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Abstract

Robotic manipulators constitute multi DOF (Degree-Of-Freedom) mechanisms.
Contrary to single DOF mechanisms that perform a single task, robotic manipulators are
designed to perform a variety of tasks from simple pick and place operations to complex
assembly tasks - all of which demand different specifications from the robot in terms of
its stiffness and accuracy.

For any given task there are several associated performance demands from the robot
in terms of its stiffness, accuracy, speed, and workspace. These demands guide the
synthesis of an optimal robot for a task. However, in performing any given task, a non-
redundant robot performs within its limitations, i.e., it constitutes a compromise in
terms of its performance measures that are determined by its architecture and inverse
kinematics rather than task demands.

This work addresses this limitation of parallel robots. It considers the methods for
improving parallel robots’ capabilities to suit their characteristics for a given task. The
work introduces the term variable geometry parallel robots. These robots are capable of
changing their geometry for improving their performance per a given task.

Parallel robots feature various advantages over serial robots in terms of their
accuracy, stiffness, structural rigidity, dynamic agility, and compactness. However, they
suffer from several crucial shortcomings that preclude their use for many tasks where
their advantages are required. Since the stiffness of these robots is a crucial performance
index for various applications, e.g., assembly tasks and for indicating presence of
singularities, this work chooses it as a driving criterion for the geometry change of
variable geometry parallel robots.

The work considers two modes for stiffness modification of variable geometry parallel
robots by incorporating actuation and kinematic redundancies in their kinematic chains.
These two modes are termed stiffness modulation and stiffness synthesis.

In stiffness modulation, the work considers fully-parallel robots with actuation
redundancies. Previously reported “higher-order singularities” in which the stiffness
control problem is singular are investigated. The work connects the stiffness modulation
singularities with derivatives of the inverse kinematics Jacobian and shows that to these

derivatives there are 36 associated lines in space. Consequently, the applicability of line
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geometry methods for analyzing these stiffness modulation singularities is shown. This
geometric interpretation constitutes the first known line-based interpretation to these
stiffness modulation singularities.

In stiffness synthesis, the work investigates variable geometry parallel robots with
kinematic redundancy in their branches. Contrary to other previous works on stiffness
synthesis, the work focuses on stiffness synthesis using a limited set of free geometric
parameters — as is the case for a physical robot. Using Groébner basis computations it is
shown how the solvability of these stiffness synthesis problems can be characterized and
solved. The stiffness synthesis problems are transformed from a polynomial form to an
associated eigenvalue problem using multiplication tables based on quotient ring
algebra. The proposed method is implemented on a planar three DOF and double planar
six DOF variable geometry robots.

All the subjects addressed in this work constitute the knowledge base for the design
and synthesis of wvariable geometry parallel robots with stiffness modification

capabilities.
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List of Symbols

The following symbols are used throughout this work. The font setting differentiates

variables, from matrices and vectors. Matrices are indicated by capitalized bold fonts

while vectors are indicated by small bold fonts and variables by normal fonts. Also,

polynomials are indicated by normal fonts setting and groups are indicated by capitalized

font setting.
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a six-dimensional vector of the moving platform pose, i.e., position
and orientation.

a vector of active joints’ forces/moments.

six-dimensional vector of the force and moment applied by the robot’s

end effector on the environment.

rotation matrix from coordinate system p to coordinate system w.

Inverse kinematics Jacobian (for parallel robots).
stiffness matrix of a robot.

stiffness coefficient of the active joints.

active stiffness matrix.

passive stiffness matrix.
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trace of a matrix.
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Chapter 1

1. Introduction

1.1 Outline

This chapter serves as a stand-alone introduction to this work. It includes a survey of
relevant subjects and references to the contributions of this work, given as separate
papers in chapter 3. Literature reviews and background on parallel robots, line
geometry, redundant parallel robots, stiffness synthesis and modulation are included
with a special focus on their relevance to the main topic of this work, namely, variable
geometry parallel robots.

The introduction begins with a background section on parallel robots including brief
notes on their historical roots, architecture classification and characteristics. The use of
line geometry is also reviewed in context of singularity analysis for explaining the
motivation behind our works on stiffness modulation singularity analysis in chapter 3,
[Simaan and Shoham, 2000-a, 2002-b].

Section 1.3 addresses reconfigurable and variable geometry robots. The classification
and terminology of re-configurable/modular robots are presented followed by a review of
previous works on all types of reconfigurable robots. Then, the definition of the term
variable geometry parallel robots in this work is presented with two illustrative
examples. Based on this definition, the motivation for developing variable geometry
robots 1s explained and a collection of works relevant to the development of these robots
is presented.

Section 1.4 serves as a background on redundant parallel robots. The section begins
with redundancy classification and ends with reviews and background on redundant
parallel and serial robots as redundancy is inseparable from variable geometry parallel
robots.

Stiffness of parallel robots is the subject of section 1.5. The section gives the necessary
background, definitions, and motivation for choosing stiffness as a criterion for geometry
change prior to explaining the two problems of stiffness synthesis and stiffness
modulation. The section ends with conclusions on the knowledge deficiencies in both

these subjects that serve as goals of our investigations in [Simaan and Shoham, 2000-b,
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2002-a] on stiffness modulation and later in [Simaan and Shoham, 2002-b, 2002-c] on
stiffness synthesis using variable geometry robots.

Section 3 is about stiffness. It is first explained why stiffness was chosen in this work
as a criterion for driving the geometry change. Then an exact full definition of the
stiffness mapping is presented with connection to the Jacobian matrix derivatives. This
equation i1s then connected to the two modes, used in this work, for changing the

stiffness.

1.2 Parallel Robots

1.2.1 Historical notes

Parallel manipulation concept dates as old as 200 years old where the analysis of the
rigidity of an articulated octahedron was performed by the mathematician Cauchy
[Merlet, 2000]. Since then, these manipulators were neglected and the main research
efforts were invested in serial manipulation. However, the last two decades featured
steady growth in the number of works regarding parallel manipulators where these
robots were (and still are) re-discovered as additional manipulator architectures with
merits of their own. Dasgupta [Dasgupta and Mruthyunjaya, 2000] emphasized the
increasing interest in the field of parallel manipulation and mentioned that in 1995 more
than 50 papers appeared on this subject while, nowadays, hundreds appear.

The first six-degrees of freedom parallel robot was built by Gough and Whitehall
[1962] as a universal tire test machine. Three years later, the work of Stewart [Stewart,
1965] presented an architecture similar to Gough’s, but for application as a flight
simulator, figure 1. Subsequent to this work, all platform-type robots were called
Stewart-Gough platforms. However, Kokkinis and Millies [1992], point out that much
earlier than the works of Gough and Stewart (at 1942), Pollard [Pollard, 1942] was
granted a U.S. patent for a three-degrees of freedom parallel manipulator suggested for

spray painting of cars.

1.2.2 Parallel robot characteristics and architecture classification

Robotic architectures are usually categorized into two families, 1.e., parallel and serial
robots while robots with serial units connected with parallel units are usually termed
Hybrid Robots, figure 2. Parallel robots are further divided into two groups being the
fully parallel robots and the Non-fully parallel robots (also called CSIP (Composite Serial
in Parallel) manipulators [Hunt, Samuel, and McAree, 1991]).

(6)



Figure 1. The original flight simulator concept presented by [Stewart, 1965].

We adopt the definition presented in [Chablat and Wenger, 1998] for a fully parallel

manipulator:

Definition Fully parallel manipulator:
A fully parallel manipulator satisfies the following conditions:
¢ The number of elementary kinematic chains equals the relative mobility
(connectivity) between the base and the moving platform.
e KEvery kinematic chain possesses only one active joint.
e All the links in the kinematic chains are binary links, i.e. no segment of an

elementary kinematic chain can be linked to more than two bodies.

Fully parallel robots are all platform manipulators using the architecture of the
Stewart-Gough platforms and characterized by single-valued solution for their inverse
position analysis problem. Non-fully parallel robots are all parallel robots that do not
conform to the definition given above. These robots are characterised by complex
kinematic chains with serial arrangement that allows for multiple solutions for the
inverse position analysis problem. For example, figure 3 presents all eight solutions of

the USR robot presented in [Simaan, Glozman, and Shoham 1998; Simaan, 1999].
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Serial robots

Parallel robots
. Fully
Hybrid ) < CSIP ) parallel

Figure 2. Manipulator architecture calssification.

Based on the solution multiplicity of the inverse kinematics problem this limiting
definition can be summarized as follows. A fully parallel manipulator has one and only
one solution to the inverse kinematics problem. Any parallel manipulator with multiple

solutions for the inverse kinematics problem is a non-fully parallel manipulator.

Figure 3. Eight solutions of the inverse kinematics problem of the composite serial-

in-parallel USR robot [Simaan, 1999].

Parallel robots feature many advantages over the more familiar serial robots in terms
of payload-to-weight ratio, compactness, stiffness, accuracy, simplicity of their inverse
kinematics problem, and dynamic agility [Hunt, 1983; Merlet, 1992; Dasgupta and
Mruthyunjaya, 2000]. However, architecturally-inherent disadvantages of these robots
render them adequate for certain applications only, in which, their advantages surmount

their disadvantages. These disadvantages include small work volume, limited
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orienational workspace, complicated direct kinematics solution, existence of statically
unstable singularities inside and on the workspace boundary [Hunt, 1983]. For more
detailed comparison see [Merlet, 1992; Ben-Horin, 1997; Simaan, 1999; Simaan and
Shoham, 2000-a].

As in serial manipulators, the fact that the performance indices, such as stiffness, are
configuration-dependent hinders the straightforward design of parallel manipulators for
given task requirements and complicates the comparison between two different
architectures for a common task from stiffness point of view [Tahmasebi and Tsai, 1995].
To overcome these design problems and to obtain better compatibility of the robot with
the task requirements through out all its workspace, this work suggests the use of a

manipulator that changes its geometry according to the task requirements.

1.2.3 Line Geometry and Singularity Analysis

The following section briefly introduces the use of line geometry for singularity
analysis in order to explain the motivation behind our investigation on stiffness
modulation singularities and the derivatives of the inverse kinematics Jacobian
presented in [Simaan and Shoham, 2000-b, 2002-a].

