
576 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 3, JUNE 2008

An Investigation of the Intrinsic Force Sensing
Capabilities of Continuum Robots
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Abstract—This paper presents the theoretical analysis and the
experimental validation of the force sensing capabilities of contin-
uum robots. These robots employ superelastic NiTi backbones and
actuation redundancy. The paper uses screw theory to analyze the
limitations and provide geometric interpretation to the sensible
wrenches. The analysis is based on the singular value decompo-
sition of the Jacobian mapping between the configuration space
and the twist space of the end effector. The results show that the
sensible wrenches belong to a 2-D screw system and the insensible
wrenches belong to a 4-D screw system. The theory presented in
this paper is validated through simulations and experiments. It is
shown that the force sensing errors have an average of 0.34 g with a
standard deviation of 0.83 g. Another experiment of generating the
stiffness map of a silicone strip suggests possible medical applica-
tion of palpation for tumor detection. The presented study allows
force sensing in challenging environments where placing force sen-
sors at the distal end of a robot is not possible due to limitations
such as size and MRI compatibility.

Index Terms—Continuum robot, force sensing, screw theory,
singular value decomposition (SVD), surgical assistance.

I. INTRODUCTION

D ISTAL dexterity enhancement in minimally invasive
surgery (MIS) is a key enabler for complex tasks in con-

fined spaces [1]–[3]. Many works focused on various ways to
overcome the dexterity constraints in MIS. These works in-
cluded planar and spatial linkages [4]–[7], parallel wrists [8],
[9], serial articulated wrists [10]–[12], and more recently, snake-
like devices [4], [12]–[20] to allow surgeons to control the posi-
tion and orientation of surgical tools. Distal dexterity enhance-
ment was investigated in robotic systems for laparoscopy [11],
[21], [22], arthroscopy [14], gastrointestinal surgery [13], [18],
neurosurgery [16], fetal surgery [15], and ear, nose, and throat
(ENT) surgery [23], etc. The different actuation methods for
these devices included wire actuation [11], [15], [16], [19],
shape memory alloy (SMA) actuation [14], mechanical actu-
ation through linkages [5], [6], gear transmission [4], and our
recent design that implements push–pull actuation using multi-
ple superelastic tubes and beams [2], [24]–[26].
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In contrast to these efforts for providing distal dexterity, most
existing MIS robotic systems do not provide force feedback.
Force feedback has been shown to be an important factor for
improved patient safety, precise manipulation, grasping or pal-
pation of soft organs, and for improved transparency in mas-
ter/slave teleoperation for precise suture placement [27]–[32].
For this reason, many recent works focused on new surgical
tools with force sensing capabilities [33]–[38]. These works
focused on designing miniature force sensors to be placed at
the distal end of the surgical devices or using joint-level in-
formation to quantify the applied forces. For example, Seibold
et al. [36] developed a Ø10 mm miniature six-axis force sensor
with force resolution of 0.25 N in z-direction and 0.05 N in
x- and y-directions, which is mounted near the distal tip of the
surgical tool. Tadano and Kawashima [37] presented a Ø10 mm
forceps with force sensing ability by monitoring the pressure of
a pneumatic actuator. An accuracy of 0.05 N was obtained.

Placing a dedicated multiaxis force sensor at the tip of surgical
end effectors offers a direct measurement of the interaction
forces. However, the increased demands for MRI compatibility
and for smaller surgical end effectors limit this approach. This
paper answers this need for developing down-scalable surgical
devices that can provide force feedback without using force
sensors located proximal to the end effectors. This type of force
sensing using joint-level information is hereby referred to as
“intrinsic force sensing.”

Fig. 1 shows a continuum robot and its actuation unit. This
experimental setup was constructed to validate the possible use
of joint-level force information to sense the wrench applied at
the distal end of the robot. The diameter of this robot is 7.5 mm.
It has four superelastic NiTi tubes as its backbones (shown
clearly in Fig. 2). One primary backbone (see Fig. 1 5©) is cen-
trally located and is attached to the base disk (see Fig. 1 3©) and
the end disk (see Fig. 1 1©). Three identical secondary backbones
(see Fig. 1 4©) are equidistant from each other and from the pri-
mary backbone. The secondary backbones are only attached to
the end disk and can slide in appropriately toleranced holes in
the base disk and in the spacer disks (see Fig. 1 2©). In order
to minimize the frictions in the system, the spacer disks are
made from polytetrafluoroethylene (PTFE) while PTFE bush-
ing is also implemented in the base disk. Each secondary back-
bone is actuated in push–pull mode by an actuation rod (see
Fig. 1 6©). The actuation force is continuously monitored by
low-cost load cells Omega-LC703 (see Fig. 1 8©). An actuation
cantilever (Fig. 1 7©) drives the load cell and the actuation rod.
The actuation cantilever equips linear ball bearings and can slide
freely along the actuation rails. A double-supported actuation
slider (see Fig. 1 9©) is connected to the load cells to drive the ac-
tuation cantilevers. All the actuation components and load cells
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Fig. 1. Ø7.5 mm continuum robot. 1© End disk. 2© Spacer disk. 3© Base disk.
4© Secondary backbone. 5© Primary backbone. 6© Actuation rods. 7© Actua-
tion cantilever with linear ball bearings. 8© Load cells. 9© Double-supported
actuation sliders.

