure of how
well the robotic arms can rotate the eye, while respecting kine-
matic constraints at the incision points and maintaining zero
velocity of the forceps relative to the retina (Fig. 4(b)).

Case 3: Eye manipulation with unconstrained intraocular
motion. This case evaluates the orbital dexterity without con-
straint of the forceps relative to the retina (Fig. 4(c)).

Case 4: Simultaneous eye manipulation and intraocular oper-
ation. This case measures dexterities of simultaneous intraocular
operation and orbital manipulation as the robot rotates the eye
and operates inside it (Fig. 4(d)).

The relevance of these cases in ophthalmic surgery is depicted
in Figs. 5 and 6. Membrane peeling (Fig. 5(a)) falls into case 1.
In this procedure, the eye must be stabilized by the arms while
dexterous and precise reach is performed in peeling the micron-
thick membrane of scar tissue away from the underlying retina.
Fig. 5(a) shows a bi-manual approach for membrane peeling,
while Fig. 6(a) shows a forceps used to pull a membrane.

The visualization inside the eye is limited by the dilated iris.
The surgeons must tilt the eye under the microscope in order
to visualize the peripheral areas of the eye. This movement
is performed while steadying the micro-tools inside the eye,
and therefore, falls into case 2. Examples shown in Figs. 5(b)
and 6(b) illustrate membrane peeling by the ciliary body. This
procedure presents challenges in accessing and visualizing the
surgical site using straight tools while tilting the eye.
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Fig. 5. Illustration of medical procedures corresponding to the four manipu-
lation cases defined in Fig. 4. These figures have been reproduced based on [31]
with permission of the American Medical Association (AMA).

Fig. 6. Intraoperative photographs of procedures that perform analogous ma-
neuvers to cases 1–4 in Fig. 4. (a) Central epiretinal membrane peeling over the
macula requires stabilization of the eye while gently peeling thin membranes.
(b) Peripheral epiretinal membrane peeling in close proximity to the ciliary body
requires tilting of the eye for visualization. (c) Silicone oil is removed by tilting
the eye so it floats upward toward the aspirating cannula. (d) Complex dissection
of membranes in proliferative vitreoretinopathy requires manipulation of both
the eye for visualization and the intraocular tools to perform delicate peeling
procedures.

Case 3 is relevant for applications where the manipulation of
the eye itself is important, while there is no need for intraocular
dexterity. An example of such a procedure includes treatment of
retinal detachment using a dense liquid (perfluorocarbon liquid)
(Fig. 5(c)). In this procedure, a small incision is made in the
detached region to allow aspiration of unwanted fluid between
the retina and the retinal pigment epithelium. The eye is then
tilted in order to roll the liquid on the surface of the retina.
The dense liquid is used to flatten the detached region of the
retina. Fig. 6(c) shows the application of removing silicone oil
by tilting the eyeball.

Case 4 (Figs. 5(d) and 6(d)) is relevant for operations within
the peripheral areas of the eye while having to rotate the eye in

Fig. 7. IODR shown in retracted and open configurations.

order to obtain a better view. In current practice, surgeons retract
their tools while tilting the eye and subsequently reposition the
tip of the instruments in the surgical site. We plan on using
the robot to allow simultaneous tilting and distal intraocular
operation in order to decrease the operation time and the number
of delicate regrasping operations.

The limitations of the current surgical setup include the lack of
distal dexterity inside the eye, limited ability to perform precise
coordinated bimanual operations, lack of precise stabilization
and manipulation of the eye itself under the microscope, limited
depth perception, and lack of force feedback. These limitations
place stringent constraints on ophthalmic surgeons and prevent
them from performing complex bimanual tasks.

III. PROPOSED SURGICAL SETUP AND SYSTEM DESCRIPTION

This paper addresses the need to provide surgeons with a
stand-alone surgical system that is capable of manipulating or
stabilizing the eye while providing bimanual intraocular dexter-
ous operations. The goal of this system is to enable operations
in difficult-to-reach areas of the retina. Examples of surgical
procedures that benefit from these capabilities include mem-
brane peeling in anterior aspects of the retina, and dual arm and
complex manipulation of blood vessels.

Fig. 1 shows the proposed telerobotic slave. Each arm is
composed of a 2 Degrees-of-Freedom (DoF) intraorgan dexter-
ity robot (IODR) and a 6-DoF parallel robot. The IODR is in-
troduced because potential applications require additional DoF
inside the organ, which is beyond the ability of available 4-DoF
minimally invasive surgical tools.

The IODR utilizes a preshaped NiTi tube that bends in 1 DoF
as it is extended outside of a straight cannula with a bending
radius of 5 mm (see Fig. 7), similar to the work of [32] and [33]
on steerable needles. The length of the IODR cannula is chosen
as 60 mm based on the length of existing tools. The IODR is
connected to the parallel robot via an adjustable lockable uni-
versal joint and a connector link, allowing the IODR cannula
having two tilting DoFs so that the angle between the cannula
and the connection link, as well as the orientation of the con-
nection link with respect to the moving platform is adjustable.
With this design, surgeons can initially position and lock the
robot at a given “start” configuration, minimizing the required
workspace of the parallel robot.

For the parallel robot, we propose the Stewart–Gough plat-
form design [34] due to its rigidity, compactness, positional
accuracy, and high payload-to-weight ratio. These advantages
were utilized in other robotic systems for medical applications,
e.g., [1] and [35]–[39]. The parallel robot is designed to be
placed sideways relative to the patient to avoid singularities
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associated with large tilting angles of the moving platform
(Hunt’s singularity [40]).

The dimensions of the parallel robot of each hybrid robotic
arm were given in our previous work [11]. These dimensions
were chosen to ensure that using both arms allows reaching all
points on the retina and to provide orbital manipulation.

IV. MULTI-ARM MANIPULATION OF HOLLOW ORGANS

To fill a hole in the literature addressing constraints that pierce
an object, we extend our framework developed in [11] to ma-
nipulate and operate on general hollow suspended organs. This
general mathematical model applies to all robotic systems with
similar constraints.