The inverse kinematics Jacobian of an n DOF (Degrees-Of-Freedom) parallel robot
maps the robot’s gripper twist, x, (a 6X1 vector representing the linear and angular
velocities of the gripper) to the corresponding vector of generalized speeds, q, (actuator
speeds) according to Eq. (1):

q=Jx 1)
By differentiating the geometric constraint equations [Gosselin and Angeles, 1990; Basu
and Gohsal, 1997] or using static decomposition [Cleary and Uebel, 1994; Simaan,
Glozman and Shoham, 1998], the Jacobian of parallel robots can be decomposed
according to Eq. (2):

Ax = Bq @)
In this decomposition matrices A and B represent the parallel and serial parts of the
robot, respectively [Simaan, 1999]. Matrix A is called the IDK (Instantaneous Direct
Kinematics) matrix and matrix B the ITK (Instantaneous Inverse Kinematics) matrix
[Simaan and Shoham, 2001]. For six DOF fully-parallel robots matrix B is the identity
matrix. The rows of A are vectors of Pliicker line coordinates. Each line represents the
action screw axis that is reciprocal to the twists of all joints, excluding the active joint of
its corresponding kinematic chain, [Hunt, Samuel, McAree, 1991; Collins and Long,

1995; Tsai, 1998].

€)



Equation (2) defines the singular configurations of fully parallel robots. These singular
configurations are characterized by rank deficiency of the IDK matrix A and/or of the ITK
matrix B. If A is singular then there exits non-trivial solutions, x =0, to Eq. (2) for the

homogeneous case, i.e., when all actuators are locked (q=0). Such singularities are

termed “parallel singularities” or “uncertainty configurations” in which the robot gains
extra degrees of freedom in an either an infinitesimal or finite range of motion
(transitory mobility [Hunt, 1978]). If B is singular then the robot is said to have “serial
singularity” or “stationary singularity” in which the end-effector loses DOF as a result of
DOF loss in one of its kinematic chains. For cases where the robot has less than six DOF
(n<6) this analysis is simplistic and one should consider a matrix that governs the static
equilibrium of the moving platform based on the constraint screws and the actuator
screws [Simaan and Shoham, 2001].

Theoretically, it is possible to formulate the singular configurations by formulating
determinant of the Jacobian and finding all conditions leading to singularity (for example
see Tahmasebi and Tsai, 1993). This approach is tedious and, in many cases, impossible
to compute symbolically for 6 DOF robots (see Merlet, 1989 and references therein).
Additionally, using this method, it is difficult to account for all singular configurations
and obtain geometric understanding of these singularities.

Since the rows of the IDK matrix, A, of parallel robots is composed of Plicker line
coordinates it is possible to find all parallel singularities by using line geometry as in
[Merlet, 1989] who first presented the use of line geometry for singularity analysis of
Stewart/Gough platforms. This work was inspired by the work of Dandurand [1984] on
rigidity analysis of spatial grids that gave a listing of all six line families (varieties) of
rank 1 to rank 6. These varieties are reproduced in Table 1 below and constitute the
‘dictionary’ for linear independence/dependence of lines*. The names for each variety in
Table 1 stem from their corresponding mappings on the Klein quadric [Pottman,
Peternell and Ravani, 1999].

The advantages in using Line geometry for singularity analysis stem from the fact
that this method is an exhaustive method that leads to all parallel singularities. The use
of this method is particularly suited for Stewart-Gough platforms since the lines are the
axes of the prismatic actuators; however, for CISP (composite serial in parallel) non-fully

parallel robots it is possible to use this method provided that an exhaustive synthetic

* Line geometry is not reviewed here for space limits. Readers can consult [Veblen and Young,

1910; Graustein, 1930; Sommerville, 1934; Ben-Horin, 1997] or chapter 9 of [Simaan, 1999].
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reasoning is carried out while taking into account the geometrical limitations on the
motion of the lines and the existence of architectural flat pencils as was done in [Simaan

and Shoham, 2001].

Table 1 The six line varieties reproduced from [Dandurand, 1984].

Point

Lines

>

Planes

>

Linear congruence

Linear Complex

Space

All abovementioned advantages of singularity analysis using line geometry motivated
our works in [Simaan and Shoham, 2000-b, 2002-a]. In these works (see section 3) a
formulation of the derivatives of the Jacobian with a connection to line geometry is
presented. The proof presented therein allows extending the use of line geometry for

stiffness control singularity analysis.

1.3 Reconfigurable and variable geometry robots

This section reviews the relevant terminology and works on re-configurable robots.
First, the terminology and literature review on reconfigurable robots is presented. Next,
the definition of the term “variable geometry parallel robots” is presented with two

examples explaining this definition. Then the need for variable geometry robots is
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explained and a short literature review of the works relating to reconfigurable,
redundant, and variable-geometry parallel robots is presented. These literature reviews
(including the review on re-configurable robots) are included to help form a perspective
regarding the similarities and differences between previous works and the approach of

this work.

1.3.1 Types of re-configurable/Modular robots — Terminology

Re-configurable systems comprise of three types of systems, namely, simple modular,
self re-configuring, and metamorphic systems. Simple modular systems are composed
from simple units that can be connected and dismantled via external intervention to
achieve a desired shape of the robot. Self re-configuring systems have modular units
capable of moving autonomously on the other units in order to change the shape of the
system. Metamorphic systems are self re-configuring systems with units having closed-
loop mechanisms as their basic units. These units can move along the edges of other
neighboring units by changing the angles between their edges. The next section gives

examples of previous works on these types of robots.

1.3.2 Some relevant works on reconfigurable robots

The works in this field divide into three categories corresponding to the three types of
re-configurable systems.

The works on simple-modular systems focus on the algorithms for defining the
configuration of the robot and its direct kinematics [Chen and Yang, 1996; Yang and
Chen, 2000]. Other works use these systems for obtaining re-configurable manufacturing
systems [Koren, et. al., 1999]. The aim of these works is to define mathematical models
for the reconfigurable system and optimal reconfiguration algorithms. Design aspects
and control algorithms of modular serial manipulators with simple reconfiguration were
investigated by Paredis, Brown, and Khosla [1996] and a complete control algorithm and
reconfiguration based on genetic algorithms was presented in [Paredis, 1996] where an
example of a four DOF serial reconfigurable robot is investigated.

Self re-configuring robots were studied in various works that considered the required
shape of the basic reconfiguring element (usually called molecule) in order to obtain
compact spatial packing for generating a self-aggregating structure. Among these works,
[Murata, et al., 1994] and [Tomita, et. al., 1999], considered a planar version of a self re-
configuring machine. Their system, described in figure 4, uses a symmetrical unit with
three electromagnets that allow it to move in the plane by connecting to its neighboring

units. These works also pointed out the advantages of such a system for self-repair and
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building active bending elements (actuators). Hosokawa, [Hosokawa, et. al., 1999],
considered a simpler version of robotic cells with the capability of moving in the vertical

plane and conducted preliminary experiments with this system.

() (b)

Figure 4. Self reconfiguring machine (a) reconfiguration steps (form Murata et al.

1994) (b) structure of basic modular unit (from Tomita et al., 1999).

Spatial versions of re-configurable robots/structures with units capable of moving in
3D were considered in [Kotay, et. al., 1998] and [Murata, et. al, 1998]. The first work,
[Kotay, et. al., 1998], considered a molecule-based system. Each molecule included two
“atoms” and a “bond” such that the atoms can move about their bond by rotation and
connect to other neighboring atoms. The second work considered a more complex
modular unit having the shape of a regular hexagon and built a model of the system.
Both works emphasized the design problems stemming from the need for a molecule
(modular basic unit) with self-contained actuators capable of lifting its own weight for
performing the reconfiguration. These demands emphasize the need for utilizing parallel
modular units for obtaining a re-configurable structure because of their architecturally-
inherent high payload-to-weight ratio.

Metamorphic robotic systems with metamorphic hexagonal loops were studied in
[Chirikian, 1994], figure 5. Later, [Chirikian and Pamecha, 1996] determined the bounds
of the number of module motions for a required reconfiguration task and proposed a
reconfiguration algorithm in [Pamecha and Chirikian, 1996]. All these works discussed a

planar metamorphic structure.

13)



0280

Figure 5. Metamorphic robot by [Chirikjian & Pamecha, 1996]

1.3.3 Variable geometry parallel robots in this work

This section presents the term “variable geometry parallel robots” as defined in this
work. Figure 6 presents a ranked classification of robotic manipulators according to their
ability to fulfill as a wider set of tasks as possible. The simplest manipulator in this
figure is the single DOF linkage (such as four-bar and six-bar mechanisms for motion,
path, and function generation [Erdman and Sandor, 1991]). This kind of manipulators is
synthesized (and optimized) to perform a single specific task. The intermediate type of
manipulators is the fixed-geometry multi DOF robots composed from rigid links, motors,
and joints and are usually dimensionally synthesized to fulfill certain requirements for
work volume, dexterity, and weight-carrying ability. The variable geometry manipulator
type is the most sophisticated manipulator architecture (in figure 6) that is composed of
rigid links, variable geometry links and motors. Contrary to fixed-geometry robots these
robots can change the geometry of their variable geometry links to better accommodate

the requirements of a wider range of tasks.
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Figure 6. Ranked classification of manipulator architectures.

The following paragraph gives the definition of the term ‘variable geometry parallel

robot’ as presented in this work.

Definition Variable Geometry Parallel robot:

A parallel robot fulfilling one of the following properties is considered a variable
geometry parallel robot in this work:

e It uses actuation redundancy to vary the locations/orientations of the Jacobian lines

of its equivalent non-redundant variable geometry architecture or

e It incorporates kinematic redundancy in its kinematic chains to obtain virtual

variable geometry base/moving platform.

This definition corresponds to two methods investigated in this work for stiffness-
driven geometry change. The first method is the use of antagonistic actuation to obtain
stiffness modulation. The second method is the use of variable geometry base/moving
platform for stiffness change (synthesis) *.

To clarify this definition the following paragraphs present two examples

corresponding to the two cases presented in the definition.