Fig. 2. Kinematics nomenclature with the definition of the configuration vari-
able δ for a bent robot.

Fig. 3. Kinematics nomenclature with the definition of the configuration vari-
able δ for a straight robot.

were designed to be rigid enough so that their deformations can
be neglected. Two degrees of freedom bending motion of the
continuum robot is achieved through simultaneous actuation of
the three secondary backbones.

This design is inspired by the works of Hirose [39], and
Walker and Gravagne [40], [41] in which a single flexible back-
bone was actuated by wires. Our previous work [25] showed that
using multiple backbones in push–pull actuation offers some ad-
vantages over the wire-actuated snake-like robots. These advan-
tages include backlash elimination, enhanced down-scalability,
and improved payload. Although this design presents difficulties
in modeling and control due to the flexibility of the actuation
elements, it also offers the possibility to sense exerted external
wrenches by monitoring the actuation forces on the secondary
backbones.

A. Contribution

The main contribution of this paper is given in Section II
where the force sensing capabilities of the continuum robot are
analyzed. A geometric interpretation using screw theory and
singular value decomposition (SVD) of a kinematic mapping
between a 2-D configuration space and the 6-D twist space
of the end effector is presented. It is shown that the sensible
wrenches belong to a 2-D screw system. Other contributions
include using experimental results to correct the kinematics,
statics, and force sensing models, presented in Section III. In
Section IV, the corrected force sensing models are validated
through experiments.

II. MODELING OF THE CONTINUUM ROBOT

A. Nomenclature

The continuum robot is shown in Figs. 2 and 3. Table I
presents the nomenclature used in this paper. Four coordinate
systems are defined to describe the kinematics of the robot.

1) Base disk coordinate system (BDS): {x̂b , ŷb , ẑb} is at-
tached to the base disk, whose XY -plane is defined to
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TABLE I
NOMENCLATURE USED IN THIS PAPER

coincide with the upper surface of the base disk and its
origin is at the center of the base disk. The x̂b points from
the center of the base disk to the first secondary back-
bone while the ẑb is perpendicular to the base disk. The
three secondary backbones are numbered according to the
definition of δi.

2) Bending plane coordinate system (BPS): {x̂1 , ŷ1 , ẑ1}
is defined such that the continuum robot bends in the
XZ-plane, with its origin coinciding with the origin of
BDS.

3) End disk coordinate system (EDS): {x̂e , ŷe , ẑe} is ob-
tained from BPS by a rotation about ŷ1 such that ẑ1 be-
comes the backbone tangent at the end disk. The origin of
EDS is at the center of the end disk.

4) Gripper coordinate system (GCS): {x̂g , ŷg , ẑg} is at-
tached to an imaginary gripper affixed to the end disk.
x̂g points from the center of the end disk to the first sec-
ondary backbone and ẑg is normal to the end disk. GCS
is obtained by a right-handed rotation about ẑe .

B. Kinematics Model

The generalized solution for the inverse kinematics of hyper
redundant robots was given in [42]–[45]. The kinematics of
continuum robots was addressed in [2], [41], [46], and [47], in
which the bending shape of the continuum robot was assumed
to be circular. For completeness, the explicit closed form of the
kinematics is summarized here, based on [2].

The configuration of the continuum robot is parameterized
by θL and δ angles. The inverse kinematics is provided in [2]
and [25] and in Appendix A

Li = L + qi = L + ∆i(θL − θ0) (1)

∆i ≡ r cos(δi), i = 1, 2, and 3. (2)

For a given qi , the robot configuration ψ = [ θL δ ]T is given
by [25]. The function atan2 in (4) follows the convention in [48]

θL = θ0 +
qi

∆i
(3)

δ = atan2(q2 − q1cosβ,−q1sinβ). (4)

The instantaneous direct kinematics is then given by

ẋ = Jxψψ̇. (5)

Since the robot includes flexible members, its shape is deter-
mined by the minimal energy solution. In this paper, we assume
a circular arc shape. This assumption is experimentally vali-
dated in Section III. The Jacobian matrix is shown below, with
derivation details in Appendix B:

Jxψ =




Lcδ
(θL − θ0)cθL

− sθL
+ 1

(θL − θ0)2 −L
sδ (sθL

− 1)
θL − θ0

−Lsδ
(θL − θ0)cθL

− sθL
+ 1

(θL − θ0)2 −L
cδ (sθL

− 1)
θL − θ0

L
(θL − θ0)sθL

+ cθL

(θL − θ0)2 0

−sδ cδ cθL

−cδ −sδ cθL

0 −1 + sθL




.

