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Singularity Analysis of a Class of Composite Serial
In-Parallel Robots

Nabil Simaan and Moshe Shoham, Member, IEEE

Abstract—This paper presents the singularity analysis of a
family of 14 composite serial in-parallel six degree-of-freedom
robots, having a common parallel submechanism. The singular
configurations of this class of robots are obtained by applying line
geometry methods to a single, augmented Jacobian matrix whose
rows are Plücker coordinates of the lines governing the submecha-
nism motion. It is shown that this family of robots possesses three
general parallel singularities that are attributed to the general
complex singularity. The results were verified experimentally
on a prototype of a composite serial in-parallel robot that was
synthesized and constructed for use in medical applications.

Index Terms—Composite serial in-parallel robots, geometric
approach, line geometry, parallel robots, RSPR robot, singularity
analysis.

I. INTRODUCTION

NUMEROUS researchers, e.g., [1]–[9], have investigated
singularity conditions of parallel robots since complete

knowledge of the singular regions within their workspace is es-
sential for design and control purposes. Singularity analysis is
based on the instantaneous kinematics of the manipulator, which
is described by

(1)

where for degrees-of-freedom (DOF) manipulator,and
are an and an matrices referred to in this paper as
the instantaneous direct and inverse kinematics (IDK, IIK) ma-
trices, respectively. These matrices were used by Gosselin and
Angeles [2] for singularity analysis and were respectively called
the direct kinematics and inverse kinematics matrices in [10], or
direct kinematics and inverse kinematics Jacobians in [11].is
the moving platform twist, and is the active joints’ speeds.
For fully parallel robots, the IIK matrix, , is a diagonal one
[4]. Hence, the common definition for the Jacobian matrix of
parallel robots takes the form and the IIK problem
is defined by .

Based on rank-deficiency of the matricesand , Gosselin
and Angeles [2] divided the singular configurations into three
cases: the first, when only is singular; the second when only

is singular; and the third when both and are singular.
In this paper, we adopt the terminology in [10] and refer to the
singular configurations associated with singularities of the in-
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stantaneous direct kinematics matrixand the instantaneous
inverse kinematics matrix asparallel andserial singularities,
respectively.

Hunt et al. [3] discussed the singular configurations in se-
rial, parallel, and composite serial and in-parallel robots, by
using motion and action screws. They showed that a work-piece
grasped by a serial kinematic chain robot can only lose DOF (or
gain constraint) and a work-piece grasped by fully in-parallel
manipulator can only gain DOF (or lose constraint). A com-
posite serial in-parallel manipulator can either lose or gain DOF.

In a singular configuration, the relation between the input
variables’ velocities (active joints’ speeds) and the output vari-
ables’ velocities (linear/angular velocities of the end effector) is
not fully defined. For serial robots with six DOF, a configuration
is singular when the instantaneous input–output map is
singular. For parallel robots with , there exists a
matrix that governs the static equilibrium of the moving
platform. This matrix relates the internal forces/moments,,
acting on the moving platform with the wrench applied by
the moving platform on its environment

(2)

The internal forces acting on the moving platform are
divided into two groups. The first group represents the active
joints’ intensities . The second group
represents the intensities of the passive forces. These passive
forces stem from the kinematic constraints imposed by the joint
dyads of the links connected to the moving platform. The first

columns of are the action screws associated with the ac-
tive joints. The remaining columns are the action screws
associated with the constraints of the passive joints.

Singularity of uncertainty configuration occurs when the
column space of has a dimension less than six. If has
a rank of , then the manipulator cannot resist external
wrenches that belong to a -dimensional space and the
manipulator is in uncertainty configuration [3], [8].

The derivation of the Jacobian matrix from is immediate
by writing the expression for the work rate of the forces/mo-
ments acting on the moving platform. The work done by the con-
straints is zero. This leads to the result that the firstcolumns of

are the rows of the Jacobian matrix. This result empha-
sizes the importance of the matrix for complete singularity
analysis. For robots with , the Jacobian matrix by itself is
not sufficient to determine all conditions for singularity.

Since the IDK matrix is composed of line coordinates, the
analysis of parallel singularities is reduced to determining the
geometric conditions for linear dependence between these lines,
[1], [13].