* See section 1.5 for a comprehensive explanation on these methods.
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Case 1: Variable geometry by actuation redundancy:

Figure 7-a presents the RSPR robot presented in [Simaan, 1999, 2000-a]. This six
DOF robot has three prismatic actuators supporting a moving platform. These prismatic
actuators connect, at their upper extremities, to the moving platform via passive revolute
joints and, at their lower extremities; they connect to rotating rigid links via passive
spherical joints (ball and socket joints). The rigid links rotate in the base plane about the
axes of their corresponding active revolute joints. Figure 7-b presents the static analysis
of force transmission from the rotating rigid links to the moving platform via the tripod
mechanism composed from the moving platform and the three prismatic actuators
[Simaan, 1999]. The direction of the resultant force transmitted from each rotating rigid

link to its corresponding spherical joint belongs to a flat pencil of §;; and s,;, i=1,2,3,
Figure 7-b. Unit vectorss;; , i=1,2,3, are along the prismatic actuators axes while s,; are

parallel to the upper revolute joints’ axes in the moving platform and, consequently, are

perpendicular to §;; .

Moving Platform Moving

®)
platform
e & ) —

Stationary Spheric
Base al {Eint
b 6,
| —

N
/)
P ——

Figure 7. The RSPR parallel robot (a). Force transmission in the tripod (b).

Using simple static analysis [Simaan, 1999, 2000-a] or reciprocity conditions [Tsai,
1998] it is possible to find the Jacobian of the RSPR robot. The IDK matrix of this robot
1s the Jacobian of the tripod. The rows of this matrix correspond to the Plicker

coordinates of the lines §;; ands,;, 1=1,2,3, presented in figure 8-a.

Suppose now that the three passive revolute joints of the tripod mechanism are
actuated, thus, introducing actuation redundancy in the parallel mechanism. In this case
the Jacobian, J, of the tripod mechanism apparently has the dimensions of 9x6, but as
next will be shown, it corresponds to a 6x6 Jacobian of a variable geometry non-

redundant equivalent robot with similar geometric interpretation as in Fig. 6-a, except
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that the lines s,, are not necessarily parallel to the upper revolute joints’ axes and are

replaced by other lines s,,, 1=1,2,3, as in figure 8-b.

S25 b)

Figure 8. Geometrical interpretation of the rows of the tripod’s Jacobian matrix (a)

with no actuation redundancy, (b) with actuation redundancy.

To show this we resort to the equation governing the statics of the tripod, Eq. (3):
JTr= f, 3)
where J is the Jacobian matrix, the vector fo represents the wrench applied by the
moving platform on the environment and t represents the vector of force intensities
transmitted through the spherical joints. In the non-redundant case, 1 is given by Eq. (4)
where the forces fii and fu, 1=1,2,3, are the forces in the §;; and s, directions,
respectively.
T= [fn ,f19, f13, fo1, f99, f23]T (4)
In the redundant case, as in figure 9-a, 1 is given by Eq. (5) where the forces fi;, fa2i, f3i are
the forces in thes,;, Sy, and §5; directions, respectively. The direction s is the normal
to the prismatic actuator and to the revolute joint of the i*® kinematic chain on the

moving platform such that §;, =-§;; x8,; , 1=1,2,3.

T= [fll s f12’ fl3’ f219 f22’ f23’ f3l’ f32’ f33]T (5)
Writing the static equilibrium equations on the moving platform results in a 9%6

Jacobian matrix, J, given by:

J= |: 1i 2i 31 i= 1’2,3 (6)

WRpppi xSy (WRpPPi —81;) X8y (WRpPPi —85;) X8y
where "R, represents the rotation matrix from platform-attached coordinate system to

world coordinate system, s,; is the vector from the center of the spherical joint to the

revolute joint of the 1 kinematic chain, and the vectors pp;, 1=1,2,3, indicate the
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positions of the revolute joints in platform-attached coordinate system. Note that each
row of the Jacobian represents a set of Pliicker line coordinates of the lines in figure 9-a.

Since each homothetic pair of lines with directions s,; and s intersect at the center of

their corresponding spherical joint, this pair can be replaced with the resultant line in

the flat pencil having a direction §,;. Consequently, the Jacobian of the redundant case is

equivalent to a non-redundant case with a different geometry, in which the upper
revolute joints are parallel to the resultant lines of the flat pencils, figure 9-b. This
explains why such a case of actuation redundancy is included in the definition of a

variable geometry parallel robot.

Figure 9. Geometrical interpretation of the rows of the tripod’s Jacobian matrix
(a) with actuation redundancy (showing 9%X6 Jacobian rows), (b) an equivalent
non-redundant manipulator with a geometry change (rotation of revolute

joint axes).

Case 2: Variable geometry by kinematic redundancy:

It is possible to obtain a variable geometry parallel robot by incorporating kinematic
redundancy in its kinematic chains. Suppose that the tripod of the RSPR robot of figure 7
has three additional actuators allowing rotating the axes of the three upper passive
revolute joints in the plane of the moving platform. In this case it is possible to achieve a
variable-geometry robot by changing the directions of the Jacobian lines, s,;, in figure 8-
a. Once the desired geometry of the variable geometry robot is achieved the
kinematically redundant actuators are locked. This example explains why kinematic
redundancy in the kinematic chains is included in the second part of the definition of

variable geometry parallel robots.
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1.3.4 Why variable geometry parallel robots?

Fixed-geometry parallel robots feature superior characteristics in terms of stiffness,
payload-to-weight ratio, dynamic agility, and accuracy. However, fixed geometry robots
suffer from the following shortcomings:

e Any fixed-geometry robot has its performance indices, such as stiffness,
configuration-dependent, i.e., once the gripper location and orientation are fixed,
the inverse kinematics determines the locations/orientations of its Jacobian lines.
This suggests that the performance indices are determined by the initial geometry
and inverse kinematics of the robot with no possibility of changing these
performance indices according to task requirements.

e Parallel robots suffer from serious workspace limitations due to the presence of
singularities inside their work-volume. Overcoming these singularities by either
eliminating them or moving their locations can considerably improve their effective
workspace.

Furthermore, in many applications of parallel robots they have to interact with their
environment. Changing their stiffness/compliance according to task requirements is
significant for improving their capabilities for assembly tasks. This is the reason behind
focusing on stiffness in this work as a driving criterion for the geometry change.

The main hypothesis of this work suggests that any fixed geometry robot, be it serial
or parallel, constitutes a forced compromise to a limited variety of tasks in terms of its
performance (dexterity, accuracy, stiffness, etc...). The key issue is that fixed geometry
robots, although programmable for an array of tasks, they are limited by their
mechanical structure [Paredis, 1996]. Hence, to overcome this compromise tailoring the
robot to the tasks at hand is called-for by introducing variable geometry capabilities.
Also, among other possibilities of geometry change such as modularity or reconfiguration
by changing joint orders in kinematic chains, variable geometry parallel robots constitute
the simplest mechanically-feasible solution. This is why this work focuses on variable

geometry parallel robots.

1.3.5 Relevant works on reconfigurable/variable geometry parallel robots

The roots of the concept of variable geometry linkage date back to the previous three
decades during which there has been extensive work on adjustable four-bar mechanisms
for multiple-path generation (see [Zhou and Ting, 2002] and references therein). These

works used a various array of methods ranging from graphical methods [Tao and
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Krishnamoorthy, 1978], nonlinear least squares methods and continuation [Angeles,
Alivizatos, and Akhras, 1988], and recently genetic algorithms [Zhou and Ting, 2002].

Later, works dealing with variable geometry trusses were presented. Arun, Reinholtz,
and Watson, [1992] presented a solution of the direct kinematics problem of the
Octahedral variable geometry trusses based on continuation. Using similar octahedral
variable geometry units, Hamlin and Sanderson [1995] suggested a modular hyper-
redundant system using a special design of a double spherical joint linkage. The work
was later extended for building a variable geometry double octahedral manipulator and a
six-legged walker [Lee and Sanderson, 1999].

However, reconfigurable/variable-geometry parallel robots have not been fully
investigated in the literature with only a mere number of works on this subject. Among
these works are the work of Zhiming and Song (1998) that investigated the design
aspects of modular Stewart-Gough platforms with workspace and joint limits
considerations and the work of Zhiming and Zhenqun (1999) that presented a symbolic
elimination algorithm for identifying the parameters of the joint locations on the base in
a modular Stewart-Gough platform. The design and kinematic analysis of modular
reconfigurable parallel robots was studied in [Yang et. al., 1999] where the direct
kinematics and work volume determination was addressed.

Additional relevant works include the works of Rao, [1995, 1997] where the topological
effects on the performance indices of planar parallel robots were studied from stiffness
point-of-view focusing on planar linkages. These works provided guidelines with
qualitative/semi-quantitative measures of stiffness for comparison of topologies.
Modeling of the effects of the location of the actuators on the singularities was studied in
[Matone and Roth, 1999] and was verified on a simple five-bar mechanism. Notash
[Notash, 1998] discussed the effects of the actuator locations on the singularities of three-
branch parallel manipulators using line geometry. All these works are valuable for
design considerations of modular parallel robots where considerations regarding the
placement of actuators, stiffness, and singularity avoidance are of prime importance.

Works on dimensional synthesis using optimization include the work of Tremblay and
Baron [1999] that used a genetic algorithm for optimizing the structure of a three DOF
parallel translation Y-star robot, figure 10. The optimized parameters were the
directions of the prismatic actuators based on workspace volume and dexterity
considerations. Recently, Du Plessis and Snyman [2002] presented an algorithm for
changing the geometry of a planar 3 DOF manufacturing robot. Their algorithm is based

on minimizing an objective function defined by the overall maximal magnitude of the
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actuator forces for a given desired path. These forces were updated by the inverse
dynamics model of the robot. The optimization was constrained with given limits on the

length of the actuators.

Figure 10. The Y-star 3 DOF parallel robot.

Since redundancy is an essential aspect of variable geometry robots, the following
section gives a review of redundancy in parallel robots to form the necessary background

for the following material on stiffness modulation in sections 1.5.2 and 1.5.3.
1.4 Redundant parallel manipulators

1.4.1 Redundancy classification

This section presents the types of redundancy used in robotic manipulators. The
merits and shortcomings of each redundancy type are explained and relevant examples
from the literature are listed. The significance of redundancy to this work stems from the
definition of variable geometry robots in the previous section and will be explained in
sections 1.5.2 and 1.5.3 in the material pertaining to stiffness modulation.