(6)
Equation (6) is ill-defined when θL = θ0 = π/2. This singular-
ity for the configurations θL = θ0 = π/2 is resolved by apply-
ing L’Hopital Rule, as in (7). For these configurations, the robot
bending plane is defined according to the desired linear velocity
of the end disk, as shown in Fig. 3:

lim
θL →θ0 =π/2

Jxψ =




−(L/2)cδ 0
(L/2)sδ 0

0 0
−sδ 0
−cδ 0
0 0




. (7)

The instantaneous inverse kinematics is given as

q̇ = Jqψψ̇. (8)
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Fig. 4. Gravitational energy over elastic energy ratio.

By taking the derivative of (1) for qi, i = 1, 2, and 3

Jqψ =


 r cos(δ) −r(θL − θ0) sin(δ)

r cos(δ + β) −r(θL − θ0) sin(δ + β)
r cos(δ + 2β) −r(θL − θ0) sin(δ + 2β)


 . (9)

C. Virtual Work Model

The static analysis is based on a virtual work model. Twist-
ing, extension of backbones, and friction are neglected. Each
PTFE spacer disk of the robot in Fig. 1 weighs 0.23 g and the
aluminum end disk weighs 0.39 g. Density of NiTi is 6.2 g/cm3 .
Given the circular bending shape of the continuum robot, the
ratio of gravitational energy to elastic energy as a function of
the angle θL is plotted in Fig. 4. The gravitational energy is cal-
culated when the robot is placed horizontally as in Fig. 1. This
arrangement introduces the biggest gravitational energy change.
Even thus, when the robot is only bent to θL = 87◦, the ratio is
as small as 0.0099 (0.99%). Hence, gravity is also neglected in
the analysis.

Given the aforementioned assumptions, according to [49], the
elastic energy of the continuum robot is given by

E =
∫

L

EI

2

(
dθ

ds

)2

ds = (θL − θ0)2

(
EpIp

2L
+

3∑
i=1

(
EsIs

2Li

))
.

(10)

Assume that an external wrench We = [ fT
e mT

e ]T acts on
the end disk where fe indicates the force and me the moment.
This external wrench perturbs the robot posture (position and
orientation) of the end disk by ∆x. To this pose perturbation,
there is a corresponding change in the lengths of the secondary
backbones ∆q = [ ∆q1 ∆q2 ∆q3 ]T . The actuation forces
on the secondary backbones that maintain the equilibrium are
τ = [ τ1 τ2 τ3 ]T . The change in the potential energy ∆E
that corresponds to ∆x is given by

WT
e ∆x + τ T ∆q = ∆E. (11)

The virtual displacement is characterized by ∆ψ =
[ ∆θL ∆δ ]T .

Using (5) and (8), the virtual work principle is rewritten as
in (12). The equilibrium condition requires the terms associ-
ated with each independent DOF to vanish. The matrix form

of this system of linear equations is given in (13) where ∇E
represents the gradient of the elastic energy with respect to the
configuration perturbation ∆ψ

WT
e Jxψ∆ψ + τ T Jqψ∆ψ −∇ET ∆ψ = 0 (12)

JT
qψτ + JT

xψWe = ∇E. (13)

For the actuation forces, a redundancy resolution of (13) is
obtained in [25] as

τ =
(
JT

qψ

)+ (
∇E − JT

xψWe

)
+

(
I −

(
JT

qψ

)+
JT

qψ

)
ξ

(14)
where ξ ∈ �3×1 is a vector of homogeneous actuation forces
used to optimize the loads on the backbones and

∇E

=



(θL−θ0)

(
EpIp

L
+

3∑
i=1

EsIs

Li

)
− (θL−θ0)2

2
EsIsr

3∑
i=1

cos δi

L2
i

(θL − θ0)3

2
EsIsr

3∑
i=1

sin δi

L2
i


.

In the compensated actuation of the continuum robot, one
redundancy resolution is adopted as in [26]

τ = Jqψ(JT
qψJqψ)−1 (

∇E − JT
xψWe

)
. (15)

D. Force Sensing Model

Equation (13) can be rewritten as

JT
xψWe = ∇E − JT

qψτ . (16)

It is possible for the continuum robot to have force sens-
ing capability if the actuation forces τ are measured by the
load cells in Fig. 1. There are six unknown wrench compo-
nents in We while there are only two independent equations
in (16). A solution of this underconstrained system of equa-
tions is obtained as in (17), where Ws is the sensed external
wrench, N = (I − (JT

xψ)+(JT
xψ)) is the null-space projector

of JT
xψ, and (JT

xψ)+ = Jxψ(JT
xψJxψ)−1 . For any η ∈ �6×1 ,

JT
xψNη does not affect the static equilibrium of the continuum

robot. Accordingly, we split Ws into a component Wsb desig-
nating sensible wrenches and a component Wisb representing
wrenches that do not affect the joint-level forces τ , and hence,
cannot be sensed (see (18))