Dandurand [14] addressed the problem of rigidity conditions
of compound spatial grids by using line geometry. Since the Ja-
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TABLE I
A FAMILY OF 14 COMPOSITESERIAL IN-PARALLEL ROBOTS

cobian matrix of fully-parallel Stewart–Gough robots consists
of Plücker line coordinates of the lines along the prismatic ac-
tuators, [2], the singularity analysis of these robots is based on
finding geometrical conditions for linear dependence between
these lines. Following Dandurand’s observations, a group of re-
searchers, [1], [7], [15], [16] investigated the parallel singulari-
ties of parallel robots using line geometry. Notash [8] used line
geometry to investigate redundant three-branch platform robots
and their preferable actuation distribution in order to eliminate
singularities. Hao and McCarthy [13] discussed the conditions
of joint arrangements that ensure line-based singularities in plat-
form robots. They showed that in order to have line-based sin-
gularities, the kinematic chains should not transmit torque to the
moving platform. Even though the family of robots investigated
in the present work does not fulfill this condition, nevertheless a
special Jacobian formulation allows maintaining the line-based
expression of the Jacobian matrix of the common parallel sub-
mechanism (defined in Section III) of this class of robots.

Unlike fully parallel robots that have a diagonal nonsingular
IIK matrix, (for a nonzero length of the linear actuators), com-
posite serial in-parallel robots require both matricesand to
be examined for singularity. Singularity of matrixindicates a
loss of DOF and singularity of matrix indicates gain in DOF
[2].

The structure of a family of composite serial in-parallel robots
is presented next (Sections II and III) and its parallel singulari-
ties are derived based on line geometry (Sections V and VI).

II. A FAMILY OF COMPOSITESERIAL IN-PARALLEL ROBOTS

A class of 14 composite serial in-parallel robots is listed in
Table I. Each robot is represented by a code depicting the struc-
ture of its kinematic chains from the base platform to the moving
platform. The letter R stands for a revolute joint, S for spherical,
P for prismatic, U for universal (Hooke’s), C for cylindrical, and
H for helical joint.

All the robots of this family have three similar kinematic
chains connected to a moving platform by revolute joints. The
last links in the kinematic chains, , are passive
binary spherical-revolute (S-R) dyads. Table I depicts all the
14 possible combinations of joints constituting connectivity that
equals six between the base and the moving platform. Although
some investigations use special distribution of actuators [17] and
passive sliders [18]–[20] to simplify the direct kinematics solu-
tion or to minimize singularities via redundancy [8], we limit
our discussion to symmetrical nonredundant robots with three
identical kinematic chains and symmetrical distribution of ac-
tuators.

III. L INE-BASED FORMULATION OF THE JACOBIAN

The formulation of the Jacobian matrix based on static
analysis is described next. The same formulation can also be

Fig. 1. Force transmission in the tripod mechanism.

achieved by writing loop-closure equations and taking their
derivative with respect to time.

All the robots in Table I have the same system of constraint
wrenches acting on the moving platform. This stems from the
fact that all these robots have a common tripod mechanism com-
posed of a moving platform and three passive S-R joint dyads
(Fig. 1).

Nomenclature
Index referring to ’th kinematic chain, .
’th link of the tripod mechanism.

Moving platform’s center point.
Unit vector along the’th revolute joint.
Unit vector along link (Fig. 1).
Unit vector parallel to and passing through the
’th spherical joint center.

Magnitude of force acting on , along .
, Force vectors along links and along , respec-

tively.
Six-dimensional external wrench applied by the
moving platform on its environment. ,
where and are the resultant external force/mo-
ment, respectively.
Rotation matrix from platform-attached coordinate
system, P, to world coordinate system, W.
A vector from to a point on (written in plat-
form-attached coordinate system).

Link is connected to the moving platform by a passive
revolute joint and to link by a passive spherical joint. Con-
sequently, it is capable of exerting on the platform a static force
in a direction spanned by the flat pencil of and , and a mo-
ment in the direction of (Fig. 1). Link can exert on
link , through the center of the spherical joint, a static force in
a direction defined by the flat pencil of and . Therefore,
we decompose the force transmitted from linkto into two
components—one of magnitude and in the direction of
and the second of magnitude and in the direction of .

Equations (3) and (4) result from static equilibrium of forces
and moments about the center point

(3)

(4)
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Rewriting (3) and (4) in a matrix form yields

(5)
For parallel robots, the expression connecting the associated

active joints’ intensities with is given by .
Equating this expression with (5) yields the Jacobian of the
tripod mechanism .

(6)

The forces at the spherical joints are given by

(7)

The rows of the Jacobian matrix of the tripodare the Plücker
line coordinates of the lines along the links and the lines
(Fig. 1). These vectors can be found by the inverse kinematics
of the tripod. Actually, the exact values of and are not
needed since, as will be seen in Section VI, the singularity anal-
ysis is purely based on line geometry. In this analysis, the aim
is to find the types of parallel singularities rather than the actual
joint values in these singular configurations.