In the literature, redundancy is generally separated into four sub-types. The following

paragraphs give the listing of the four types:

1) Kinematic redundancy:

In this type of redundancy the robot has more controlled degrees of freedom than the
dimension of its motion space. For example, the planar robot in figure 11-a has four
controlled motors, but its end effector connectivity with the ground link is 3. This type of

redundancy is the natural type for serial type of robots.
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2) Actuation redundancy:

Actuation redundancy is present when the number of active actuators is larger than
the dimension of the end effector’s operational wrench system, i.e., there is a larger
number of actuated joints than the minimal number required for sustaining a general
external load. This type of redundancy is possible only in closed kinematic chains such as
parallel robots. A closed kinematic chain with actuation redundancy i1s an over-
constrained one, with internal forces stemming from the actuation redundancy
(Antagonistic actuation). Figure 11-b presents the simplest, one degree of freedom, closed
kinematic chain with actuation redundancy.

Actuation redundancy in parallel manipulators further divides into two categories
presented in figure 11-c and figure 11-d and called Type-I and Type-II actuation
redundancies, respectively [Kim, 1997]. Figure 11-c presents the version of the three
degrees-of-freedom planar parallel manipulator of Hunt [1983] with one of its passive
joints replaced by an active one (Type-I actuation redundancy). Figure 11-d presents
Type-II actuation redundancy of the same robot, in which, an additional kinematic chain
is added to support the moving platform.

Non-fully-parallel robots with serial kinematic chains may have both actuation
redundancy in the whole manipulator and kinematic redundancy in one or more of its

kinematic chains.

() (b) (© (d)

@ =Active joint O =Passive joint

Figure 11. Serial robot with actuation redundancy (a). Closed kinematic chain with
actuation redundancy (b). Type-I actuation redundancy (c). Type-II actuation

redundancy (d).
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3) Sensory redundancy

Sensory redundancy is used in both serial and parallel robots. It represents the case
where the information gathered from the existing encoders exceeds the number of inputs

required for control purposes.

4) Task Redundancy

A robot 1s said to have task redundancy when it has more degrees of freedom
(connectivity between its end-effector and the ground link) than the minimal number

required by the task. This redundancy is possible in both serial and parallel robots.

1.4.2 Redundancy in serial robots

The background for analyzing redundant parallel robots stems from the results
obtained from the study of redundant serial robots. Some of the results obtained for
redundant serial robots can readily be applied for parallel robots, provided that the
dualities between parallel and serial robots are correctly accounted for. These dualities
between twists in serial manipulators and wrenches in parallel manipulators were
discussed in [Waldron and Hunt, 1991; Duffy, 1996; Bruyninckx, 1999]. This explains
why fully-parallel manipulators can have actuation redundancy only, while serial
manipulators can have kinematic redundancies only. Non-fully parallel or (CSIP)
Composite Serial-In-Parallel manipulators [Hunt, Samuel and McAree, 1991] can have
both kinematic and actuation redundancies. Moreover, the background on redundant
serial manipulators is essential for the analysis of variable geometry parallel robots with
kinematic redundancy in their kinematic chains; hence, a brief review of works on
redundant serial manipulators is presented below.

The majority of the methods for controlling redundant serial manipulators rely on the
use of the Pseudo-Inverse for solving a system of redundant linear equations [Whitney,
1969; Whitney, 1972]. A system that has n freedom-variables, x, (unknowns) and m
linear constraint equations, where n>m, has an (n-m) dimensional solution space.
Redundancy resolution seeks the best solution that satisfies the given set of equations
(primary task) together with additional sub-tasks. To solve this problem [Nakamura and
Hanafusa, 1985] suggested a method that they called the ‘task-decomposition method’ or
‘task-priority-based method’ [Yoshikawa, 1984; Yoshikawa, 1990]. The primary task is
given in Eq. (7) and the i’th secondary task in Eq. (8).

Primary task: Ax=b, AeRmxn xeR2, beR™, n>m. @)

Secondary i’th task: S;x =¢;, Sie R xeR", cie K™, n>m. (8)
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Symbolizing the pseudo-inverse of a matrix by + superscript, the solution for the

primary task is then given by:

x=A"b +(I—A+A)y1 9

where the first and second term of Eq. (9) are respectively the particular and
homogeneous solutions of Eq. (7). The particular solution exists if beIm(A), otherwise,
the first term in Eq. (9) is the best approximate solution that minimizes the norm of the
error in Eq. (7) [Lancaster and Tismenetsky, 1985]. The n-dimensional vector, yi, is a
free vector that should be selected to satisfy the first secondary task. The solution of the
primary task and the first secondary task leads to the solution for x and yi, such that
x=x(y1) and y1=yi(y2). This vector, i.e. y2, is used to fulfill the second secondary task.
This process terminates when we have used all the degrees of redundancies in fulfilling
the secondary task. A more detailed explanation of this method can be found in
[Yoshikawa, 1984; Yoshikawa, 1985; Nakamura, et. al.,, 1987] and simplified in
[Yoshikawa, 1990].

This method of task-decomposition was used for joint-limit avoidance [Liegeois, 1977],
singularity avoidance [Yoshikawa, 1984], dexterity enhancement [Yoshikawa, 1984;
Klein and Blaho, 1987], obstacle avoidance [Yoshikawa, 1984; Maciejewski and Klein,
1985; Klein, 1985], and torque optimization [Hollerbach and Suh, 1987].

The methods of the pseudo-inverse utilize the null-space of the Jacobian of the
manipulator for finding an optimal solution with possibility for treating scalar-function
subtasks that should be minimized or maximized. In this case, when the secondary task
1s given by a scalar function, the gradient method is used to optimize the solution
[Liegeois, 1977; Merlet, 1996; Yoshikawa, 1990]. This means that the solution is locally
optimal. Nakamura and Hanafusa [1987] proposed a method for finding a solution with
global optimality. They treated the problem of obstacle avoidance by defining a secondary
task, which is given by an integral of a potential function over a desired path of the end-
effector. This way they redefined the problem as a problem of satisfying the main task
and maximizing the secondary task integral. To obtain a solution they defined the
Hamiltonian of the system and solved first-order equations equivalent to Hamilton’s

canonical equations.

1.4.3 Redundancy in parallel robots

Although most works on redundancy concentrate on serial robots, some of the general
advantages of incorporating redundancy in parallel robots were pointed out in [Lee and

Kim, 1994; Merlet, 1996] and later in [Dasgupta and Mruthyunjaya, 2000].
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Works concentrating on redundancy of parallel manipulators inspected the
contributions of redundancy in the following fields: singularity avoidance [Dasgupta and
Mruthyunjaya, 1998; Notash and Podhorodeski, 1996], manipulability enhancement
[O’brien and Wen, 1999], self calibration [Nahvi, et. al., 1994], Static performance [Kim,
1997], Isotropy [Kokkinis and Millies, 1992], stiffness modulation [Cho, et. al., 1989; and
others (see section 1.5.3)], and Direct kinematics [Nair and Maddocks, 1994]. All these
works used actuation redundancy, but [Nahvi, et. al.,, 1994] used also sensory
redundancy.

Actuation redundancy in fully-parallel robots reduces the number of singular poses
that the robot possesses in its workspace, but drastically decreases its workspace
[Merlet, 1996] since it must be a type-II actuation redundancy, figure 11-d. It also allows
overcoming the problems created by backlash in the system and, eventually, increases
the accuracy of the robot. Stiffness modulation algorithms are based on this type of
redundancy. Recently, actuation redundancy was used in an 8-wire redundant parallel
manipulator [Maeda, et. al., 1999] to increase its force closure capabilities and; thus,
increase its workspace.

Sensory redundancy is important for reducing the size of the direct kinematics
problem and can lead to a single solution of the direct kinematics [Nair and Maddocks,
1994; Parenti-Castelli and Gregorio, 1998]. Recently, it was also used for forming an
analytical singularity analysis method [Kim and Chung, 1999]. A combination of
actuation and sensory redundancy grants the robot fail-safe characteristics.

Task redundancy has not been addressed in many works dealing with parallel robots.
In fact, a sole work in this field appeared in [Merlet, Preng, and Daney 2000]. In this
work a six degrees-of-freedom Gough platform was used as a 5-axis machine tool. The
robot’s one extra degree of freedom — rotation about the spindle axis — was used to
achieve inclusion of a desired trajectory inside the workspace of the robot and for
ensuring that the robot is singularity-free along the path.

In addition to the aforementioned works, there are few works on redundant hybrid
robots that have a structure of several parallel sub-units connected in series. These
robots have the large workspace of serial robots, but feature high payload capacity. A
kinematic study of these robotic structures was presented in [Zanganeh and Angeles,
1995]. For example, figure 12 presents the LOGABEX 24 degrees-of-freedom serial-
parallel robot built for nuclear plant maintenance [Merlet, 2000]. This robot has four 6
D.O.F platforms connected in series and it weighs 120 [Kg] and is capable of handling a
payload of [75] Kg with its height ranging from 2 to 2.7 meters. Minyang, in [Minyang,
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et. al., 1995], presented a 10 degrees-of-freedom robot with three 3 degrees of freedom
parallel units connected in series and one slider unit. His robot weighs [75] Kg and is
capable of handling 20 [Kg] payload in its workspace. These two examples show the
advantages of the serial-parallel structures in terms of workspace and payload
capabilities.

The above mentioned works show that force redundancy in parallel manipulators was
extensively studied. Augmenting kinematic and actuation redundancies in variable
geometry robots has not been addressed yet in a comprehensive approach dealing with
reconfiguration and geometry change issues. This work investigates both types of
redundancies for variable geometry robots where the driving criterion for geometry

change is the task-based stiffness.

it

Figure 12. 24 degrees of freedom serial-parallel robot (From [Merlet,2000])

1.5 Stiffness

This section focuses on stiffness analysis, modulation, and synthesis with relevance to
redundant parallel robots and variable geometry robots. The section presents the
definition of stiffness and explains why it is chosen as a criterion for geometry change of
variable geometry robots. The problems of stiffness modulation and synthesis are
explained and a review of literature is presented. These two problems (stiffness
modulation and synthesis) form the basis for the use of the two redundancy modes of

variable geometry robots introduced in section 1.5.4.