The instantaneous kinematics of the multiarm robot and the
suspended organ is presented in this section. The hollow organ is
assumed to be a rigid object movable in 6 DoFs and manipulated
by several arms piercing it. Each piercing point presents a 2-
DoF constraint specified by maintaining a fixed fulcrum point on
the organ. Therefore, for an unconstrained 6-DoF object, three
arms (2 DoFs each) are required to fully constrain the system.
For a specific hollow organ, upon introducing the anatomic con-
straints to the general model, we can obtain the corresponding
simplified kinematic model. For example, the orbital muscu-
lature of the eye can be modeled constraining the eye to only
three rotational DoFs; therefore, it only needs two arms to fully
constrain the system. Other hollow suspended organs, like the
bladder and stomach, can also be modeled after projecting from
the 6-D general space to their individual motion space1.

A. Kinematic Nomenclature

Fig. 8 depicts the organ and the ith hybrid robotic arm. The
organ is enlarged for a clearer view of the end-effector (EE) and
the organ coordinate frames. The following coordinate systems
are defined to assist in the derivation of the system kinematics.
The world coordinate system {W} is centered at an arbitrarily
predetermined point in the patient’s forehead with the patient in
a supine position. The ẑW -axis points vertically and ŷW -axis
points superiorly. The Stewart–Gough base coordinate system
{Bi} of the ith hybrid robot is located at point bi (the center
of the base platform) such that the ẑBi

-axis lies perpendicular
to the base of the Stewart–Gough platform, and the x̂Bi

-axis
lies parallel to ẑW . The moving platform coordinate system
of the ith hybrid robot {Pi} lies in the center of the moving
platform at point pi such that the axes lie parallel to {Bi} when
the Stewart–Gough platform lies in the home configuration.
The Stewart–Gough extension arm coordinate system of the ith
hybrid robot {Qi} is attached to the distal end of the arm at point
qi , with ẑQi

lying along the direction of the insertion needle of
the robot −−→qini , and x̂Qi

fixed during setup procedure. The IODR
base coordinate system of the ith hybrid robot {Ni} lies at point
ni with the ẑNi

-axis also pointing along the insertion needle
length −−→qini and the ŷNi

-axis rotated from ŷQi
by an angle qsi 1

1The flexibility of these organs is an issue to be addressed individually based
on the characteristics of the organ. The issue of organ flexibility is beyond the
scope of this paper.

Fig. 8. (a) Kinematic model of the organ and the ith hybrid robot. (b) Kine-
matic model of the IODR replacing the circular extending cannula with an
equivalent rotary joint.

about ẑNi
. The EE coordinate system {Gi} lies at point gi with

the ẑGi
-axis pointing in the direction of the EE gripper and the

ŷGi
-axis parallel to the ŷNi

-axis. The organ coordinate system
{O} sits at the rotating center o of the organ with axes parallel to
{W} when the organ is unactuated by the robot. The additional
notations used are defined as the following.
{A} a right-handed coordinate frame

with {x̂A , ŷA , ẑA} as its associ-
ated unit vectors and point a as
the location of its origin;

A−→ab vector from point a to point b ex-
pressed in frame {A};

[b×] skew-symmetric cross-product
matrix [23] of vector b;

i the index identifying each robotic
arm;

q̇Pi
= [q̇Pi 1 , q̇Pi 2 , q̇Pi 3 ,

q̇Pi 4 , q̇Pi 5 , q̇Pi 6 ]
T

the active joint speeds of the ith
Stewart–Gough platform;

q̇si
= [q̇si 1 , q̇si 2 ]

T joint speeds of the ith IODR.
The first component is the rotation
speed about the axis of the IODR
cannula, and the second compo-
nent is the bending angular rate of
the preshaped tube (Fig. 8(b));

ARB rotation matrix of frame {B} rel-
ative to frame {A};

vC
A/B ,ωC

A/B relative linear and angular veloci-
ties of frame {A} relative to {B},
expressed in {C}. Unless specifi-
cally stated, all vectors in this pa-
per are expressed in {W};
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vA ,ωA absolute linear and angular veloc-
ities of frame {A};

ẋA , ẋPi
, ẋo twists2 of frame{A} of the ith

Stewart–Gough moving platform
and of the organ;

W(−→a )=
[
I3×3 [−−→(a)×]
03×3 I3×3

]
twist transformation operator.

B. System Modeling

The kinematic modeling of the system has to include the kine-
matic constraints of the incision points on the hollow organ. The
following section presents the kinematics of the triple-armed
robot with the organ and describes the kinematics of the IODR
EE with respect to a target point on the organ.

1) Hybrid Robot: The Jacobian of the Stewart–Gough plat-
form relating the twist of the moving platform ẋpi

to the joint
speeds q̇pi

is given in (1) [41]. The overall hybrid Jacobian
matrix for one robotic arm was obtained as in (2). Appendix A
provides derivations of these matrices

JPi
ẋPi

= q̇Pi
(1)

ẋGi
= Jhi

q̇hi
. (2)

2) Organ: Most organs are not free-floating, but rather par-
tially constrained by their surrounding anatomy. A 6-D twist
vector is used to describe the motion of the organ

ẋo = [ẋT
ol , ẋ

T
oa ]T = [ẋ, ẏ, ż, α̇, β̇, γ̇]T (3)

where x, y , z , α , β, and γ are linear positions and roll–pitch–
yaw angles of the organ, and ẋol and ẋoacorrespond to the linear
and angular velocities of the organ, respectively.

3) Intraorgan Kinematics: The relative linear and angular
velocity of the EE with respect to a target point ti on the inner
surface of the organ (Fig. 8) is described as

vgi /ti
= [I3×3 ,03×3 ]Jhi

q̇hi
− ẋol − Tiẋoa (4)

ωgi /o = [03×3 , I3×3 ]Jhi
q̇hi

− ẋoa . (5)

Combining (4) and (5) yields the twist of the EE relative to ti

ẋgi /ti
= Jhi

q̇hi
− Hi ẋo (6)

where

Ti = [(−−→
oti)×] and Hi =

[
I3×3 Ti

03×3 I3×3

]
.