Ws =
(
JT

xψ

)+ (
∇E − JT

qψτ
)

+ Nη (17)

Ws = Wsb + Wisb (18)

where Wsb = (JT
xψ)+(∇E − JT

qψτ ) and Wisb = Nη.
The resolution for Ws in (17) depends on the joint-level in-

formation and on an a priori knowledge. The a priori knowledge
leads to the homogenous solution Nη while the joint-level in-
formation leads to (JT

xψ)+(∇E − JT
qψτ ). Although there may

be several other sources of extrinsic information or a priori
knowledge, in this paper we only consider a priori knowledge
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Fig. 5. Incorporation of the force sensing in a clinical environment. (A) Pal-
pation. (B) Incision. (C) Suture penetration.

that stems from the geometry of the contact between the robot
and its environment. As described in [50] different types of con-
tacts (e.g., point, line, plane contacts with or without friction)
are associated with different wrenches. Each type of contact ge-
ometry provides information about certain null components of
the wrench that acts on the robot. Wse ∈ �6×1 is used to desig-
nate the a priori wrench estimate with these null components,
while Se ∈ �6×6 is used to designate the weights. Determining
Ws can be modeled as a constrained least squares problem, as
shown in (19):

η = argmin((Ws − Wse)T Se(Ws − Wse))

s.t. Ws =
(
JT

xψ

)+(
∇E − JT

qψτ
)

+
(
I −

(
JT

xψ

)+(
JT

xψ

))
η.

(19)

Equation (19) has a closed-form solution

η = Ω+NT Se

(
Wse −

(
JT

xψ

)+(
∇E − JT

qψτ
))

(20)

where N = (I − (JT
xψ)+(JT

xψ)) and Ω = (I − (JT
xψ)+

(JT
xψ))TSe(I − (JT

xψ)+(JT
xψ)).

In the case of palpation shown in Fig. 5(A), the possible con-
tact geometries to be considered are soft finger contact or point
contact with friction. For simplicity, point contact with friction
is assumed. In this case, the moment components of the external
wrench We are all zero. The reaction force lies in a plane that
is determined by the tissue surface normal n̂n and the local sur-
face tangent n̂t that is opposite to the direction of the slippage
between the robot and the tissue. n̂n and n̂t can be obtained
by integrated vision. Wse and Se can then be formulated as
in (21), where ct and cn are any arbitrary real numbers. After
substituting (21) into (19), the specific optimization problem
as described in (22) is obtained. In (22), fs and ms are force
and moment components of the sensed wrench Ws . Clearly,
the minimization leads to fT

s (n̂t × n̂n ) (n̂t × n̂n )T fs = 0 and
mT

s ms = 0, as consistent with a Ws that stems from a point
contact, i.e., all moment components are zero and the force lies

in the plane defined by n̂n and n̂t :

Se =

[
(n̂t × n̂n ) (n̂t × n̂n )T 01×3

03×3 I3×3

]
and

Wse =

[
ct n̂t + cn n̂n

03×1

]
(21)

η = argmin
(
fT
s (n̂t × n̂n )(n̂t × n̂n )T fs + mT

s ms

)
s.t. Ws =

(
JT

xψ

)+(
∇E − JT

qψτ
)

+
(
I −

(
JT

xψ

)+(
JT

xψ

))
η.

(22)
For example, if the plane defined by n̂n and n̂t is parallel

to the XY -plane of BDS, then Se = diag(0, 0, 1, 1, 1, 1) and
Wse = [ ct cn 0 0 0 0 ]T . This case corresponds to the
two experiments presented in Section IV.

In the case of incision shown in Fig. 5(B) or the case of suture
penetration shown in Fig. 5(C), a line contact or a plane contact
should be assumed. Additional interaction wrench information
needs to be added into the formulation of Se and Wse . The new
formulation will depend on the geometry of the end effector,
the information from other wrench sensors or the model of the
tissue, and a measurement of the tissue deflection from vision.

We next seek to understand the physical interpretations for
Wsb and Wisb . The SVD of Jxψ from (23) is used for this
purpose. In (23), the matrix Dx = [ diag(d1 , d2) 02×4 ]T is
the matrix of singular values, Ux ∈ �6×6 and Vx ∈ �2×2 are
unitary orthogonal matrices designating the left (output) singu-
lar vectors and right (input) singular vectors of Jxψ ∈ �6×2 ,
respectively. Available in [51], the pseudoinverse of Jxψ is ex-
pressed using the SVD as in (24). After substituting (15) into
(18) and simplifying terms, we obtain the result in (25). The dis-
appearance of Jqψ and ∇E in (25) is due to using the specific
actuation redundancy resolution of (15). After substituting the
SVD of Jxψ into (25), we obtain (26) that expresses Wsb and
Wisb in terms of the left singular vectors of Jxψ. By using the
property of orthogonal matrix, I = UxUT

x , (26) can be simpli-
fied as in (27) and (28) where ui

x designates the ith column of
Ux . In (27), we note that N is the null space projector of JT

xψ,

N = (I − (JT
xψ)+(JT

xψ)) = UxÎU
T

x .