1.5.1 Definition and motivation

Definition Stiffness
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Robot stiffness is the linear mapping relating the change in the wrench applied by its
end-effector with the corresponding perturbation in its end-effector’s position/orientation;
provided that the following assumptions hold:

e The only source of compliance is the actuators of the robot, i.e., all rigid links are

assumed infinitely stiff.

e The stiffness model of the actuators is linear, i.e., for any small joint disturbance

(be it linear or angular) the corresponding actuator force/moment changes linearly.

This definition is given explicitly in Eq. (10) and illustrated in figure 13 where f. is the
wrench applied by the end-effector on the environment and x 1is its 6x1
position/orientation vector and K denotes the stiffness matrix,.

AF, = K Ax (10)

Figure 13. Stewart-Gough platform with end-effector position disturbance due to

external load disturbance

The statics of parallel manipulators was given in Eq. (3) by J't=f, where J denotes

the Jacobian, and © denotes the vector of actuation forces/moments of the active joints.
Using this notation, the elements of the stiffness matrix, K, of Eq. (10) are given by Eq.
(11) [Kock and Schumacher, 1998].

OF T T
kj = % :a(J lT):aJ l‘r+JTiﬁ (11)
8xj 6xj 6xj 6xj

where JT; refers to the ith row of the transposed Jacobian J'.
Unlike the definition in [Gosselin, 1990], the definition of Eq. (11) includes the
stiffness effect introduced by ‘pre-load’ in non-redundant manipulators (due to bias forces

such as the self-weight of the moving platform) or antagonistic actuation in redundant
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robots [Yi and Freeman, 1993]. This effect is expressed by the term o t, which is

j
referred to in the literature as the ‘active stiffness’ or ‘antagonistic stiffness’ [Yi and
Freeman, 1993]. The second term in Eq. (11) is referred to as the ‘passive stiffness’ of the
manipulator [Yi1, et. al., 1992; Kock and Schumacher, 1998]. Treating the actuators as

springs with a diagonal stiffness matrix Kq in joint space results in:

JTiaﬁ:JTiZ—aaT —%qm =JTK J! (12)
X Am OX;

Most of the works on stiffness synthesis treat the stiffness matrix, K, as a symmetric
positive semi definite matrix defined by the quadratic form of Eq. (12); thus, neglecting
the effect of the active stiffness elements in Eq. (11). This approximation is valid for
manipulators with high joint stiffness values [Ciblak and Lipkin, 1999; Simaan and
Shoham, 2000-b]. The matrix form of Eq. (12) is given by:

K, =J'K,J (13)

where K is a symmetric positive semi-definite matrix having the following structure:

K, :{:T ﬂemﬁxﬁ: A:AT,C:CT,A,B,CG‘J%3X3} (14)
Using the definitions of active and passive stiffness, the total stiffness of a parallel
manipulator can be expressed as a sum of the active stiffness matrix, Ka, and the passive
stiffness matrix, K;, Eq. (15).
K=K, +K, (15)
Most works on stiffness consider the passive stiffness for non-redundant non-preloaded

robots and concentrate on K, to define stiffness-based performance indices. For example,

the matrix KPTKp 1s used to define an ellipsoid of deflections of the moving platform for a

constant-norm of wrench acting on it. Equations (16) and (17) give the definition and the

explicit form of the ellipsoid, respectively.

Ax = {Ax D Ax =K, 'Af,, £, <1 } (16)
AXTK 'K Ax <1 17
Equation (17) defines an ellipsoid since KpTKp is positive-semi definite [Landesman and

Hestenes, 1992]. This analysis takes a form similar to the definition of manipulability
ellipsoid for redundant serial robots in [Yoshikawa, 1984] and non-redundant serial

robots in [Yoshikawa, 1985].
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The eigenvectors and the eigenvalues of this matrix, i.e. KPTKP, are respectively the

ellipsoid principal axes and their corresponding lengths*. Asada, [Asada and Slotine,
1986 - chapter 4], defined the ellipsoid of compliance, which is obtained by interchanging
AxandAf,in Eq. (17). The principal axes of these ellipsoids are important for the

characterization of the stiffness/compliance of manipulators since the degenerate cases of
this ellipsoid define both the parallel and serial singularities of parallel robots and, in
non-degenerate cases, the ellipsoid defines the stiffness isotropy of the robot. Stiffness
also defines the effective accuracy of a given manipulator. This is why stiffness is
considered as one of the most important performance indices of manipulators or robotic
hands performing assembly tasks [Mason and Salisbury, 1985].

Based on these considerations, this work focuses on variable geometry parallel robots
for task-based stiffness change. This is achieved through stiffness synthesis or through

stiffness modulation — two subjects reviewed in the following subsection.

1.5.2 Stiffness synthesis and modulation — problem definitions

In the literature there are two methods for changing stiffness, namely, stiffness

modulation and stiffness synthesis. Both these terms are defined herein:

Definition Stiffness synthesis

Stiffness synthesis is the problem of finding the required springs (including spring
types, rates, number, and directions of axes) for obtaining a desired stiffness for a

spring suspension system.

Definition Stiffness modulation
Stiffness modulation is the problem of modifying the stiffness of a robot by
incorporating controllable active stiffness through the use of internal forces introduced

by antagonistic actuation or by changing the stiffness rates in joint space.

The following sub-section presents literature surveys in both these fields that serve

both as a background and as identifiers of potential contributions in these fields.
1.5.3 Stiffness synthesis and modulation - literature reviews

Stiffness synthesis

* The eigenvectors of KpTKp and K, are the same since K is symmetric.
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Given a group of springs connecting a rigid body to the ground, the stiffness matrix of
this system can easily be obtained using screw theory [Duffy, 1996; Tsai, 1999]. However,
the reverse problem, i.e. stiffness synthesis, is much more complicated and it is still only
partly solved with most of the major results being achieved only in the last few years.

The background for stiffness synthesis stems from the previous works on RCC
(Remote Center of Compliance) devices, [Whitney, 1982] and investigations on the
properties of stiffness and compliance [Lipkin and Patterson, 1992-a, 1992-b; Patterson
and Lipkin, 1993; Huang and Schimmmels, 1999]. Pattaerson and Lipkin (1990, 1993)
classified robot compliance matrices based on their eigenscrews and twist compliant axes
and discussed the relations among twist compliant axes and wrench compliant axes
while Loncaric (1985) and Huang and Schimmels (1998-a) characterized the space of
realizable stiffness matrices using only simple springs.

The following list of questions on stiffness synthesis was addressed in the literature.

e What is the space of realizable stiffness matrices when using simple springs only?

[Loncaric, 1985; Huang and Schimmels, 1998-a].

e What is the minimal number of simple springs required for realizing a realizable
stiffness matrix? (Minimal realization) [Huang and Schimmels, 1998-a, 1998-b,
1999; Roberts, 1999].

e What are the limits on the numbers of linear springs and torsional springs for
achieving a general rank-r stiffness matrix? [Ciblak and Lipkin, 1999].

e What are the dimensions of the solution to the stiffness space for a rank-r
realizable stiffness matrix? [Ciblak and Lipkin, 1999].

e What are the connection points, the line coordinates of the axes of these springs,
and the spring constants.

The answers to these questions are depicted in the following paragraphs based on the
works referenced in each question. These answers define the limits and capabilities of
stiffness change by reconfigurable parallel robots.

The space of realizable stiffness matrices, when using simple springs only, was shown
to be 20 dimensional [Loncaric, 1985]. This is because the stiffness matrix (passive
stiffness) is a symmetric matrix, and for a 6-dimensional matrix, there are 21 parameters
on and above the main diagonal. This leaves 21 free parameters in the matrix. However,
since we are dealing with stiffness matrices that are the sum of six rank-one matrices
associated with simple springs, one of the 21 parameters is dependent since all the
stiffness matrices of simple springs satisfy nullity of the trace of the above diagonal 3x3

sub-matrix, B, in Eq. (14) [Loncaric, 1987]. This condition, which characterizes the
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realizable stiffness matrices when using simple springs only, is given by the condition in

Eq. (18), [Huang and Schimmels, 1998-a].

tKA) = 26(B) = 0 zzﬁ (‘J (19)

where I represents the 3X3 identity matrix and B the of-diagonal 3x3 sub-matrix of Eq.
(14). This condition follows directly from the Grassmannian conditions on the Pliicker
ray coordinates of the axis of the simple screw springs, which is the condition for a given
sextuplet for being a valid set of line coordinates of a line [Pottman, et. al., 1999;
Graustein, 1930; Sommerville, 1934]. Equation (18) also gives the characteristic equation
for the realizable stiffness matrices when using simple springs only. Any given stiffness
matrix that does not fulfill this equation is not realizable with simple springs only, but it
can be obtained by a combination of simple springs and screw springs [Huang and
Schimmels, 1998-b]. The maximal required number of screw springs for the realization of
a full rank stiffness matrix was shown to be 3 in [Huang and Schimmels, 1998-b].

The minimal number of springs required for realizing a rank-r realizable stiffness
matrix is r simple springs [Ciblak and Lipkin, 1999]. Ciblak and Lipkin suggest an
algorithm that uses the eigenvectors of the stiffness matrix for obtaining the required
springs. Huang and Schimmels [1998-a] used Cholesky decomposition [Lancaster and
Tismenetsky, 1985] of the stiffness matrix into a product of an upper triangular matrix
with its transpose. This algorithm leads to a realization with seven springs at-most, but
can also lead to realizations with six springs. The Cholesky decomposition of K into a
product of an upper triangular matrix with itself means that this method always leads to
three springs that intersect at the origin of the world coordinate system. Roberts [1999]
used a similar decomposition as Huang, but with additional steps for obtaining an
orthonormal basis from the eigenvectors of K and obtained a minimal realization, which
for a rank-6 realizable stiffness results in 6 springs. This algorithm shares much in
common with the algorithm suggested in Ciblak and Lipkin [1999].