The group of robots in Table I shares the same tripod mecha-
nism. The complete Jacobian matrix of this group is easily ob-
tained by taking into account the force equilibrium at the spher-
ical joints. By treating the remainder of the kinematic chains as
serial chains, it is possible to obtain a relation between the forces

and and the active joints’ forces. The relation between
the actuators’ force intensities and the forces at the spherical
joints is given by

(8)

where denotes the Jacobian matrix of the serial chains.
Substituting the expression for the forces at the spherical

joints, one obtains

(9)

hence, the Jacobian of the complete manipulator is
(10)

Comparing (10) with (where and are the IIK
and IDK matrices, respectively) shows that the IDK matrix,,
and the IIK matrix, , are the Jacobian matrix of the tripod
and the Jacobian matrix of the serial chains, respectively.
Every manipulator of this class of manipulators has the same

matrix, but a different matrix. For example, the Jacobian
matrices of the RSPR and the USR robots (Table I) were formu-
lated in [24] using this method.

Based on the observation that(the IDK matrix) is associ-
ated with the tripod mechanism, we will refer to it as the parallel
submechanism since it leads toparallel singularitiescharacter-
ized by the addition of DOF to the moving platform (loss of
constraint).

The formulation of presents a matrix composed of lines
of the parallel submechanism rather than screws of the whole
robot as is derived, for example, in [21]. The result obtained in
[22] presents a formulation of the Jacobian matrix of the PPSR
(Table I) manipulator in [23] based on the use of reciprocal
screws. The results of the derivation presented here accede with

Fig. 2. RSPR robot.

those of [22], but due to formulation of the matrixit is pos-
sible to apply line geometry to analyze the parallel singularities.

IV. THE RSPR ROBOT

The RSPR robot and another robot of this family, theUSR
robot, were suggested by the authors as possible solutions for
a medical robotic assistant for laparoscopic and knee surgery
[24]–[28] (bold letters indicate the active joints). These robots
were compared in terms of their workspace, dimensions, and
required actuator forces, and the RSPR manipulator was chosen
and constructed [41]. The prototype of the RSPR manipulator
is shown in Fig. 2.

This manipulator consists of three identical kinematic chains
connecting the base and the moving platform. Each chain con-
tains a lower link rotating around a pivot perpendicular to the
base platform and offset-placed from the center of the base. At
the other end of the lower link, a prismatic actuator is attached
by a spherical joint. The upper end of the prismatic actuator
is connected to the moving platform by a revolute joint. The
axes of the revolute joints constitute an equilateral triangle in
the plane of the moving platform (Fig. 2).

This robot is distinguished by the location of the lower links
revolute axes being placed offset from the center of the base
platform as compared to the RRPS robot in [29].

V. SINGULARITY ANALYSIS METHODOLOGY

Based on the Jacobian matrix formulation of Section III, the
singularity analysis for every robot in Table I is divided into two
phases. The first phase deals with parallel singularities stem-
ming from rank deficiency of the IDK matrix, (referred to
as in Section III). The second phase deals with serial singu-
larities of the IIK matrix, . In this paper, we present only the
analysis of the parallel singularities, which is common to the 14
robots of Table I. In [27], the serial singularities of the RSPR
and the USR robots were derived based on the determinants of
their IIK matrices [24].

Since the IDK matrix of a typical manipulator of this class
is composed of the Plücker line coordinates of the parallel sub-
mechanism, we analyze its singularities using line geometry
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Fig. 3. Inverted tripod with variable moving platform laterals as an equivalent
linkage to the TSSM [35].

technique. Readers interested in a background on line geom-
etry should refer to [30]–[33], [12], and [34], where the last
two books present the subject with its relevance to kinematics
of mechanisms.

An inversion of the tripod of Fig. 1 was used in [35] and [36]
as an equivalent mechanism of the Stewart–Gough 3-3 and 3-6
robots for solution of the direct kinematics and singularities [36]
(Fig. 3). This suggests that the parallel singularities of the tripod
mechanism are categorically the same as the Stewart–Gough 3-6
and 3-3 robots since, in both cases, the basic problem from line-
geometry point of view is finding the possible linear dependen-
cies between the lines of threearchitectural flat pencils(defined
in next section) maneuvering in space. However, the equiva-
lence is not direct since in Fig. 3 the equivalent mechanism of
the triangular symmetric simplified manipulator (TSSM) [35]
is an inversion of the tripod of Fig. 1 with variable laterals of
its triangular platform. Thus, direct geometric interpretation of
the singularities of the tripod of Fig. 1 is not possible by con-
structing its equivalent TSSM and analyzing it for singularity.
The analysis given here shows how, by using geometric assump-
tions stemming from the architecture, one finds the direct geo-
metric interpretation of the singularities with application to the
working space of the moving platform. Indeed, our results ac-
cede with [1], [36], and [37], but we show that the interpretations
of Fichter’s [38] and Hunt’s [39] singularities are different in
our case, which has a direct impact on the motion capabilities
of the moving platform.