Jxψ = UxDxVT
x (23)(

JT
xψ

)+
= UxD̃xVT

x (24)

where D̃x = [ diag(1/d1 ,1/d2) 02×4 ]T

Wsb =
(
JT

xψ

)+
JT

xψWe , Wisb = Nη (25)

Wsb = UxĨU
T

x We , Wisb =
(
I − UxĨU

T

x

)
η (26)

where Ĩ≡ diag(1,1,0,0,0,0) and Î≡ I− Ĩ= diag(0,0,1,1,1,1)

Wsb = UxĨU
T

x We , Wisb = UxÎU
T

x η (27)

Wsb = UxŨxWe , Wisb = UxÛT
x η (28)
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where

Ũx ≡ ĨU
T

x =




(
u1

x

)T

(
u2

x

)T

0
0
0
0




and

Ûx ≡ ÎU
T

x =




0
0(

u3
x

)T(
u4

x

)T

(
u5

x

)T

(
u6

x

)T




.

In (28), the first term UxŨxWe depends on the geometry
of the robot (through Ux ) and on the applied wrench We .
The second term UxÛxη does not affect the joint-level sensor
information τ ; thus, our focus will mainly be on the first term
UxŨxWe .

Since ui
x (i = 1, . . . , 6) are the left singular vectors of

Jxψ, they represent twists in axial Plücker coordinates, which
is consistent with the definition of ẋ. The reciprocal prod-
uct [52] of screws $1 and $2 is given by $T

1 $2 , where
for a general screw, $ = [s1 s2 s3 s4 s5 s6 ]T and its transpose
$T = [s4 s5 s6 s1 s2 s3 ]. Using this definition, the components
of ŨxWe are interpreted as reciprocal products (ui

x)T We (i =
1 and 2). If a wrench We is reciprocal to ui

x for i = 1 and 2,
it cannot be sensed; otherwise, We will affect the joint-level
forces τ and it will be sensible. Based on this interpretation, the
decomposition of Ws into Wsb and Wisb can be characterized
as

WT
sbu

i
x �= 0 and WT

isbu
i
x = 0, for i = 1 and 2. (29)

From (29), it is evident that the insensible wrenches Wisb be-
long to a 4-D wrench system {Wisb} reciprocal to ui

x (i = 1, 2).
The sensible wrenches Wsb belong to a 2-D wrench system that
is reciprocal to ui

x (i = 3, . . . , 6). Also from (25) and (28), one
concludes

{Wisb} = Nul
(
JT

xψ

)
(30)

where Nul(A) is the null space of A.
The matrix ui

x can be rewritten in Plücker ray coordinates as
in (31) where [n̂T , (ro × n̂)T ]T is the Plücker coordinates of
the screw axis and λ is its pitch [53]. ui

x can then be visualized
as a line segment of [n̂T , (ro × n̂)T ]T with its length equal
to λ, starting from a point ro that expressed in a coordinate
system parallel to BDS and centered at the center of the end
disk. The linear combinations of ui

x (i = 1, 2) can be visualized
as a rank 2 screw system (cylindroid) [53], [54]. This cylindroid
represents the sensible wrenches Wsb . At the same time, the

TABLE II
PARAMETERS OF THE ROBOT IN FIG. 1

basis wrenches that span the insensible wrench space {Wisb}
can also be visualized

ui
x = κs

[
n̂

ro × n̂ + λn̂

]
. (31)

The essence of the proposed force sensing analysis can now
be pictured: for any external wrench We , its projection in the
sensible wrench space {Wsb} is calculated from (17) as η = 0;
its projection in the insensible wrench space {Wisb} is calcu-
lated from (19) making use of the other sensory information or
a priori knowledge.

E. Simulation Case Studies

This section presents a simulation and visualization of the
sensible and insensible wrenches in two case studies. The di-
mensions and the elasticity parameters of the simulated contin-
uum robot are given in Table II. These values correspond to the
robot in Fig. 1 and are used for the rest of this paper. dop , dos ,
dip , and dis designate the outer and inner diameters for primary
and secondary backbones, respectively.

Case study 1: ψ = [ θL = 90◦, δ = 45◦ ]T .
An intuitive example can be reviewed when the robot is

straight as in Fig. 6(A). This figure shows the pencil of sensible
wrenches indicated by lines and the basis for the 4-D insensible
wrenches shown by black arrows. The numerical values of Jxψ,
Ux , Dx , and Vx are listed in Table III. Four conclusions are
drawn about this case study.

1) One wrench (the third column in the corresponding Ux

matrix in Table III) is [ 0 0 1 0 0 0 ]T , which can
be expressed as a screw with infinite pitch and does not
appear in Fig. 6(A). It stands for a pure force in the
Z-direction. It is insensible because the primary back-
bone is fixed to the base disk such that the load on it is not
monitored by the load cells.