The number of springs and the possible combinations of linear and torsional springs
for obtaining a rank-r matrix was discussed in [Ciblak and Lipkin, 1999]. Figure 14
shows the allowable combinations of the number of line springs, ni, with the number of
torsion springs, n., for a full rank (r=6) realizable stiffness matrix. The line 5ni+3n, =20
stems from the facts that one needs to specify 20 independent parameters for obtaining a
realizable stiffness matrix, and that a line spring is characterized by 5 parameters (4 for

its axis and 1 for its stiffness) while a torsion spring is characterized by 3 parameters.
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The line ni+n.=6 depicts the minimal realization requirement for a rank-6 stiffness
matrix.

The dimension of the solution space, ds, of the synthesis problem of a rank-r realizable
stiffness matrix was shown to be given by Eq. (19), [Ciblak and Lipkin, 1999].

T a9)

this shows that the solution to the general problem of r=6 has a 10-dimensional solution
space. This result is very important since it opens the question regarding the optimal

realization when using additional performance indices.

aQ
=)}

w

(# of torsion springs) N

n,

(# of linear springs)

Figure 14. Allowable combinations of line and torsion springs for full-rank stiffness

(r=6), [Ciblak and Lipkin, 1999].

Stiffness Modulation

Stiffness modulation deals with changing the stiffness of the manipulator according to
task specifications. Equations (11), (13) and (15), form the basis for stiffness modulation
and suggest two alternatives for realizing it. The first way is by changing the stiffness in
joint-space, i.e. Kq, in Eq. (13). The other, more sophisticated, possibility is to introduce
active stiffness effects, which are represented by the first term in Eqgs. (11) and (15). This
can be accomplished by controlling the active joints’ forces/moments so that the active
stiffness term in Eq. (15) is made large with respect to the passive stiffness.

The first proposed algorithm, i.e. changing joint stiffness matrix, Kq, 1s described in
[Salisbury, 1980] and in more detail in [Mason and Salisbury, 1985] in context of
stiffness control of multi-fingered hands and expanded to include internal forces control
that maintain the stability of the grasp. This algorithm assumes that the joint stiffnesses

are a function of the control gains. This assumption leads to non-diagonal joint stiffness
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matrix, Ka, which can couple the reaction of one joint with a deflection in the other and,
thus, increase the ability of stiffness control [Mason and Salisbury, 1985]. This
assumption 1s true when the actuators are back drivable — which is seldom true in
parallel manipulators that use high-ratio gears and lead screw units as part of their
actuation structure. The impedance control scheme presented in [Yoshikawa, 1990]
entails the measurement of the reaction forces and the position of the end effector, which
enlarges the control effort. Both methods do not solve the problem of singularity of the
manipulator.

The second method, i.e. introducing active stiffness to the system, necessitates
introducing actuation redundancy to the manipulator’s architecture [Kim, et. al., 1997;
Kim, 1997; Cho, et. al., 1989; Y1 and Freeman, 1992; Kock and Schumacher, 1998;
O’brien and Wen, 1999]. In this case, the actuation forces vector, =, is divided into T, and
Th, where T, denotes the actuation forces balancing the external load and wn denotes the
internal actuation forces (antagonistic actuation forces). Antagonistic actuation forces, T,
do not affect the resultant force applied by the moving platform on its environment since
they belong to the Kernel of the Jacobian matrix, Eq. (20).

T=T,+T, Jt‘tp =f, Jit, =0 (20)

This method also allows overcoming certain singularities of the manipulator, but in
order to be able to effectively change all the elements of the stiffness matrix we have to
introduce high-order actuation redundancy [Y1i, et. al., 1989]. This is because the number
of elements that can be controlled depends on the dimension of the null-space of the
Jacobian of the redundant robot.

Yi, in [Y1, et. al., 1989], proposed an open-loop algorithm for stiffness modulation that
includes the effects of dynamics, external forces, and self-weight compensation of the
manipulator. This method saves the use of additional control loop for stiffness
modulation, but it requires off-line path planning and computation of the antagonistic
forces required for obtaining the goal stiffness. He also presented a simulation of a
redundant version of the planar three-degrees of freedom manipulator, which was
suggested by [Hunt, 1983] and later optimized by [Gosselin and Angeles, 1988-a], for
application as a programmable RCC device. Figure 15 presents the redundant robot with
four kinematic chains. He treated this robot as a group of serial robots manipulating a
common object (the moving platform). Kim [Kim, et al., 1997] studied the same robot
suggested by Hunt, but with actuation redundancy without adding kinematic chains, i.e.,
with three kinematic chains only and showed that this robot could be effectively used as

an RCC device with programmable characteristics. Later, [Kim and Cho, 2000] showed
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that the Spherical three degrees-of-freedom robot suggested by [Gosselin and Angeles,
1988-b], can also be used as an RCC device when it is in its central configuration. [Kock
and Schumacher, 1998], used the degenerate case of the same robot, in which the
platform reduces to a point, as a redundant two degrees of freedom device for ultra-fast
pick and place applications and used also the method of stiffness modulation. Yi, [Yi and
freeman, 1992], used a redundant version of the spherical robot suggested by [Gosselin
and Angeles, 1988-b] with four kinematic chains as a kinematic wrist with stiffness

modulation capabilities.

é////

§ A\

Figure 15. Planar 3 DOF robot as a programmable RCC device [Y1, et. al., 1989]

The following sub-section presents some conclusions based on the literature reviews in
these fields and identifies the contributions that this work is going to concentrate on for
Iincorporating these stiffness modification capabilities in variable geometry parallel

robots.

1.5.4 Conclusion

Stiffness synthesis and modulation — what is left to be done?

Stiffness is one of the most important characteristics of parallel robots. Hence,
tailoring the robots’ stiffness characteristics according to task demands significantly
improves the performance of the robot for the given task. This is achieved in this work
through stiffness synthesis and modulation by utilizing two modes in variable-geometry
parallel robots.

The literature review on stiffness synthesis shows that all works on stiffness synthesis
are limited by the following assumptions:

o All works assume that the stiffness coefficients of the springs are free synthesis

parameters.
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e No limitations on the connection points of the springs are considered.

e All works base the synthesis on a mathematical decomposition of the stiffness

matrix; thus yielding results with no geometrical or engineering insight.

e All works do not consider a limited number of free parameters for changing the

spring connection points.

These assumptions render the previous works on stiffness synthesis applicable only
for synthesis of a spring suspension system since it is not possible to construct a
reasonable robot according to these assumptions.

Previous works on stiffness modulation lack a methodology for stiffness modulation
singularity analysis and a geometric interpretation to these singularities.

The following paragraphs present the approach of this work for addressing the
knowledge deficiencies in both stiffness synthesis and stiffness modulation through the

use of variable geometry robots.

The approach of this work

Figure 16 summarizes the approach of this work on variable geometry robots for
stiffness modification. It presents two modes of stiffness modification, namely, stiffness
synthesis and stiffness modulation. These two modes stem directly from our definition of
variable geometry robots in section 1.3.3 and rely on exploring the use of kinematic
redundancy and actuation redundancy in parallel robots.

This work addresses the previously listed research needs and proposes a method for
task-based stiffness synthesis for variable geometry parallel robots that are readily
constructible [Simaan and Shoham, 2002-b and 2002-c]. Additionally, the work presents
a novel geometric interpretation to stiffness modulation singularities, which allows
analyzing them through methods of line geometry [Simaan and Shoham, 2000-b, 2002-a].

The following chapter presents background material on Groébner bases. This
background is necessary for understanding the methodology for variable geometry robots

presented in chapter 3.
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Figure 16. Two modes of stiffness modification investigated in this work
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Chapter 2

2. Research Methods: Grobner bases for kinematics

2.1 Introduction

This chapter presents a necessary background material on Algebraic Geometry and
symbolic polynomial system solving by using Groébner bases and the SM (Stetter-Méller)
eigenvalues method, which constitutes a recent advancement in Algebraic Geometry and
symbolic/numerical polynomial system solving. This method, namely, the SM (Stetter-
Moller) eigenvalues method, systematically transforms the solution of polynomial
systems into corresponding eigenvalues problem based on the use of Grébner bases and
the structure of the residue class ring (quotient ring). The effectiveness of this method for
solving problems in kinematics and variable geometry parallel robots is demonstrated in
[Simaan and Shoham, 2002-b, 2002-c] in chapter 3.

Since a comprehensive treatment of Grobner bases is not the direct aim of this chapter
and because this subject is much beyond the scope of a single chapter, this chapter is
dedicated to presenting the necessary material for understanding the SM method
without a detailed treatment of Grobner bases and their vast array of uses (for example
see [Buchberger and Winkler, 1998]). Readers interested in a comprehensive treatment
of the subject should consult [Becker and Weispfenning, 1991; Adams and Loustaunau,
1994; Cox, Little, and O’Shea, 1997 and 1998]. Also, for swift introductory tutorials on
Grobner bases, the papers by [Heck, 1997; Popper, 1997; Buchberger, 1998] are
recommended.

The chapter begins with a brief review of papers on polynomials systems, their
relevance in kinematics, and a survey of their solution methods with a focus on the
characteristics of each method. Then, section 2.3 dwells on linear equations and serves as
a reminder of linear systems for presenting the motivation behind seeking a structured
solution by using eigenvalues — as is done for linear systems. Section 2.4 presents some
basic definitions from Abstract Algebra. Then, section 2.5 explains the division algorithm
of polynomials as a preliminary to its succeeding section on Grébner bases. Section 2.7
presents some necessary material on residue class ring (quotient ring) and the relation

between finite-dimensional algebra of cosets with polynomial system solving, which
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constitutes the basis for the SM eigenvalues method. Section 2.8 presents the method of
Stetter (SM method) for transforming polynomials systems into eigenvalues problems.
Finally, the chapter closes with concluding remarks on the applicability of the method to

stiffness synthesis of variable geometry parallel robots.

2.2 Methods of polynomial system solving for kinematics

This section focuses on the importance of polynomial systems in kinematics while
reviewing several key-note papers and the array of known solution methods.