Next, the analysis of parallel singularities begins from the
general complex and works out all the cases up to flat pencil
singularities. This way we economize the analysis since we ig-
nore the special cases as, for example, flat pencil singularities
that are special cases of bundle singularities.

VI. SINGULARITY ANALYSIS OF THE PARALLEL

SUBMECHANISM

Fig. 4 presents a geometric interpretation of the Jaco-
bian matrix of the parallel submechanism (tripod) of the
class of robots shown in Table I. We will use the symbols

to refer to row number in the tripod’s
Jacobian matrix , which are also the Plücker coordinates of
lines , , , , , and of Fig. 4. We employ line geometry
to find all the configurations in which the rows of, i.e., lines

, , , , , and are linearly dependent.
First the relevant nomenclature for this section and a list of

useful geometric relations, upon which all the following geo-
metrical proofs are based, is presented.

Fig. 4. Geometry of~J and its associated linesl . . . l .

Nomenclature
The following symbols facilitate the formulation of the ge-

ometrical proofs in this section. All the symbols are explained
herein and shown in Fig. 4.

Center points of the revolute joints on the moving
platform. .
Vectors of the revolute joints’ axes through.
Center points of the spherical joints, .
Normal to the moving platform plane through.
Plane defined by and point , .
Plane defined by points , .
Plane defined by points , . This plane is
hereafter referred to as the tripod base plane.
Flat pencil generated by lines and .

, .
Flat pencil generated by linesand that belongs
to category of flat pencils . .

, Plane and center point of flat pencil .

Line defined by points and .
Group of the lines of , .
Group of lines of excluding lines and ,

Lines and planes are regarded as sets of points. Therefore, the
symbols and have the same interpretation as for groups of
points. Accordingly, the expression indicates the intersec-
tion of two lines, and , in a common point, or the intersection
of two planes, and , along a common intersection line, or a
line piercing a plane . The expression indicates that a
point, , is on the line/plane, ; or that a line, , lies in the plane

.
Geometric Relations:The tripod mechanism of Fig. 4 fea-

tures the following architectural geometric relations:

Points are not collinear.

Corollaries: The following corollaries, Cr1 Cr3, result
from geometric relations A1 A5. Each corollary is followed
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Fig. 5. Flat pencil groups.

by brackets enclosing a list of geometric relations used to prove
it.

Categories of Flat Pencils:We use flat pencils as a basic
tool in deriving the singular configurations of the structure. It
is therefore useful to enumerate all possible flat pencils.

A group of lines in space can form up to flat
pencils. In our case, where , all possible 15 flat pencils of
the tripod are grouped into four groups T, R, S, and F (Fig. 5),
where each two-digit number represents a flat pencil formed
by lines and . Due to the similarity of the kinematic chains
of the tripod, it is sufficient to analyze the singularity of only
one member in each group.

We distinguish betweenarchitectural flat pencilsand tem-
porary flat pencilswith temporary flat pencils being configu-
ration-dependent, i.e., forming under certain conditions on the
configuration variables and architectural flat pencil being con-
figuration independent. Note that only category F includes ar-
chitectural flat pencils.

Next, we adopt the code of Dandurand [14] to indicate the
different line varieties. For each rank line variety,
we test all the cases in which more thanlines belong to this
line group. This is tantamount to finding all the cases in which

. For example, the term “bundle singularities,”
includes all the cases in which more than three lines, out of the
six lines of , belong to one bundle. This includes singularities
with rank .

A. Linear Complex Singularities

A group of six lines degenerates from the space variety to
the linear complex variety in two ways. If all the six lines of
the group belong to a general spatial linear pentagon, then sin-
gularity of the general complex occurs [30]. If all the six lines
intersect one common line, then a singularity of the special com-
plex occurs.

1) Six Lines in a General Complex (5A):Define lines , ,
and as the intersection lines of the flat pencils , ,
with the base plane B0, respectively (Fig. 6).

Next, we prove that all six lines of belong to
one general complex if and only if lines , , and intersect
in one point (copunctal). The proof is based on the following

Fig. 6. The lines of� and linesl , l , andl .

theorem [32].A general linear complex has a pencil of lines in
every plane and a pencil of lines through every point in space.