2) Another wrench (the sixth column in the corresponding
Ux matrix in Table III) is [ 0 0 0 0 0 1 ]T , which
can be expressed as a screw with zero pitch and does not
appear in Fig. 6(A) either. It stands for a pure moment in
the Z-direction. It is insensible because at this configura-
tion, the moment about ẑe does not affect the actuation.

3) The two arrows in Fig. 6(A) stand for the force–moment
combinations, which will generate zero changes of the
actuation forces on the joints level (the fourth and fifth
columns in the corresponding Ux matrix in Table III).

4) When the robot is straight, the force along ẑb and the mo-
ment about ẑb cannot be sensed. The sensible cylindroid
appears as a flat pencil within the XY -plane, shown in
Fig. 6(A), compared with the finite pitch cylindroid in
Fig. 6(B). Matrix Dx degrades to rank 1.

Case study 2: ψ = [ θL = 30◦, δ = 45◦ ]T .
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Fig. 6. Insensible wrenches (shown by arrows) and sensible wrench cylindroid
(designated by lines) for two case studies.

TABLE III
NUMERICAL VALUES OF ENTITIES

From the corresponding Ux from Table III, four wrenches
(the third to sixth columns in Ux ) are shown in Fig. 6(B). These
four wrenches (black arrows) represent the basis for the insensi-
ble wrench space. The sixth column is very close to the wrench
[ 0 0 0 0 0 1 ]T so that it almost disappears in Fig. 6(B).
This means that the continuum robot is indeed not good at esti-

Fig. 7. Actual bending shape of the robot for configurations. (A) θL =
60◦ and δ = 0◦. (B) θL = 15◦ δ = 0◦.

Fig. 8. Bending shape along the primary backbone of the continuum robot.

mating the moment about the ẑe . This hereby forms a situation
we should avoid in the path planning of the continuum robot.

The sensible wrenches (the first and second columns in the
corresponding Ux matrix in Table III) now form a 2-D cylin-
droid with a finite pitch [see Fig. 6(B)].

III. EXPERIMENTAL CORRECTIONS FOR THE MODELING

The model presented in the previous section assumes a per-
fectly circular bending shape of the robot. In this section, we
validate this assumption and we propose necessary correction
factors that account for shape discrepancy between the ideal
model and the actual robot in Fig. 1. The necessary correction
factor is subsequently applied to correct the kinematics and the
force sensing models.

To gain some insight into the sources of the kinematics mod-
eling errors, a series of pictures of the continuum robot shown
in Fig. 1 were taken while the robot was bent to different angles.
These pictures were transformed into gray scale, edges were
detected using Canny masks [55], and then, a third-order poly-
nomial was fitted to each bending shape of the continuum robot
to parameterize the shape. The pictures of the robot bending to
θL = 60◦, δ = 0◦ and θL = 15◦, δ = 0◦ are shown in Fig. 7(A)
and (B), respectively.

Fig. 8 shows the actual shape of the primary backbone com-
pared to a circular shape, when the actual end effector angle
θL = 70◦, θL = 40◦, and θL = 15◦. To quantitatively estimate
how close the actual bending shape is to a circular arc, the actual
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Fig. 9. Experimental setup used to confirm the end effector angle θL .

Fig. 10. Actual θL value versus desired θ̄L value.

tip position is calculated by an integral along the actual primary
backbone shape. The results show that the robot tip position
error is smaller than ±0.5 mm. (The tip orientation error has
been accounted since the θL in Fig. 8 is the actual value.)

A. No Correction Required on Jxψ

It has been previously shown in [2] that by assuming a charac-
teristic bending shape of the continuum robot, a corresponding
twist distribution can be used to parameterize the kinematics of
the end effector in terms of its angle θL and δ. As a result, the Ja-
cobian matrix Jxψ depends on the bending shape of the contin-
uum robot. We showed in Fig. 8 that these shape errors are within
0.5 mm while the length of the continuum robot is 50 mm (1% er-
ror). The constant radius-of-curvature approximation is accept-
able and we will henceforth continue to use the nominal Jacobian
matrix Jxψ as given by (6) for our force sensing algorithm.

B. Corrections on Jqψ

When actuation commands were issued according to (1), the
actual θL was larger than the desired value (less bending). A
series of experiments were conducted using the experimental
setup in Fig. 9. The actual θL was extracted from pictures as
the ones shown in Fig. 7. The value was also confirmed from a
marker reading using a Micron optical tracker (see Fig. 9). The
actual versus the desired values of θL were plotted in Fig. 10.
A linear regression was fitted to these experimental results and
the result is given in (32), where θ̄L is the desired end effector

value, κ = 1.169, and θc = 15.21◦ :

θ̄L = κθL − θc . (32)

The appearance of θc is due to defining the straight configu-
ration as θL = π/2. Based on the experimental results, (1) was
corrected as

Li = L + qi = L + ∆i ((κθL − θc) − θ0) . (33)

According to (33), the Jacobian matrix Jqψ is corrected

Jqψ =




κr cos(δ), −r(κθL−θc−θ0) sin(δ)

κr cos
(
δ +

2π

3

)
, −r(κθL−θc−θ0) sin

(
δ +

2π

3

)

κr cos
(
δ +

4π

3

)
, −r(κθL−θc−θ0) sin

(
δ +

4π

3

)


.