Solving polynomial systems is the inevitable overhead of many problems 1is
kinematics. For example, the inverse kinematics problem of serial robots is a polynomial
system of equations in the joint variables [Tsai and Morgan, 1985] while, the direct
kinematics problem of parallel robots is a polynomial system in the position/orientation
variables of the moving platform [Merlet, 2000]. Even the position analysis of simple
planar four-bar and six-bar mechanisms lead to polynomial systems with multiple
solutions. In addition to position analysis, synthesis problems are often associated with
polynomial problems in the design variables [Roth and Freudenstein, 1963-a; Dhingra,
Cheng, Kholi, 1992; Innocenti, 1995]. For these reasons, many tutorial papers appeared
on the subject in the robotics community, among which, [Wampler, Morgan, Sommese,
1990; Roth, 1993; Raghavan and Roth, 1995; Nielsen and Roth 1999-a] present concise
reviews of solution methods to polynomial systems.

For kinematical analysis/synthesis problems, the problem of polynomial system
solving is not limited to finding a solution to the system. Usually, the following questions
are of prime interest:

e How many solutions there are to the given problem? How many of them are at

infinity?

e What is the largest number of real solutions possible?

e Is it possible to obtain a closed form solution?

e Is it possible to determine the solvability or prove non-solvability of a given system?

e What about conclusions regarding the geometric meaning of solutions? Is there any

symmetry among the solutions?

These questions are the core of kinematical investigations and, generally, the
importance of each question dictates the preferable method to be used for the solution of
a given problem.

The methods for polynomials system solution range from purely symbolic to purely

numerical methods. Purely numerical methods based on Newton-Raphson methods are
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not presented here since they are not capable of answering the above listed questions
adequately. In fact, these methods do not usually succeed if finding all solutions to the
polynomial problems. The following is a short review of works reporting successful
implementation of well-established methods for the solution of polynomial systems in

kinematics.

2.2.1 Symbolic methods

Symbolic methods are based on elimination and Grobner basis calculations.
Elimination methods sub-divide into Dialytic elimination and Resultant-based methods

using sequential elimination®.

Dialytic elimination

This method is based on the work of [Cayley, 1848]. The basic idea is to rewrite the
equations with one variable hidden (suppressed) in the coefficients field and obtain a
necessary condition on the coefficients for the existence of a solution. The method collects
all the power products in the unsuppressed variables and considers them as a new set of
‘linear’ unknowns. Then, by generating combinations of the equations, it is possible to
produce enough equations as there are distinct power products of the unknown variables.
Once this is done, the system is viewed as a homogeneous linear system; therefore, the
condition for having nontrivial solutions to it is the vanishing of the determinant of the
coefficients matrix (this matrix is usually called the resultant matrix). This condition
yields a polynomial with the suppressed variable, which can be solved and the results
can be back-substituted in the original system. Full details of the method can be found in
[Roth, 1993; Raghavan and Roth, 1995; Tsai, 1999].

This is the most used method for solving small polynomial systems. For example,
[Raghavan and Roth, 1995] recommend considering the use of this method for small
problems in kinematics as a first option because of its simplicity. The method was used
by various researchers to solve the direct kinematics problems of special Stewart/Gough
platforms [Yin and Liang, 1994; Wen and Liang, 1994]. All these works obtained
solutions to the special problems, but failed to give a solution to the general

Stewart/Gough direct kinematics problem devoid of extraneous roots. Recently, dialytic

* Although multi-variate resultants constitute another powerful and relevant symbolic method,
they are not surveyed here due to the large amount of background needed for explaining this
method. Readers interested in the subject can consult [Cox, Little, and O’Shea, 1998] and [Emiris
and Mourrain, 1999].
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elimination was used by [Innocenti, 2001; Lee and Shim, 2001] in the solution of the
general Stewart/Gough platform where a 40t degree polynomial was obtained
corresponding for the 40 possible solutions. Prior to these works, Raghavan and Roth
[1990] used this method to solve the inverse kinematics problem of general serial robots.

Dialytic elimination, although efficient for small problems, suffers from the following

disadvantages:

e The method is not well structured. The solution depends on a case-by-case basis
and the skill of the person solving the problem in introducing new equations by
combinations of the original ones.

e It is very difficult to obtain a minimal number of equations without introducing
extraneous roots [Roth, 1993].

e The method produces large matrices for the resultant. The symbolic computation of
this resultant is generally a heavy task, which is unsolvable for moderately large

problems.

Resultant methods

These methods, like the dialytic elimination method rely on elimination by forming a
necessary condition for two polynomials to have a common solution. The difference from
dialytic elimination is the use of classical closed-form formulas for the resultant given by
either the Sylvester resultant or Bezout’s resultant [Salmon, 1885; Bocher and Duval,

1907]. For example, the classical formula for the Sylvester resultant for two polynomials

f= zgoaixi and g= Z?: o bixi is given by determinant of the Sylvester matrix:

an bn

n-1 an bn—l bn
an-2 Ay bn72 bnf

an‘—2 b: bn_—2 bbn

_ a9 : 0 : n-1
Res(f,g) =det a, a by b, (21)
bO
L a0 J(m+n)x(m+n)

The vanishing of the resultant is a necessary condition that both f and g have a
common factor, and thus; have simultaneous solutions.
Resultants usually produce large matrices for small problems [Raghavan and Roth,

1995] and generally suffer from extraneous roots. Also, as in dialytic sequential
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elimination, the numerical errors introduced in the solution of one variable affect the
solutions for the other variables*.

The works of [Chen and Song, 1992; Innocenti, 1995; Ben-Horin, 1994; Almadi,
Dhingra, Kholi, 1999] used both the Bezout and Sylvester resultants for direct
kinematics of special kinds of parallel robots and planar linkages, while [Husty, 1996]
presented a solution to the general Stewart/Gough platform by using resultants and
factoring out all extraneous roots. The works of [Kovacs and Hommel, 1993; Soylu and
Akbulut, 1997] discussed the introduction of extraneous roots by the use of half-angle
tangent substitution in trigonometric equations often encountered in kinematics.

Another interesting closed-form formula for resultant of two quantics is Dixon’s
formula. This formula was recently used by both [Nielsen and Roth, 1999-b] and
[Wampler, 2001] for solving the position analysis of planar closed chain linkages.
Wampler’s work avoids the use of the half-angle tangent transform, which was used by
Nielsen and Roth, in order to maintain the degree of the polynomials and prevent the

introduction of extraneous roots.

Grobner bases

Since this method is the focus of this chapter we will limit ourselves in this section on
listing the contributions in kinematics that used this method. Before doing so, we will
focus the attention on the following advantages of the use of Grobner bases:

e It is possible to prove the solvability and non-solvability of a polynomial system by

constructing its Grébner basis.

e Grobner bases produce a tight bound to the number of solutions of a polynomial
system.

e It is possible to gain insight into the geometric structure of the problem by using
Grobner bases. For small problems it is even possible to obtain elimination-like
results by using special term orderings.

The main drawback of Grobner bases is the complexity associated with their
computation. Although the proof of convergence for the Groébner basis computation
exists, the number of symbolic operations is large and heavily depends on the term order
used. Nevertheless, the advancements made in the algorithms for Grobner basis
computation and their availability in symbolic computation softwares make investigating

the use of this method appealing.

* See the examples on pages 30-31 in [Cox, Little, O’Shea, 1998].
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Due to their complexity, the use of Grobner bases for kinematics is still limited
compared to resultants. However, one of the most important results in the direct
kinematics of Stewart/Gough robots was obtained by Lazard [Lazard, 1993] through the
use of Grobner basis calculation for proving that the general Stewart/Gough manipulator
has 40 solutions for its direct kinematics problem. Faugere and Lazard in [Faugere and
Lazard, 1995] considered the combinatorial classes of parallel robots and characterized
the number of solutions for each class. Recently, Dhingra and his collaborators, [Dhingra,
Almadi, Kholi, 2000] used a hybrid method based on the use of Grébner bases and
Sylvester resultants for closed-form position analysis of mechanisms. Their method
precedes the use of the Sylvester resultant by a step of Grébner basis calculation. They
showed that, by doing so, they obtain a rational method for constructing additional
equations used for the construction of Sylvester’s matrix, in which, a minimal number of

equations are produced and generally no extraneous roots are presented.

2.2.2 Symbolic-numerical methods

Symbolic-numerical methods usually start with symbolic computations to bound the
number of solutions to the problem and, instead of obtaining a closed-form expression to

the determinant of the resultant, they resort to numerical methods to find all solutions.

The generalized eigenvalues problem in polynomial system solving

One big drawback of resultant and dialytic symbolic methods is the final step of
computing the determinant of the resultant symbolically. This final step is very
expensive in memory and usually it is possible to perform only for small polynomial
problems. To avoid the computation of the determinant it is possible to use the
generalized eigenvalues procedure devised by [Golub and Van-Loan, 1983].

The main idea behind this method is to transform the polynomial equations to form an
associated generalized eigenvalues problem. If the resultant homogeneous equation,
obtained by either dialytic elimination or classical resultant equation, is written in the

form R(x)y =0, where x is the suppressed variable and y is the vector of power products

in the unsuppressed variables, then the formula of the corresponding generalized
eigenvalues problem is obtained by following two steps. The first step is decomposing the

resultant matrix R(x) into the form:
R(x)=>" Ax’ (22)

where n is the maximal degree of x in R(x) and Ai is its corresponding matrix of

coefficients. The second step is to formulate the generalized eigenvalues problem:
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Av = xBv (23)
In this formulation, A, B, and v are given by Eq. (24) [Nielsen and Roth, 1999-a]:

I 0 0 0 0 0 I 0 Xy
0 | 0 : 0 o I -0 ﬂ—2y
A=| 0 I 0 B=| : -« 0 I 0| v=| (24)
0 0 0 0 o - - 0 I :
An—l An_2 An_3 Ao _An 0 0 0 0 ).,

In this method, the eigenvalues are obtained as the values for the suppressed variable
x and the eigenvectors give all the values for the unsuppressed variables in y.

This method was successfully used for inverse kinematics of serial robots by
[Ghazvini, 1993] and by [Wampler, 2001] for the general solution of position analysis

problem of planar linkages.