4) Euler Parameterization: The mechanical structure of the
hybrid robot in the organ cavity allows only 5 DoFs since in-
dependent rotation of the IODR EE about the ẑGi

-axis is un-
achievable due to the geometry of the organ constraint and the
IODR. This rotation is represented by the third Euler angle ϕi in
a w–v–w sequence [41]. For the purposes of path planning and
control, the twist of the EE can be parameterized using w–v–w
Euler angles while eliminating the third Euler angle by using a

2throughout this paper, a twist is defined as a 6-D column vector with linear
velocity preceding the angular velocity.

degenerate matrix Ki , (7). Ki is defined in Appendix B. Insert-
ing this new parameterization in (6) yields a relation between
the achievable independent velocities and the joint parameters
of the hybrid system as in (8) below:

˜̇xgi /ti
= Kiẋgi /ti

(7)

˜̇xgi /ti
+ KiHiẋo = KiJhi

q̇hi
. (8)

5) Overall Organ–Robot System: The robotic system must
be constrained such that the multitude na of hybrid robotic arms
moves synchronously to control the organ without tearing the
insertion points. Let mi designate the ith incision point on the
organ, i = 1, 2, 3, . . . , na . Let m′

i designate the corresponding
point on the IODR cannula of the ith robotic arm that is instanta-
neously coincident with mi . To prevent damage to the anatomy,
an equality constraint must be imposed between the projections
of the linear velocities of mi and m′

i on a plane perpendicular to
the longitudinal axis of the ith IODR cannula. These conditions
are derived in Appendix C and given as

x̂T
Qi

Fi q̇hi
= x̂T

Qi
(ẋol + Mi ẋoa), i = 1, 2, 3, . . . , na (9)

ŷT
Qi

Fi q̇hi
= ŷT

Qi
(ẋol + Mi ẋoa), i = 1, 2, 3, . . . , na . (10)

Equations (9) and (10) constitute 2na scalar equations that pro-
vide the conditions for the organ to be constrained by na robotic
arms inserted into it. For the organ to be fully constrained by
the robotic arms, (9) and (10) should have a rank equal to the
dimension of the organ twist ẋo . If the organ is free-floating,
then the rank should be six, and therefore, a minimum of three
robotic arms is necessary to effectively stabilize the organ. If the
organ is constrained from translation (e.g., the eye), the required
rank is three, and hence, the minimal number of arms is two.
This justifies the design of the dual-arm ophthalmic surgical
system depicted in Fig. 1.

Combining (9) and (10) with the twist of the hybrid robotic
arms ˜̇xgi /ti

for i = 1, 2, and 3 yields the kinematics of the
overall system composed of the organ and the three robotic
arms; see (11) below. Definitions of matrices Gi and Pi are
given in Appendix C:



K1Jh1 05×8 05×8
05×8 K2Jh2 05×8
05×8 05×8 K3Jh3

G1F1 02×8 02×8
02×8 G2F2 02×8
02×8 02×8 G3F3︸ ︷︷ ︸

JI





 q̇h1

q̇h2

q̇h3




=




I5×5 05×5 05×5 K1H1
05×5 I5×5 05×5 K2H2
05×5 05×5 I5×5 K3H3
02×5 02×5 02×5 G1P1
02×5 02×5 02×5 G2P2
02×5 02×5 02×5 G3P3︸ ︷︷ ︸

JO







˜̇xg1 /t1

˜̇xg2 /t2

˜̇xg3 /t3

ẋo


 . (11)
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In Wen’s work [15], the kinematic and static model of a two-
finger grasping manipulator was given. By modeling the contact
between fingers and the payload mathematically, the authors
derived the differential kinematic relationship. Our application
differs because the insertion constraint produces a constantly
changing contact point on the robot arm. Equation (11) is ap-
plicable to general robotic systems with insertion constraints
piercing into hollow objects.

C. Jacobian Normalization

Robot kinetostatic performance can be evaluated by examin-
ing the characteristics of the robot Jacobian. Several commonly
used performance measures, like the condition number [23],
the manipulability index [19], and kinematic conditioning [42],
are based on the robot Jacobian. However, directly using the
Jacobian for performance evaluation leads to meaningless re-
sults due to the inhomogeneity of physical units of its compo-
nents [43]. Normalization of the Jacobian is necessary in order
to ensure meaningful results when calculating the singular val-
ues. Inhomogeneity of the units of the Jacobian stems from the
inhomogeneity of the units in the twist or joint space; hence, dif-
ferent approaches to normalize the Jacobian matrix have been
used. Stocco et al. [44] used scaling matrices corresponding
to ranges of joint and task-space variables to pre- and post-
multiply the Jacobian for normalization. Angeles [23] proposed
to use the characteristic length to normalize the portion of the
Jacobian bearing the unit of length and use kinematic condition-
ing index (KCI), which is defined as the ratio of the smallest
and largest singular value of a normalized Jacobian, for perfor-
mance evaluation. Gosselin and Angeles [26] found a Jacobian
scaling matrix by using a physically meaningful transformation
of the EE twist that homogenizes the units of the transformed
twist.

Regardless of the method used, the designer has to make
an intelligent decision about the scaling/normalization factors
of the Jacobian prior to the calculation of the condition index
[44]. The methodology used in this paper relies on the use of
individual characteristic lengths for the serial and the parallel
portions of each robotic arm in Fig. 1.

Equations (12)–(14) specify the units of the individual vectors
and submatrices of (14). The brackets are used to designate units
of a vector or a matrix, where [m] and [s] denote meters and
seconds, respectively[

˜̇xgi /ti

]
= [ [m/s]1×3 [1/s]1×2 ]T

[ẋo ] = [ [m/s]1×3 [1/s]1×3 ]T

[q̇hi
] = [ [m/s]1×6 [1/s]1×2 ] T (12)

[GiPi ] = [ [1]2×3 [m]2×3 ]

[GiFi ] = [ [1]2×6 [0]2×2 ] (13)

[KiHi ] =
[

[1]3×3 [m]3×3
[0]2×3 [1]2×3

]

[KiJhi
] =

[
[1]3×6 [m]3×2

[1/m]2×6 [1]2×2

]
. (14)

The Jacobians JI and JO do not possess uniform units, and
using a single characteristic length to normalize both of them
is not possible because the robotic arms of Fig. 1 include both
serial and parallel portions. Therefore, in order to evaluate the
performance of the robotic system for different applications as
a whole, we simultaneously normalize JI and JO . This can be
achieved by inspecting the units and the physical meaning of
all submatrices in (14) while relating each matrix block to the
kinematics of the parallel robot, the IODR, or the organ.

The Jacobian matrix JO characterizes the velocities of the
rotating organ and the desired EE. JO is homogenized using the
radius of the organ at the target point as the characteristic length.
It is this radius, as measured with respect to the instantaneous
center of rotation, that imparts a linear velocity to point ti as a
result of the angular velocity of the organ. The top right nine
components of KiHi , i = 1, 2, and 3 of (11), bear the unit of
[m]. Hence, we divide them by the radius of the organ at the
target point, Lr in order to normalize them. This approach is
congruent with [14] and [44], which used scaling matrices re-
lating the units of twist of the EE. The same treatment is also
carried out to the rightmost six components of each matrix block
GiPi , where we divide them by Lr as well.