(34)

The source of this actuation error could be the machining
tolerances of the holes in the spacer disks and the base disk,
local deformation of the backbones in segments lying between
the spacer disks, etc.

C. Applying the Correction to the Statics Model

The correction in (33) will also lead to corrections in the
statics model of the continuum robot. Equation (10) needs to
be updated using (33), so does (13). The gradient of the elastic
energy ∇E is updated as the following, using Li from (33)

∇E

=



(θL − θ0)

(
Ep Ip

L
+

3∑
i=1

EsIs

Li

)
− (θL − θ0 )2

2
EsIs r

3∑
i=1

κ cos δi

L2
i

(θL − θ0 )3

2
EsIs r

3∑
i=1

sin δi (κθL − θc − θ0 )
L2

i


.

(35)

IV. EXPERIMENTAL VALIDATION

To validate the proposed force sensing model, we setup two
experiments. In the first experiment, calibration weights were
used to apply forces at the end disk. In the second experiment,
the robot was used to detect the stiffness of a flexible silicone
strip that serves as a mockup tissue.

A. Experiment I: Sensing Forces Applied at the End Disk

Fig. 11 shows the experimental setup. A Kevlar thread was
attached to the tip of the robot so that a pure force can be applied.
The force was applied through a frictionless pulley, using cali-
brated weights. The pulley was mounted to an aluminum frame,
which was set such that the applied force is always parallel to
the XY -plane of BDS. A marker was aligned with the Kevlar
thread to measure the direction of the applied force using an
optical tracker. The marker is printed on paper and it weighs
0.12 g. Adding this marker would not disturb the experimental
results. The actuation unit of the robot was repositioned when
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Fig. 11. Experimental setup used for validation of the force sensing model.

Fig. 12. Robot configurations used in the force sensing experiments.

the robot was bent to different θL values in order to keep the
force parallel to the XY -plane of the BDS.

The robot was bent to different configurations. Under each
configuration, known forces [We in Fig. 12(A)–(C)] were ap-
plied at the center of the end disk. The applied force varies from
5.4 to 55.4 g in the increment of 10 g. The actuation forces on the
secondary backbones were monitored using Omega LC703 load
cells coupled with a 12-bit A/D at ±0.01 V measurement range.
This experimental setup allowed an actuation force measure-
ment with a resolution of ±0.5 g. However, since there is some
small friction in the reading, the actual resolution is estimated
to be about ±10 g.

Since the applied force on the end disk was always parallel to
the XY -plane of the BDS, this external information was used
in (17) to obtain the best estimate of We . We solved (19) with
Se = diag(0, 0, 1, 1, 1, 1) and Wse = [ 1 1 0 0 0 0 ]T .
The experiments were repeated three times for each robot con-
figuration to validate repeatability. The results are listed in
Table IV and plotted in Fig. 13. The table lists the averages
of the three experimental results and the corresponding errors.
Among the error values, the average was 0.34 g with a standard
deviation of 0.83 g. Fig. 13 plots all the actual forces and the
experimental results in the XY -plane of BDS.

To be noted, with a resolution of ±10 g at the joint level force
monitoring, a precision of 0.34 ± 0.83 g was obtained. This was
due to the superiority of this novel design. Substituting (24) into
(17), the magnitude of τ as well as its reading uncertainty ∆τ
was reduced by a factor from D̃x , since Ux and VT

x are both
orthogonal matrices. Referring to the diagonal values of Dx in
Table II, the factor is about 27, which means an error of 0.34 ±

TABLE IV
EXPERIMENTAL RESULTS (IN GRAMS)

Fig. 13. Experimental results for force measurements corresponding to the
configurations shown in Fig. 12.

0.83 g is equivalent to about 9.18 ± 22.41 g at the joint-level
reading errors.

B. Experiment II: Stiffness Detection for a Mockup Tissue

A silicone strip was molded with three steel balls embedded
in it [see Fig. 14(A)]. The ball diameters were 6.34, 9.51, and
12.69 mm, respectively. They were embedded at a depth of
0.5 mm from the probed surface, as shown in Fig. 14(B). The
silicone strip was probed using our robot (see Fig. 14). The
probing depth was 0.5 mm. A Cartesian XYZ stage was used to
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Fig. 14. Experimental setup for stiffness detection of a mockup tissue.
(A) Silicone rubber strip with three steel balls in it. (B) Cross-sectional view.