This theorem means that, for a given general complex, every
plane in space is associated with a flat pencil that belongs to
it. Accordingly, the tripod base plane, B0, is associated with a
flat pencil of lines of the general complex. Any line in B0 that
does not belong to this flat pencil does not belong to the general
complex and vise versa; any line belonging to this flat pencil
belongs to the general complex.

There are six line quintuplets in . Each one
includes two architectural flat pencils. We consider the general
complex of lines generated by the two architectural flat pen-
cils and and either line or line as a representative
case to all other cases.

The following proof shows that all the six lines of
belong to one general complex, if and

only if lines , , and intersect in one point (copunctal).
Proof:

1) Lines , , and fulfill , , .
2) , , and linearly depend on the flat pencils generated

by the line pairs , , .
3) Lines and fulfill , and ,

.
4) and define in B0 a flat pencil of lines, , of .
5) , and based on the above theorem, if and

only if .
6) If line and , then and vise-versa; if

and then The condition for this
singularity is

Singular configuration

Note that this is Fichter’s [38] singularity (5a), but in our
case with the inversion of the equivalent mechanism, rotating
the moving platform 90 about the vertical axis will not result
in singular configuration.

2) Six Lines in a Special Linear Complex (5B):Since in-
cludes three permanent flat pencils of type F, all its lines inter-
sect a common line if this line is the line of intersection of planes

, , and or if points , , and are collinear.
Since planes , , and do not have a common in-
tersection line the only possible singular configuration occurs
when points , , and are collinear (Fig. 7).

Singular configuration

This singularity is categorically the same (5b) as Hunt’s [39]
singularity, but co-planarity of one of the links with the moving
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Fig. 7. S2 singularity.

platform does not cause it as is the case with the Stewart–Gough
3-3 and 3-6 robots. Therefore, robots with such tripod may have
better tilting capabilities than the Stewart–Gough 3-3 and 3-6
robots.

We will henceforth exclude the possibility for collinearity of
, , and since we already proved that this leads to a sin-

gular configuration.

B. Linear Congruence Singularities

This section presents the singularities of five lines in one
linear congruence.

1) Elliptic Congruence (4A):Four skew lines in space form
three distinct reguli and a fifth line linearly depends on them if it
belongs to one of these reguli. Elliptic congruence singularities
are not possible in our case since there are no four lines in the
same regulus (see the proof in Section VI-C-1).

2) Hyperbolic Congruence (4B):Four lines concurrent with
two other skew lines, and , form a hyperbolic congruence.
Any fifth line concurrent with and linearly depends on
these four lines.

There are six line quintuplets in with two
architectural flat pencils of type F in each quintuplet. Thus, line

is defined by the centers of these flat pencils and lineis the
line of intersection between the two planes of these architectural
flat pencils. Next, we prove that lines or intersect lines
and only when the S1 and S2 singularities are formed.

There are two distinct categories of line quintuplets, G1 and
G2. They are defined as

The quintuplets and are used
as category representing ones for G1 and G2, respectively. We
first exclude the possibility that since this clearly leads
to singular configuration S2.

Proof:

1) , .
2) , ; therefore .
3) Lines and pass through .
4) Let be the piercing point of with B0.
5) Lines and intersect only if they lie in B0.
6) Lines and intersect both lines and only if they

pass through point and lie in the base plane B0.
7) In such a case, lines and are, respectively, defined by

points and and and . Line is defined by point
and . This shows that lines , , and intersect in

one point, , in B0. Fig. 8(a) shows the case when line

Fig. 8. (a) Special cases of S1 singularity:l = l . (b) Special cases of S1
singularity:l = l .

is and Fig. 8(b) shows the case . Both these
cases are special cases of S1.

3) Parabolic Congruence (4C):This case unifies all flat
pencil singularities related with one or more flat pencils of the
parabolic congruence, therefore, it does not add new singular
configurations to the ones that will be discussed in flat pencil
singularities.

4) Degenerate Congruence (4D):The lines dependent on
four generators of a degenerate congruence are the lines of a
plane (3D) and the lines that share the piercing point of the
fourth congruence line with the congruence plane. Since co-pla-
narity of four lines will be investigated in Section VI-C-4 (3D),
we inspect only the case in which two lines pierce the plane de-
fined by the other three lines in a common point. However, if
the considered line triplet is coplanar only when four or more
lines of are coplanar, then degenerate congruence singularity
is marked.

has 20 line triplets. Table II lists all these line triplets and
presents six groups of them, U1 U6. We consider all the
cases in which these line triples are coplanar and two other lines
intersect their plane in a common point.