Jacobian JI describes the geometry of both the parallel robot
and the IODR. Therefore, we use both Lp , the length of the
connection link of the parallel robot (−−→piqi in Fig. 8), and Ls , the
bending radius of the inner tube of the IODR as characteristic
lengths. We multiply Lp to those components in KiJhi

that bear
the unit of [1/m]. We also divide the components that bear the
unit of [m] by Ls . This results in a normalized input Jacobian
JI that is dimensionless. While previous works suggested using
the radius of the moving platform for normalization [23], [27],
we chose Lp because we are interested in the angular and linear
velocities at point qi (Fig. 8). Lp is the scaling factor of the
linear velocity at point qi stemming from a unit angular velocity
of the moving platform. Similarly, the circular bending tube of
the IODR is modeled as a virtual rotary joint (Fig. 8); hence, the
bending radius Ls is used to normalize the components related
to the IODR.

V. MOTIVATING CASE STUDY: OPHTHALMIC MICROSURGERY

A. Model of the System in Ophthalmic Surgery

The eye is constrained by its surrounding musculature to have
only three rotational DoFs about its center. The twist of the organ
in (3) is reduced to a 3-D vector as in (15), shown below. The
linear and angular velocities of the robot arm EE relative to a
target point ti on the retina are given by (16) and (17), shown
below:

ẋe = [α̇, β̇, γ̇]T (15)

vgi /ti
= [I3×3 ,03×3 ]Jhi

q̇hi
− Tiẋe (16)

ωgi /e = [03×3 , I3×3 ]Jhi
q̇hi

− ẋe . (17)

Combining (16) and (17) yields the relative twist of the EE of
each arm with respect to the target point on the retina (18), where
Di = [TT

i , I3×3 ]T . The 5-D constrained twist of the IODR EE in
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Fig. 9. Definition of a point on the retina based on Euler angles.

(8) simplifies to (19), shown below. The overall system Jacobian
is given by (20), shown below:

ẋgi /ti
= Jhi

q̇hi
− Di ẋe (18)

˜̇xgi /ti
+ KiDi ẋe = KiJhi

q̇hi
(19)




K1Jh1 05×8
05×8 K2Jh2

G1F1 02×8
02×8 G2F2




︸ ︷︷ ︸
M

[
q̇h1

q̇h2

]
=




I5×5 05×5
05×5 I5×5
02×5 02×5
02×5 02×5︸ ︷︷ ︸

N1

K1D1
K2D2
G1M1
G2M2︸ ︷︷ ︸

N2




︸ ︷︷ ︸
N

×


 ˜̇xg1 /t1

˜̇xg2 /t2

ẋe


 . (20)

Rewriting (20) using matrices M and N, we obtain (21), shown

below, where q̇h = [q̇T
h1

, q̇T
h2

]T , and ˜̇xg/t = [˜̇x
T
g1 /t1

, ˜̇x
T
g2 /t2

]T .
Note that intraocular manipulation can be modeled by setting
ẋe = 0. Similarly, organ manipulation can be represented by
setting ˜̇xg/t = 0

Mq̇h = N1 ˜̇xg/t + N2 ẋe . (21)

B. Dexterity Evaluation for All Four Manipulation Cases

Fig. 4 showed four manipulation cases. The corresponding
dexterity measures for these cases are derived in this section.
Throughout this section, two incision points are specified by an-
gles [θ, φ]T = [π/3, π/3]T and [π/3, π]T , as defined in Fig. 9.

1) Case 1: Intraocular Dexterity: The aim of intraocular
dexterity evaluation is to compare the performance of the system
with or without the IODR. The setup without the IODR (7-DoF
setup) represents the current ophthalmic surgical setup based on
rigid tools. For the setup without an IODR, a straight cannula
capable of rotating about its own longitudinal axis was mod-
eled, yielding a 7-DoF robotic arm. The Jacobian matrix for the
7-DoF robotic arm is

J7i
=

[
BiAiJ−1

Pi
,
03×1
ẑQi

]

as in (22) and (23), shown below. In the second configuration
(8-DoF setup), the robotic arms are equipped with the IODR
of Figs. 7 and 8(b). This setup represents the robotic system of
Fig. 1 with intraocular dexterity.

In Section IV-C, multiple characteristic lengths were used to
normalize the system Jacobian. For manipulation case 1, the

Fig. 10. LKCI for intraocular dexterity. (a) Translation. (b) Rotational.

TABLE I
AVERAGE INTRAOCULAR GKCI OVER THE WHOLE WORKSPACE

translational and rotational dexterities were quantified by in-
vestigating the upper and lower three rows of J7i

and Jhi
. In

this paper, translational and rotational dexterities are individ-
ually investigated in order to provide insight of the robot to
perform specific procedures requiring translations or rotations.
Equations (22) and (24), shown below, give the normalized sub-
Jacobians for translational motions of 7-DoF and 8-DoF setup,
while (23) and (25), shown below, give the normalized sub-
Jacobians for rotational motions of both setups:

J7DoF t = [I3×3 ,03×3 ]
[
BiAiJ−1

Pi
,
03×1
ẑQi

] [
I6×6 06×1
01×6 1/Ls

]

(22)

J7DoF r = [03×3 , I3×3 ]
[
BiAiJ−1

Pi
,
03×1
ẑQi

] [
LP I6×6 06×1
01×6 1

]

(23)

J8DoF t = [I3×3 ,03×3 ]Jhi

[
I6×6 06×2
02×6 I2×2/Ls

]
(24)

J8DoF r = [03×3 , I3×3 ]Jhi

[
LP I6×6 06×2
02×6 I2×2

]
. (25)

Based on clinical observation of vitrectomy procedures, we es-
timate that most procedures are performed on an area of ±20◦

around a chosen center point on the retina. The lower hemi-
sphere of the retina is divided into a number of ±20◦ patches.
These patches represent different possible surgical sites. The
local KCI (LKCI) for each patch is calculated by averaging
the KCI values over the scanned area and plotting the results
throughout the workspace. In these plots, θ and φ are the first
two w–v–w Euler angles that locate the center point of each
patch (see Fig. 9).

Fig. 10 shows that the translational and rotational dexterities
are significantly improved throughout the workspace by the use
of the IODR. Table I also presents the global KCI (GKCI) de-
fined as the average of LKCI values over all workspace patches.