Fig. 15. Detected stiffness map of the silicone strip in Fig. 14.

adjust the position of the silicone strip so that the workspace of
the continuum robot can cover the entire surface of this silicone
strip. The surface was scanned with 1 mm increment both in
length and in width directions. The stiffness value on a probed
point was calculated as the ratio of resistance force over probed
depth of 0.5 mm. The resistance force is calculated with Se =
diag(0, 0, 1, 1, 1, 1) and Wse = [ 1 1 0 0 0 0 ]T , since
the resistance force is normal to the surface of the silicone strip,
which is parallel to x̂b , as shown in Fig. 14. The entire surface
stiffness map was then generated using spline interpolation (see
Fig. 15). In Fig. 15, the contour of the surface stiffness map is
overlaid beneath the stiffness surface as well as on top of the
real silicone strip.

From Fig. 15, the three stiffness peaks correspond to the three
embedded balls. Different slopes of the peaks and different sizes
of the stiffness contours tell that the three balls are different in
size. The same height of the three stiffness peaks for all three
balls means that the balls are embedded at the approximate same

Fig. 16. Stiffness probing of the silicone strip in Fig. 14.

depth. The reason is explained in Fig. 16. The silicone was not
probed deep enough to induce large motion of the balls inside
the silicone. The resistance force sensed by robot comes from
the local surface deformation of the silicone strip. This superior
force sensing sensitivity gives the robot the ability to detect not
only the shape but also the depth of embedded objects.

Since the low-cost silicone is manually mixed and natu-
rally cured, the stiffness over the surface is not uniform. It
explains why there are some little spikes in the stiffness map
in Fig. 15.

V. CONCLUSION

Force sensing can help surgical tools to improve patient safety
and operation precision in MIS dealing with soft organs. How-
ever, medical or size requirements sometimes prevent the im-
plementation of traditional multiaxis force sensors at the tip of
the surgical instruments. An alternative approach was explored
in this paper. This approach used the intrinsic force sensing
ability of flexible continuum robots based on joint-level force
information.

The theoretical study of the force sensing capabilities of a
continuum robot was based on the SVD of a Jacobian matrix
that maps speeds from a 2-D configuration space to twists in 6-D
space. Using the SVD we proved that the wrenches that cannot
be sensed belong to a 4-D wrench system while the sensible
wrenches belong to a 2-D cylindroid. We also presented a force
sensing solution that accounts for external information coming
from knowledge about some components of the external wrench
or from external sensors.

Using screw theory, we presented two simulation case studies
with the corresponding visualization of the sensible wrenches.
The theoretical analysis was validated through experiments. The
force sensing errors have been shown to have an average of
0.34 g with a standard deviation of 0.83 g. Stiffness maps of an
unknown mockup tissue were generated and hard objects were
effectively detected.

We believe that this suggests the strong potential for using
these continuum robots for surgical applications that require
force feedback in confined spaces, such as the highly dexter-
ous flexible snake-like device for MIS of the throat and the
upper airways [2], [23], [25], [26], [56]. This theoretical model
is currently being extended to multisection snake-like devices,
where the coupling effects of adjacent sections remain to be
investigated.

APPENDIX A

The position and orientation of the end disk relative to the
base disk is characterized by two angles θL and δ. The angles
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δi (i = 1, 2, and 3) are related to δ according to (36)

δi = δ + (i − 1)β. (36)

The projection of the ith secondary backbone on the bending
plane is a curve offset by ∆i ∈ [−r, r] from the primary back-
bone. The radius of curvature and arc-length of this curve are,
respectively, indicated by ρi(si) and si, and are related to the
parameters of the primary backbone according to

ρ(s) = ρ i(s) + ∆i (37)

where ∆i ≡ r cos(δi).
The length of the primary backbone and the length of the ith

backbone are related according to

Li =
∫

dsi =
∫

dsi − ds + ds = L +
∫ θL

θ0

(ρi(s) − ρ(s))dθ.

(38)
Using (38) yields (1).

APPENDIX B

Since Jxψ is formulated as[
Jpψ

Jωψ

]

Jpψ can be found by taking time derivative of bp, as in (41),
while Jωψ is found by formulating the angular velocity of GCS
[see (43)]. 1p is the position of the tip of the continuum robot in
the BPS, which can be derived according to the geometry shown
in Fig. 2:

bp = bR1
1p (39)

1p =
L [ sin θL − sin θ0 0 cos θ0 − cos θL ]T

−(θ0 − θL )
(40)

Jpψ = L




cδ
(θL − θ0)cθL

− sθL
+ 1

(θL − θ0)2 −sδ (sθL
− 1)

θL − θ0

−sδ
(θL − θ0)cθL

− sθL
+ 1

(θL − θ0)2 −cδ (sθL
− 1)

θL − θ0

(θL − θ0)sθL
+ cθL

(θL − θ0)2 0




(41)
bωg = −δ̇ẑb + bR1(−θ̇L

1 ŷ1 + 1Re(δ̇e ẑe)) (42)

Jωψ =


−sδ cδ cθL

−cδ −sδ cθL

0 −1 + sθL


 . (43)
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