Case 1: U1 Line Triples:This category includes only one
line triplet, . Next, we prove that this line triplet is
coplanar only when the moving platform lies in the tripod base
plane and that in this case, , and belong to one flat pencil
(Fig. 9).

Proof:

1) Points and define line , and P0, .
2) Points define B0.
3) , .
4) Since then lines , , and lie in B0 and

intersect in the piercing point of with B0. Hence, lines
, , and belong to one flat pencil (Fig. 9).

This singularity is named singular configuration S3.
Singular configuration

We will henceforth exclude the possibility that the moving
platform lies in the tripod base plane since we already showed
that this configuration is singular.

Case 2: U2 Line Triplets:Let be a category-repre-
senting triplet. We assume that lines are coplanar, thus,
lines and define the flat pencil . There are two cases to
be considered, in which, the line pairs and , respec-
tively, intersect in a single point. Lines , , and pierce

in points , , and , respectively. Accordingly, inter-
section of two lines out of , , and with in one point
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TABLE II
ALL 20 LINE-TRIPLESDIVIDED INTO SIX GROUPS

Fig. 9. Singularity of type S3.

is possible only if two spherical joints coincide, i.e., ,
; . This configuration is a special case of S2

(Fig. 7).
Case 3: U3 Line Triples:All the line triplets in this category

include one flat pencil of type F. Let be a category-rep-
resenting line triplet. We assume that the lines of this triplet are
coplanar and we examine the other lines. This examination leads
to a special case of S1 singularity (Fig. 10). In this configuration
lines , , and intersect in one common point in B0.

Proof:

1) Lines and are the intersection lines of and
with P0, respectively.

2) when lines are coplanar.
3) Since lines and are distinct and coplanar, they

define the platform plane P0.
4) For to be fulfilled then both lines and

must belong to both and . Thus, this is
achieved only when .

5) Since and . Thus, the four
lines , , , are coplanar (see Fig. 10).

In this configuration lines , , and intersect in one common
point in B0 resulting in a special case of S1.

Case 4: U4 Line Triples:Let line triplet be a cat-
egory representing one. Using similar arguments as in the pre-
vious case, this line triplet is coplanar only if all its lines lie in
the moving platform plane, P0, i.e., . In this
case line lies in P0 since it is defined by point and

. This is the singular configuration of Fig. 10.
Case 5: U5 Line Triples:This case leads to singular config-

uration S3. Next, we assume that the lines in the category rep-
resenting line triplet are coplanar and we show that
this occurs only if the (S3 singularity in Fig. 9).

Proof:

1) [corollary Cr2] therefore .
2) Point satisfies: , .
3) .

Fig. 10. Special case of S1.

4) Point lies on , i.e., , and .
5) Points and satisfy: , ; hence

and .
6) since , , and belong to .
Case 6: U6 Line Triples:Lines are coplanar if the

moving platform and the tripod base plane are parallel one to
another. Excluding the case , two lines from the group

intersect the tripod base plane in a common point only
if two of the spherical joints coincide. This leads to a special case
of singular configuration S2 in Fig. 7.

Proof:

1) Lines , , pierce the base plane in points, , and
, respectively.

2) [corollary Cr2]. In a singular
configuration two lines out of , , pierce the base
plane in a common point. Therefore, in such singular con-
figuration .

C. Planes Singularities

This section presents the analysis of singularities that belong
to a rank-three system. We inspect all the cases, in which, four
lines belong to the planes variety.

1) Regulus Singularities (3A):The group of lines includes
three architectural flat pencils , , and Consequently,
the maximal number of skew lines inis three. We recall that
all lines in the same regulus are skew and intersect all the lines
in the conjugate regulus [30]. Therefore, if lines, , form
a regulus, then lines , , and cannot belong to this regulus
because line intersects , intersects , and intersects .
Consequently, no group of more than three lines can belong to
the same regulus and singularity of type (3A) is not possible.

2) Union Singularities (3B):The lines that depend on the
generators of a union are all the lines that depend on any of its
two flat pencils. Therefore, this case does not add singularities
to the ones that stem from flat pencil singularities.

3) Bundle Singularities (3C):A bundle that is singular in-
cludes more than three lines intersecting in a common point.
In order to find all singular bundles in, all the possible line
quadruplets are registered and divided into four line quadruplet
groups.

Table III lists all the 15 line quadruplets. A singular bundle
forms if all the lines of one of these line quadruplets are
copunctal. This table presents four different quadruplet groups,
namely, groups Q1, Q2, Q3, and Q4.