Fig. 11 shows the robot’s intraocular tangential dexterity on
a specified surgical site: 120◦ < θ < 160◦and 20◦ < φ < 100◦.
The manipulability ellipsoids of the robot while reaching each
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Fig. 11. Example of bimanual membrane peeling procedure (only half of
the eyeball is shown). The surgical site represents the membrane. Each ellipse
represents the intersection of a manipulability ellipsoid with its local tangent
plane of the eye.

Fig. 12. Case 2. Joint rates for orbital manipulation with constraints. The
x-axis describes the rotation sequence and the y-axis describes the joint rates. In
both plots, solid lines represent the joint rates for the parallel robot in millimeters
per second, and dotted lines represent the joint rates for the IODR in radians per
second.

site point have been intersected with the local tangent plane of
the eye. The resulting ellipses represent the robot’s dexterity in
performing tangential motions, such as tissue dissection. This
information can be used for planning specific surgical tasks,
e.g., bimanual membrane peeling.

2) Case 2: Orbital Dexterity With Constraints: This case is
represented by Fig. 4(b). In this case, the two arms are con-
strained to maintain zero relative motion with respect to a target
point on the retina while manipulating the eyeball. The target
point was selected to be [5π/6, 0]T , defined in the eye-attached
coordinate system {E}. Frame {E} is defined similarly as the
organ coordinate system {O} in Fig. 8, and represents the rota-
tion of the eye relative to {W}.

To verify the accuracy of our derivation, we specified a desired
rotation velocity of the eye as 10◦ per second about ŷw -axis in
Fig. 8, and calculated the joint velocities through the inverse
of the Jacobian. For the task of rotating the eye by fixing the
EE to the target point, the two IODRs and the eyeball form a
rigid body allowing no relative motion in-between. Therefore,
the rates of the IODR joints are expected to be zeros. Fig. 12
confirms the correctness of our derivation.

The robot dexterity in tilting the eye 20◦ in all directions from
its unperturbed “home” configuration was evaluated. The LKCI
values are shown in Fig. 13 as small circle points, where each

Fig. 13. LKCIs of orbital manipulation with and without constraints.

Fig. 14. Simultaneous orbital and intraocular manipulation. The eyeball is
rotated while one arm scans the surface of the retina.

point denotes the LKCI value of the system when rotating the
eye along the specified path.

3) Case 3: Orbital Dexterity Without Constraints: Since
˜̇xg/t is not constrained, (19) is substituted into (21), yielding
the system Jacobian for this case:

(M − N1O1)q̇h = (N1O2 + N2)ẋe (26)

where

O1 =
[
K1Jh1 05×8
05×8 K2Jh2

]
and O2 =

[
−K1D1
−K2D2

]
.

The robot dexterity in tilting the eye 20◦ in all directions
from its “home” configuration was evaluated. The LKCI based
on (26) was plotted in Fig. 13 using star symbols. Removing
the constraints of zero relative velocity of the EE increases the
orbital manipulation dexterity of the system.

4) Case 4: Simultaneous Orbital and Intraocular Dexterity:
In case 4, both arms coordinate to manipulate the eyeball. One
arm also operates inside the eye along a specified path. The
overall dexterity of the robot in executing this combined motion
is evaluated. The eye is rotated about ŷw -axis in Fig. 8, while
one robotic arm scans the retina independently. An illustration
of this combined motion is depicted in Fig. 14.

Fig. 15 shows the translational and rotational KCI values
separately. Since we have put more constraints on the system
(both orbital manipulation constraint and intraocular scanning
constraint), the KCI values are smaller than for cases 1–3. In
current practice, ophthalmic surgeons are not capable of per-
forming simultaneous manipulations, as defined in case 4. We
plan on using the robot to decrease the operation time and the
number of delicate regrasping operations.
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Fig. 15. Translational and rotational KCI values of the robotic system for
tracing a specified path as well as performing orbital manipulation.

VI. CONCLUSION

This paper has presented a new hybrid robotic system being
developed for surgical procedures associated with hollow sus-
pended organs. Four simulation cases were proposed to define
manipulation procedures for hollow organ surgeries. Specifi-
cally, the presented cases were examined in ophthalmic surgery
where the eyeball is a partially constrained hollow suspended
organ. Dexterity improvements in manipulation and operation
of the eyeball were quantified while using the proposed robot
compared to traditional tools. Moreover, a mathematical frame-
work of a multiarmed hybrid robotic system with insertion con-
straints was established. This model is added to the extensively
investigated model of multibody robots/multifinger hands and
is applicable to any robotic system with insertion constraints. In
addition, the approach of using multiple characteristic lengths
to evaluate the kinematic performance of highly hybrid robotic
system was proposed. Our future research includes experimen-
tal validation of the robotic system shown in Fig. 1, which is
currently under construction.

APPENDIX A

As shown in Fig. 8(a), in order to transform the linear
and angular velocities from Stewart–Gough platform center to
frame{Qi}, we have

vQi
= vPi

+ ωPi
× (−−→piqi) (27)

ωQi
= ωPi

. (28)

Writing (27) and (28) in matrix form results in the twist of the
distal end qi of the connection link

ẋQi
= Ai ẋPi

(29)

where Ai = W(−−→piqi) is the twist transformation matrix defined
in Section IV-A.

Similarly, we have Bi = W(−−→qini) and Ci = W(−−→nigi) to
calculate the twist of point gi contributed by the Stewart–Gough
platform. By incorporating the two serial DoFs of the IODR, we
obtain the twist of point gi as

ẋGi
= CiBiẋQi

+ Ci

[
0

ẑQi

]
q̇si 1 +

[
rẑGi

ŷNi

]
q̇si 2 . (30)

Thus, we get the Jacobian Jsi
of the IODR as

ẋGi
= CiBiẋQi

+ Jsi
q̇si

(31)

where

Jsi
=

[
[(−−−→nigi)×] ẑQi

rẑGi

ẑQi
ŷNi

]

including the speeds of rotation about the axis of the IODR
cannula and the bending of the precurved NiTi tube. The
hybrid Jacobian matrix relating the twist of point gi and
all eight inputs of one arm was obtained as in (2), where
Jhi

=
[
CiBiAiJ−1

Pi
,Jsi

]
, and q̇hi

=
[
q̇T

pi
, q̇T

si

]T
.

APPENDIX B

The 5 × 1 Euler angle parameterization of the desired ith EE
velocity ˜̇xgi /ti

is related in the text to the general twist of the
ith robot EE,ẋgi /ti

by the degenerate matrix Ki . The matrix is
derived using the relationship found in the literature [45] relating
the Cartesian angular velocities to the Euler angle velocities

[ωx, ωy , ωz ]T = Ri [φ̇, θ̇, φ̇]T (32)

where

Ri =


 0 − sin (φi) cos (φi) sin (θi)

0 cos (φi) sin (φi) sin (θi)
1 0 cos (θi)


 .

With the aforementioned relationship, the general twist of a
system ẋ can be related to the 6 × 1 Euler angle twist
[ẋ, ẏ, ż, φ̇, θ̇, φ̇]T as follows:

[ẋ, ẏ, ż, φ̇, θ̇, φ̇]T = Siẋ (33)

where

Si =
[
I 0
0 R−1

i

]
.

The 5 × 1 Euler parameterization used in the path planning
equation of the text is derived by applying a 5 × 6 degenerate
matrix to the 6 × 1 Euler angle twist as follows:

˜̇x = [I5×5 ,05×1 ][ẋ, ẏ, ż, φ̇, θ̇, φ̇]T . (34)

Substituting the relationship between the generalized and the
6 × 1 Euler angle twist (33) yields the matrix Ki as follows:

˜̇x = Kiẋ where Ki = [I5×5 ,05×1 ]Si . (35)

APPENDIX C

In the text, we specified the constraint that each insertion arm
moves at the insertion point only with the velocity equal to the
velocity of the organ surface at that point, plus any velocity
along the insertion needle. To assist in the development of this
constraint, point mi is defined at the insertion point on the sur-
face of the organ and m′

i is defined as the point on the insertion
needle instantaneously coincident with mi (Fig. 8). The veloc-
ity of m′

i must be equal to the velocity of point mi in the plane
perpendicular to the needle axis

vm ′
i
⊥ = vmi ⊥. (36)
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Taking a dot product in the directions x̂Qi
and ŷQi

yields two
independent constraint equations

x̂T
Qi

vm ′
i
= x̂T

Qi
vmi

(37)

ŷT
Qi

vm ′
i
= ŷT

Qi
vmi

. (38)

These constraints can be expressed in terms of the joint angles
and organ velocity by relating the velocities of point mi and m′

i

to the robot and organ coordinate systems. The velocity of point
m′

i can be related to the velocity of frame {Qi} as

vm ′
i
= vQi

+ ωQi
×−−→qimi (39)

By substituting the twist of frame{Qi},(39) becomes

vm ′
i
= [I3×3 ,03×3 ]ẋQi

+ Ei [03×3 , I3×3 ]ẋQi
(40)

where

Ei = [(−−−→qimi)×].

Inserting (29) and (1) and writing in terms of the hybrid joint
parameters q̇hi

yields

vm ′
i
= Fi q̇hi

(41)

where

Fi = ([I3×3 ,03×3 ] + Ei [03×3 , I3×3 ])AiJ−1
Pi

[I6×6 ,06×2 ].

An expression for the velocity of the insertion point mi can
be related to the desired organ velocity, yielding

vmi
= ẋol + Mi ẋoa (42)

where

Mi = [(−−−→omi)×].

Substituting (41) and (42) into (37) and (38) yields the final
constraint equations given the rigid-body motion of the organ–
robot system

x̂T
Qi

Fi q̇hi
= x̂T

Qi
(ẋol + Mi ẋoa) (43)

ŷT
Qi

Fi q̇hi
= ŷT

Qi
(ẋol + Mi ẋoa). (44)

For convenience, vectors x̂Qi
and ŷQi

are put in matrix form
as Gi = [x̂Qi

, ŷQi
]T , and we define Pi = [I3×3 ,Mi ]. As a re-

minder, these matrices are used to derive the overall Jacobian
equation, as shown in (11).

ACKNOWLEDGMENT

The corresponding author acknowledges the clinical advice
of Dr. J. Handa of the Johns Hopkins Eye Institute.

REFERENCES

[1] K. W. Grace, “Kinematic design of an ophthalmic surgery robot and feature
extracting bilateral manipulation” Ph.D. dissertation, Dept. Mech. Eng.,
Northwestern Univ., Chicago, IL, 1995.

[2] H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of
a telerobotic system to assist surgeons in microsurgery,” Comput. Aided
Surg., vol. 4, pp. 15–25, 1999.

[3] S. Charles, H. Das, T. Ohm, C. Boswell, G. Rodriguez, R. Steele, and
D. Istrade, “Dexterity-enhanced telerobotic microsurgery,” in Proc. 8th
Int. Conf. Adv. Robot., Monterey, CA, 1997, pp. 5–10.

[4] C. N. Riviere, W. T. Ang, and P. K. Khosla, “Toward active tremor cancel-
ing in handheld microsurgical instruments,” IEEE Trans. Robot. Autom.,
vol. 19, no. 5, pp. 793–800, Oct. 2003.

[5] R. Kumar, P. Berkelman, P. Gupta, A. Barnes, P. S. Jensen, L. L. Whitcomb,
and R. H. Taylor, “Preliminary experiments in cooperative human/robot
force control for robot assisted microsurgical manipulation,” in Proc. IEEE
Int. Conf. Robot. Autom., San Francisco, CA, 2000, pp. 610–617.

[6] R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici,
P. Gupta, Z. Wang, E deJuan, and L. Kavoussi, “Steady-hand robotic
system for microsurgical augmentation,” Int. J. Robot. Res., vol. 18,
pp. 1201–1210, 1999.

[7] K. Ikuta, T. Kato, and S. Nagata, “Development and experimental ver-
ification of micro active forceps for microsurgery,” in Proc. Int. Symp.
Micromechatron. Human Sci., Nagoya, Japan, 1996, pp. 229–234.

[8] C. N. Riviere and P. S. Jensen, “A study of instrument motion in retinal
microsurgery,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol., Chicago,
IL, 2000, pp. 59–60.

[9] S. P. N. Singh and C. N. Riviere, “Physiological tremor amplitude during
retinal microsurgery,” in Proc. IEEE 28th Annu. Northeast Bioeng. Conf.,
Philadelphia, PA, 2002, pp. 171–172.

[10] A. Jagtap and C. Riviere, “Applied force during vitreoretinal microsurgery
with handheld instruments,” in Proc. 26th Annu. Int. Conf. IEEE EMBS,
San Francisco, CA, 2004, pp. 2771–2773.