Case 1: Singularities of Q1 Line Quadruplets:This case
leads to special cases of S1 singularity in which the six lines of

or the four lines belong to one bundle (Fig. 11(a)
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TABLE III
15-LINE QUADRUPLETS IN FOUR DIFFERENTCATEGORIES

and (b), respectively). We choose as a category
representing line quadruplet.

Proof:

1) Point fulfills , i.e., .
2) In a singular configuration, lines, , , and intersect

in one common point.
3) Since and the only possible common

point of intersection for lines , , , and is .
4) , , , and ; therefore,

the intersection is possible only along the normal
, i.e., .

5) and in a singular configuration ; there-
fore, , namely, is the piercing point of
with the tripod base plane B0.

6) In a singular configuration . There-
fore, there are two possibilities: is located above the
moving platform and is located beneath the moving
platform.

7) If is beneath the moving platform it means that
; therefore, this is a special case of S1 singularity

[Fig. 11(a).]

If is above the moving platform then and
, therefore, , . This singularity is a special

case of S1, Fig. 11(b).
Case 2: Singularities of Q2 Line Quadruplets:Let

be a category representing line quadruplet. This
line quadruplet forms a singular bundle if a pair of spherical
joints coincides.

Proof: , . The only possible
intersection point for the four distinct lines is . Hence,
this is the same special case of S2 singularity in Fig. 7.

Case 3: Singularities of Q3 Lines Quadruplets:Let
be a category-representing quadruplet. Next, we

assume that this line quadruplet intersects in one point and
we show that singularity of this category is a special case of
singular configuration S2.

Proof:

1) Point fulfills , ; therefore, in a
singular configuration lines , , , and intersect in
point .

2) , ; thus, the intersection points of these
lines is located along .

3) In a singular configuration line intersects in point
. Hence, .

4) , i.e., is the piercing point of with the
tripod base plane. Therefore and this is
the same special case of S2 shown in Fig. 7.

Fig. 11. Special cases of S1 singularity.

Fig. 12. Special cases of S1 singularity.

Case 4: Singularities of Q4 Lines Quadruplets:Let
be a category-representing quadruplet. This case

leads to two special cases of S1 singularity (Fig. 12).
Proof:

1) ; therefore, in a singular configuration, is
the common intersection point of all lines in the quadru-
plet.

2) , [corollary Cr2]; thus, .
3) and in singular a configuration ;

therefore, .
Points , , and define . Since all these points be-
long to B0, we conclude that in a singular configuration

, i.e., the tripod base plane and the moving platform are par-
allel. Fig. 12 presents the two special cases of singular configu-
rations S1.

4) Plane Singularities (3D):Singularities of type 3D are
characterized by having more than three coplanar lines in the
group . We inspect all the line quadru-
plets to determine the singularities that stem from this case.
There are four line quadruplet groups as shown in Table III;
therefore, we consider the cases, in which, the lines of each cat-
egory-representing quadruplet are coplanar.

Case 1: Q1 Coplanar Line Quadruplet:All line quadruplets
in this group include lines , , and . We proved in Sec-
tion VI-B-IV Case 1 that lines are coplanar only if

leading to S3 singularity.
Case 2: Q2 Coplanar Line Quadruplet:Let be a

category representing line quadruplet. In Section VI-B-IV, Case
3, we proved that the lines of this quadruplet are coplanar only
when lines and lie in P0 leading to the special case of S1
singularity in Fig. 10.

Case 3: Q3 Coplanar Line Quadruplet:Choose
as a category-representing quadruplet. All quadruplets of this
category are coplanar only if .

Proof:

1) In a singular configuration, the coplanar lines and
define a plane such that .
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2) Point fulfills , . Point is the
piercing point of with , . Accord-
ingly, the condition to fulfill is .

3) Point fulfills , therefore when
. This configuration is S3 singularity (Fig. 9).

Case 4: Q4 Coplanar Line Quadruplet:Let be
a category-representing line quadruplet. Based on the proof in
Case 3, all the lines of this quadruplet are coplanar if .

D. Flat Pencil Singularities (2B)

In the following sections, a category representing flat pencil
defined by lines and is tested with each line
in the complementary group . The geometric relations that
render flat-pencil are considered.

Case 1: Line : Let
be a category representing flat pencil. Based on the sym-

metry of the tripod, there are three distinct cases: ,
, and . The case is equivalent to case
due to symmetry considerations.