[11] W. Wei, R. Goldman, N. Simaan, H. Fine, and S. Chang, “Design and
theoretical evaluation of micro-surgical manipulators for orbital manipu-
lation and intraocular dexterity,” in Proc. IEEE Int. Conf. Robot. Autom.,
Rome, Italy, 2007, pp. 3389–3395.

[12] A. Bicchi, C. Melchiorri, and D. Balluchi, “On the manipulability of
general multiple limb robots,” IEEE Trans. Robot. Autom., vol. 11, no. 2,
pp. 215–228, Apr. 1995.

[13] A. Bicchi and D. Prattichizzo, “Manipulability of cooperating robots with
unactuated and closed-chain mechanisms,” IEEE Trans. Robot. Autom.,
vol. 16, no. 4, pp. 336–345, Aug. 2000.

[14] S. Lee, “Dual redundant arm configuration optimization with task-oriented
dual arm manipulability,” IEEE Trans Robot. Autom., vol. 5, no. 1, pp. 78–
97, Feb. 1989.

[15] J. T.-Y. Wen and L. S. Wilfinger, “Kinematic manipulability of general
constrained rigid multibody systems,” IEEE Trans. Robot. Autom., vol. 15,
no. 3, pp. 558–567, Jun. 1999.

[16] G. Liu, J. Xu, X. Wang, and Z. Li, “On quality functions for grasp synthe-
sis, fixture planning, and coordinated manipulation,” IEEE Trans. Robot.
Autom., vol. 1, no. 2, pp. 146–162, Oct. 2004.

[17] R. M. Murray and S. S. Sastry, “Grasping and manipulation using multi-
fingered robot hands,” in Proc. Symp. Appl. Math., Louisville, KY, 1990,
pp. 91–127.

[18] Y. Nakamura, K. Nagai, and T. Yoshikawa, “Dynamics and stability in
coordination of multiple robotic mechanisms,” Int. J. Robot. Res., vol. 8,
pp. 44–61, 1989.

[19] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Global task
space manipulability ellipsoids for multiple-arm systems,” IEEE Trans.
Robot. Autom., vol. 7, no. 5, pp. 678–685, Oct. 1991.

[20] T. Yoshikawa, “Manipulability of robotic mechanisms,” Int. J. Robot.
Res., vol. 4, pp. 3–9, 1985.

[21] R. Finotello, T. Grasso, G. Rossi, and A. Terribile, “Computation of kine-
tostatic performances of robot manipulators with polytopes,” in Proc.
IEEE Int. Conf. Robot. Autom., Leuven, Belgium, 1998, pp. 3241–3246.

[22] J. Lee, “A study on the manipulability measures for robot manipulators,”
in Proc IEEE/RSJ Int. Conf. Intell. Robot. Syst., Grenoble, France, 1997,
pp. 1458–1465.

[23] J. Angeles, Fundamentals of Robotic Mechanical Systems, 2nd ed. New
York: Springer-Verlag, 2002.

[24] A. Fattah and A. M. Hasan Ghasemi, “Isotropic design of spatial parallel
manipulators,” Int. J. Robot. Res., vol. 21, pp. 811–824, 2002.

[25] J. Angeles and C. S. Lopez-Cajun, “Kinematic isotropy and the condi-
tioning index of serial robotic manipulators,” Int. J. Robot. Res., vol. 11,
pp. 560–571, 1992.

[26] C. M. Gosselin and J. Angeles, “A global performance index for the
kinematic optimization of robotic manipulators,” ASME J. Mech. Design,
vol. 113, pp. 220–226, 1991.

[27] J.-P. Merlet, “Jacobian, manipulability, condition number, and accuracy
of parallel robots,” ASME J. Mech. Des., vol. 128, pp. 199–206, 2006.

[28] C. Gosselin, “The optimum design of robotic manipulators using dexterity
indices,” Robot. Auton. Syst., vol. 9, pp. 213–226, 1992.

[29] F. Park and R. Brockett, “Kinematic dexterity of robotic mechanisms,”
Int. J. Robot. Res., vol. 13, pp. 1–15, 1994.

Authorized licensed use limited to: Columbia University. Downloaded on March 26, 2009 at 11:32 from IEEE Xplore.  Restrictions apply.



WEI et al.: PERFORMANCE EVALUATION FOR MULTI-ARM MANIPULATION OF HOLLOW SUSPENDED ORGANS 157

[30] Y. Wang and G. S. Chirikjian, “Propagation of errors in hybrid manip-
ulators,” in Proc. 2006 IEEE Int. Conf. Robot. Autom., Orlando, FL,
pp. 1848–1853.

[31] D. Albert and M. Lucarelli, Clinical Atlas Procedures in Ophthalmic
Surgery. Atlanta, GA: AMA, 2004.

[32] S. Okazawa, R. Ebrahimi, J. Chuang, S. E. Salcudean, and R. Rohling,
“Hand-held steerable needle device,” IEEE/ASME Trans. Mechatron.,
vol. 10, no. 3, pp. 285–296, Jun. 2005.

[33] R. J. Webster, A. M. Okamura, and N. J. Cowan, “Toward active cannulas:
Miniature snake-like surgical robots,” in Proc. 2006 IEEE/RS, Beijing,
China, pp. 2857–2863.

[34] D. Stewart, “A platform with 6 degrees of freedom,” Proc. Inst. Mech.
Eng., vol. 180, no. 15, pp. 371–386, 1965.

[35] G. Brandt, K. Radermacher, S. Lavallee, H.-W. Staudte, and G. Rau, “A
compact robot for image guided orthopedic surgery: Concept and prelim-
inary results,” in Lecture Notes in Computer Science (LNCS), vol. 1205,
J. Troccaz, E. Grimson, and R. Mosges, Eds. Berlin, Germany: Springer-
Verlag, 1997, pp. 767–776.

[36] M. Shoham, M. Burman, E. Zehavi, L. Joskowicz, E. Batkilin, and Y. Ku-
nicher, “Bone-mounted miniature robot for surgical procedures: Concept
and clinical applications,” IEEE Trans. Robot. Autom., vol. 19, no. 5,
pp. 893–901, Oct. 2003.

[37] N. Simaan, “Analysis and synthesis of parallel robots for medical appli-
cations,” M.Sc. thesis, Dept. Mech. Eng., Technion—Israel Inst. Technol.
Haifa, Isarel, 1999.

[38] A. Wolf and B. Jaramaz, “MBARS: Mini bone attached robotic system
for joint arthroplasty,” in Proc. 1st IEEE/RAS—EMBS Int. Conf. Biomed.
Robot. Biomechatron., Pisa, Italy, 2006, pp. 1053–1058.

[39] M. Wapler, V. Urban, T. Weisener, J. Stalkamp, M. Durr, and A. Hiller,
“A Stewart platform for precision surgery,” Trans. Inst. Meas. Control,
vol. 24, pp. 329–334, 2003.

[40] J.-P. Merlet, “Singular configurations of parallel manipulators and grass-
mann geometry,” Int. J. Robot. Res., vol. 8, pp. 45–56, 1989.

[41] L.-W. Tsai, Robot Analysis: The Mechanics Serial Parallel Manipulators.
Hoboken, NJ: Wiley, 1999.

[42] J.-P. Merlet, Parallel Robots, 2nd ed. Dordrecht, The Netherlands:
Springer-Verlag, 2006.

[43] H. Lipkin and J. Duffy, “Hybrid twist and wrench control for a robotic
manipulator,” ASME J. Mech. Design, vol. 110, pp. 138–144, 1988.

[44] L. J. Stocco, S. E. Salcudean, and F. Sassani, “On the use of scaling
matrices for task-specific robot design,” IEEE Trans. Robot. Autom.,
vol. 15, no. 5, pp. 958–965, Oct. 1999.

[45] Y. Nakamura, Advanced Robotics Redundancy and Optimization, 1st ed.
Boston, MA: Addison-Wesley, 1991.

Wei Wei (S’06) received the B.Eng. degree from
Tsinghua University, Beijing, China, in 2003, the
M.Eng. degree from McGill University, Montreal,
QC, Canada, in 2005, and the M.Phil. degree from
Columbia University, New York, NY, in 2007, all
in mechanical engineering. He is currently working
toward the Ph.D. degree with the Department of Me-
chanical Engineering, Columbia University.

His current research interests include parallel
robots, flexible robots, medical robotics, mechani-
cal system synthesis, and control systems.

Roger E. Goldman received the B.Sc. degree in
mechanical engineering from Stanford University,
Stanford, CA, in 2002. He is currently working to-
ward the M.D. and Ph.D. degrees in biomedical en-
gineering at Columbia University, New York, NY.

In 2003, he joined Foxhollow Technologies, Inc.,
Redwood City, CA, where he developed catheters for
endovascular procedures. He is currently a National
Institutes of Health (NIH) Medical Scientist Training
Program Fellow at Columbia University. His current
research interests include novel robotic instruments

for applications in medical diagnosis and therapy.

Howard F. Fine received the B.S. degree in chemical
engineering and biology from the Massachusetts In-
stitute of Technology, Cambridge, in 1996, the M.D.
(cum laude) degree from Harvard Medical School,
Boston, MA, in 2001, and the M.H.Sc. degree in
clinical trials from Duke University Medical Center,
Durham, NC, in 2000.

In 2005, he completed the Ophthalmology Resi-
dency at Wilmer Eye Institute, Johns Hopkins Med-
ical Institutes, Baltimore, MD, and, in 2007, the fel-
lowship training in vitreoretinal surgery from Edward

S. Harkness Eye Institute, Columbia University Medical Center, New York,
NY, where he is currently the Medical Director of the Gerstner Clinical Re-
search Center and an Assistant Professor of ophthalmology. He has authored
or coauthored literature on minimally invasive vitreoretinal surgical outcomes,
autofluorescence imaging of the retina, and the use of monoclonal antibodies in
the treatment of retinal vascular diseases. His current research interests include
expanding vitreoretinal surgical capabilities, retinal imaging, and novel thera-
peutics for retinal vascular disease.

Stanley Chang received the B.S. degree in electri-
cal engineering from the Massachusetts Institute of
Technology, Cambridge, in 1968, the M.S. degree
in biomedical engineering from the University of
Pennsylvania, Philadelphia, in 1970, and the M.D.
degree from Columbia University College of Physi-
cians and Surgeons, New York, NY, in 1974.

In 1978, he completed the residency in ophthal-
mology at the Massachusetts Eye and Ear Infirmary,
Harvard Medical School and, in 1979, the fellowship
in vitreoretinal surgery at Bascom Palmer Eye Insti-

tute, University of Miami, Miami, FL. He is currently the Chairman of the
Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia
University College of Physicians and Surgeons. He pioneered the use of wide-
angle visualization systems for vitreoretinal surgery and heavy liquids for the
treatment of complex retinal detachments, including giant retinal tears. His
current research interests include vitreoretinal surgical instrumentation, novel
tamponade agents for complex retinal detachment, and the genetics of and gene
therapy for heritable retinal conditions.

Dr. Chang is considered one of the world’s foremost vitreoretinal surgeons
and was named the Physician of the Year nationwide in 2008 by Castle Connolly,
Inc.

Nabil Simaan (M’03) received the B.Sc., M.Sc.,
and Ph.D. degrees in mechanical engineering from
Technion—Israel Institute of Technology, Haifa,
Israel, in 1996, 1999, and 2002, respectively.

His Masters and Ph.D. research focused on the
design, synthesis, and singularity analysis of parallel
robots for medical applications, stiffness synthesis,
and modulation for parallel robots with actuation and
kinematic redundancies. In 2003, he was a Postdoc-
toral Research Scientist at Johns Hopkins Univer-
sity National Science Foundation (NSF) Engineering

Research Center for Computer-Integrated Surgical Systems and Technology
(ERC-CISST), Baltimore, MD, where he focused on minimally invasive robotic
assistance in confined spaces. In 2005, he joined Columbia University, New
York, NY, as an Assistant Professor of mechanical engineering and the Director
of the Advanced Robotics and Mechanisms Applications (ARMA) Laboratory.
During the course of his research, he designed and constructed compact par-
allel robots for medical applications and compact and downscalable surgical
slaves for minimally invasive surgery of the throat and upper airway. His cur-
rent research interests include synthesis of novel robotic systems for surgical
assistance in confined spaces with applications to minimally invasive surgery
of the throat, natural orifice surgery, cochlear implant surgery, and dexterous
bimanual microsurgery.

Authorized licensed use limited to: Columbia University. Downloaded on March 26, 2009 at 11:32 from IEEE Xplore.  Restrictions apply.