Case 1.1 : This case was investigated in Sec-
tion VI-B-4, Case 1.
Case 1.2 (equivalent to ): Section VI-B-4,
Case 3, shows that if , and are coplanar then the
singular configuration in Fig. 10 forms.
Case 1.3 : This case is a special case of Sec-
tion VI-C-3, Case 1 limited for an equilateral-triangular
moving platform. Using similar arguments, it is possible
to see that this leads to the singularity of Fig. 11 with lines

and that belong to one flat pencil. Note that an equi-
lateral triangular moving platform fulfills , and

.
Case 2: Line

: Let be a category representing flat pencil. Based on
the symmetry of the tripod, we consider only two cases:
(equivalent to ) and (equivalent to ).

Case 2.1 (equivalent to ): This case is
identical to Case 1.2 .
Case 2.2 (equivalent to ): In Sec-
tion VI-B-4, Case 4, we proved that if lines, , and

are coplanar then the singular configuration in Fig. 10
forms.

Case 3: Line
: Let be a category representing flat pencil. There are

three distinct cases to be considered: (analogous to
), , and .

Case 3.1 (equivalent to ): Same as Case
2.2.
Case 3.2 : In Section VI-B-4, Case 5, we proved
that if lines , , and are coplanar then S3 singularity
forms.
Case 3.3 : This case leads to a special case of S1
singularity (Fig. 13).
Proof:

1) (corollary Cr2) therefore .
2) In a singular configuration and .
3) , and ; therefore ,

, and plane B0 fulfills

Fig. 13. Special cases of S1 singularity.

TABLE IV
SUBCASES OFCASE 4 AND THEIR EQUIVALENT CASES

. The special cases of singular configuration S1 are
illustrated in Fig. 13.

Case 4
: Let be a category representing flat

pencil. This case leads to four cases that we have already dealt
with, Table IV.

E. Point Singularities (1A)

Given the perpendicularity relation in Cr4, a line of
does not coincide with a line of . Lines

, , and belong to three distinct planes P1, P2, and P3, and
they pass through three distinct points, , and . Conse-
quently, no line couple from these lines can be simultaneously
concurrent with the intersection line of the three planes P1,
P2, and P3. This precludes the coincidence of a line-pair of

.
Lines , , move such that each one is perpendicular to

planes P1, P2, P3, respectively. Since these planes are distinct,
any two lines of this group cannot coincide regardless of the
configuration of the robot.

Based on the above arguments, we conclude that the point
singularity of the tripod of Fig. 4 is not possible because the
lines of are architecturally distinct (regardless of the robot
configuration).

This completes the analysis of the parallel singularities that
characterize the family of composite serial in-parallel robots of
Table I. To complete the singularity analysis for each robot in
this table, one should find the serial singularities stemming from
singularities of the IIK matrix of each robot. The serial singu-
larities of the RSPR and the USR robots were analyzed in [27]
based on their IIK matrices [24].

The results of the analysis of the parallel singularities indicate
that there are three general parallel singularities, S1, S2, and S3,
all of which are connected to the general complex singularity.
Parallel singularities of lower rank were identified as special
cases of S1, S2, and S3.

VII. CONCLUSION

This paper presented the analysis of the parallel singulari-
ties of a class of 14 composite serial in-parallel robots having
a common tripod mechanism. A unified Jacobian formulation
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of this class of robots was achieved by formulating a line-based
Jacobian matrix of the tripod mechanism (called here as the
common parallel submechanism), which is an inversion of the
equivalent mechanism of the Stewart–Gough 3-3 and 3-6 robots.
This line-based formulation provides a convenient method for
analyzing the parallel singularities of this class of robots uti-
lizing line geometry.

The analysis revealed three general cases (that are in fact spe-
cial cases of the general complex singularity) of parallel singu-
larities that are common to this family of robots. All other sin-
gular configurations were shown to be special cases of the gen-
eral complex.

Even though this family of robots suffers also from Hunt’s
[1], [39], [40] and Fichter’s [38] singularities, which are typical
of 3-3 and 3-6 Stewart–Gough platforms; nevertheless, they
have different interpretation in its working capabilities. It
has been shown that rotation of the moving platform by 90
about the Z axis which leads to Fichter’s singularity in the
Stewart–Gough 3-6 and 3-3 platforms, or aligning one of the
links with the moving platform plane which leads to Hunt’s
singularity, does not correspond to parallel singularity of the
robots of this family.

This geometrically-based analysis of parallel singularities,
complemented by serial singularity analysis and a comparison
between the USR and the RSPR robots [27], was an important
factor in the design and construction of a compact and a light-
weight RSPR robot for medical applications.
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