2.2.3 Numerical methods

Homotopy Continuation methods

Although continuation methods are generally considered numerical methods, prior to
implementing the steps of numerical continuation, they employ crucial symbolic
manipulation steps for ensuring that the solver finds all solutions to a given polynomial
problem.

Given a polynomial system P(x), where x represents the vector of unknowns, the
continuation method is based on the following steps:

e The first step is obtaining a tight bound on the number of solutions to the problem,
including solutions at infinity. This can be obtained by using Bezout bound after
homogenizing the polynomial system. Multi-homogeneous Bezout numbers can help
tightening the bound for the number of solutions even further [Wampler, Morgan,
Sommese, 1990] and reduce the number of extraneous roots [Tsai, 1999]. After
obtaining a homogeneous form of the polynomial system and introducing a number
of new equations that equals the number of homogeneous variables, we call the
resulting polynomial system the target system and symbolize it by F(x).

e Once a bound for the number of solutions is obtained, a start system is formulated
such that it is easy to solve, 1.e., all its solutions are known and distinct, and the
system must have at least the same number of solutions as the target system that
we want to solve. This system is symbolized by G(x).

e A homotopy function that is well parameterized with respect to a parameter t is

formulated. For example, consider the commonly used homotopy in Eq. (25), where
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¢ 1s a randomly selected complex number that ensures that H 1is well
parameterized.
H(x, £)= (1 - )G(x)+ t F(x) (@25)
H(x, t) defines a parameterized path from the initial system to the target system.
Solving H(x,0) gives the solutions of G, while solving H(x,1) gives all solutions of F.
e Each solution of the initial system is used as an initial guess. Then, the homotopy
parameter t is incremented and a new perturbed system H(x, At) is solved. This
process is called path tracking using predictor-corrector method. Path tracking is
done for all paths of solution corresponding to all initial solutions of the start
system. The process terminates when t is incremented to its final value t=1 and the

resulting system is solved.

The origins of the above-outlined method of polynomial continuation stem from the
“bootstrap” method used by Roth and Freudenstein for synthesizing geared five-bar
mechanisms for nine-point path generation [Roth and Freudenstein, 1963-a]. Conditions
for the convergence to all solutions were also discussed in [Roth and Freudenstein, 1963-
b]. The continuation method was successfully used in numerous problems in kinematics,
among which we list the pioneer work of [Tsai and Morgan, 1985] for inverse kinematics
solution of general serial robots and the work of [Wampler, Morgan, Sommese, 1990] for
solving the spatial Brumester problem*. The method was also used by Raghavan [1993]
for investigating the maximal number of direct kinematics solutions of general
Stewart/Gough platforms. In this work 960 homotopy paths were tracked yielding 80
symmetric solutions, which showed that there are at most 40 solutions (although this
does not present a mathematically well established proof as in the work of Lazard [1993]
using Grobner bases).

The continuation method is fast and efficient, however, although it yields all solutions
to a problem when the initial system and homotopy function are well defined, this
method is still numeric. If we want to investigate a kinematic system and have some
insight about symmetry among solutions this method does not allow gaining such insight

due to its numerical nature.

Interval Analysis methods

* Body guidance by a platform connected to the ground via seven rigid links and spherical

joints.
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Interval analysis methods are relatively new methods for solving polynomial
equations with a guaranteed solution of all real solutions only (the method is insensitive
to complex solutions). The method is based on interval arithmetic presented in [Moore,
1979] and [Hansen, 1992]. The method was successfully implemented for the inverse
kinematics problem of the Puma 560 by [Castellet and Thomas, 1998] and for direct
kinematics of general Stewart/Gough robots by [Didrit, Petitot, Walter, 1999]. Merlet
[2001] presented a general solver for nonlinear equations and demonstrated its use for
trajectory verification of a Stewart/Gough platform robot.

This method is purely numerical and uses algorithmic search-and-bound strategy.
Although it yields all solutions to large polynomial systems, it does not allow some
insight regarding the symmetry and shape of solutions. Therefore this method is
considered best among all other methods provided that we are interested in only finding
all real solutions to a polynomial problem without need of investigating the shape of the
solutions and the symmetry relations among them. Unfortunately, this is seldom the
case for kinematical case studies.

Having surveyed all the aforementioned array of methods to solve polynomial systems
in kinematics, we would like focus the attention on the properties of using Grébner basis
computations. This will be possible only after the necessary background on this subject is

presented. The following sections present this background.

2.3 Linear equations as a special case of
polynomial systems: motivation

Linear algebra studies the solution methods of linear equations based on transforming
the initial system of equations into an equivalent set of equations that are easier to solve.
This process is well known as the Gaussian elimination algorithm. Linear systems
having a finite number of solutions can be transformed into an eigenvalues problem and
solved efficiently. Let P represent the linear mapping from R» to R» given as a set of

linear equations in the unknowns [x1...Xq]:

Pl(Xl---?(n) =b,
P:R" > R", x > P(x) : (26)
Pn(X;...X,)=b,
This linear mapping has a matrix representation given by:
Ax =b x,beR", AeR"™" 27

Using Gaussian elimination, this system can be transformed into a system of linear

equations with an upper triangular matrix U. The transformation is obtained by using
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basic row-column manipulations that represent a different set of equations than the
original ones, but are all linear combinations of the original equations:
Ux=c¢, x,ceR", AeR™" (28)
Solving for the unknowns is achieved by solving the last equation, in which all other
variables, except for xn, are eliminated, and then by using consecutive back-substitution.
Moreover, If the system has a finite number of solutions then the matrix representation
can be used to write a closed form equation for the solution given by:
A =MDM " = x=MD 'M'b (29)
where M represents a matrix having all the eigenvectors of A in its columns and D is a
diagonal matrix with the corresponding eigenvalues on its diagonal.
The reason that this review of linear algebra is presented here is to raise the following

question:

What is the connection between linear algebra and polynomial systems? Is there a way

to obtain an algorithm for solving polynomial systems by using eigenvalues?

This question was recently answered in a series of papers [Stetter, 1993, 1996; Moller,
1993, 1998] and [Moller and Stetter, 1995]. The aim of this chapter is to present the
material in a simplistic approach allowing non-mathematician engineers to understand
it and appreciate its advantages over more familiar methods such as symbolic sequential
elimination by resultants or numerical solution by homotopy continuation.

Before answering the above-listed questions Grébner bases have to be introduces, but,
before doing so, the following section reviews some necessary basic definitions from

abstract algebra and algebraic geometry.

2.4 Preliminary definitions form Abstract Algebra

This section presents some basic definitions, examples, and theorems that constitute

the background for Grobner bases and the method of eigenvalues, i.e., the SM method.

Definition Group
A group G is a set with a binary

({3

operation (a,b)—a-b, a neutral multiplication
element (called the unity element u), and fulfilling these two properties:

“»

e Multiplication “” is associative (a-b)-c=a-(b-c) V a,bceG.

o Every element, acG, has an inverse element, beG, such that b-a=u.

o

Definition Ring
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A ring R is a set with two associated binary operations (“+” and “.”) and a zero element
such that:
e R is Abelian with respect to addition, i.e., every pair of elements a,beR fulfill
a+b=b+a.
e Associativity of multiplication holds: (a-b)-c=a-(b-c) V a,bceR.

(a+b)c=a-c+b-c

vV a,b,ceR.
a-(b+c)=a-b+a-c

e Distribitive laws hold {
Definition Commutative ring with unity

A ring R having a neutral multiplication element (called the unity element u) and

commutative multiplication a-b=b-a for all a,beR.

Example 1  Polynomial ring
Using these definitions, one can observe that if K represents any field*, then the set of
polynomials with variables x1, x2...xn and coefficients from this field is a commutative

ring. This ring is designated by the symbol K[x,,...,x, |.

Definition Ideal

An ideal I over a ring R is a non-empty subset of R fulfilling:

e Iis closed under addition: (a+b)el V abel.

e Iis closed under inside-outside multiplication: (a-r)el V acl, reR

Definition  Finitely generated Ideal
I is a finitely generated ideal if it is defined by a finite number of generators ai...aneR

such that every element b of I fulfills:

I=<al...an>={b=2na-r | reR V lsisn}

190

where the notation < ai...an> reads as “the finitely generated ideal of ai...an”.

* For our uses for kinematics, K represents the complex domain C.
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Example 2  Polynomial ideal

If we consider C[x,y] then I: = <x+y, x-y> generates an ideal of C[x,y]. However, it is
easy to see that the same ideal is generated by Iz = <x, y> since every polynomial in I1
belongs to Iz and vise-versa.

The example shows that a basis of an ideal is not unique, unless some special ideal
basis i1s considered. This special basis is the reduced Grobner basis that will be
introduced in section 2.6. The existence of a finite basis for every polynomial ideal was

proven by Hilbert and is called the Hilbert basis theorem:

Theorem 1  Hilbert basis theorem

Every polynomial ideal 1 K[xl,..., X, ] has a finite generating set.

All rings fulfilling this theorem are called Notherian rings.

Definition Variety of a finitely generated ideal.
V(I) is defined as the solution set of the polynomial system associated with the ideal

generators f1,...fn of I=<fi,...fu> K[xl,..., X, ]

V()={aeK™ | fi=f=..f,=0]

Example 3

Consider the ideal of example 2, i.e., [1=<x+y, x-y>. The solution to the system of

equations associated with these generators is x=y M x=-y therefore {(0, 0)} is the variety
of this ideal. Consider now two other members of I1 given by p1 = x*(x+y) and ps =

xy(x - y) and their ideal Iz = <p1, p2>. The variety V(I2) is {(0, y)} and it includes V(I1).

Notice that by now we introduced the notation of a polynomial system, polynomial
1deal and variety of a polynomial ideal. The crucial fact is that every polynomial system
belongs to a finite ideal, to which, there is a corresponding variety. The big idea behind
Grobner bases is stated by the fact that a solution of a polynomial system is determined
by its ideal, not by the specific representation of the polynomials, 1.e., any manipulation
made on the original system for solving the system by elimination produces a system of
equations that belong to the original ideal. However, one should be careful since in doing
so, one can not simply use the resulting system as a basis for the same ideal since this
process can produce a larger set of solutions than the original variety of the original

system. These solutions are called extraneous solutions and are the main drawback of
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using dialytic elimination. This was demonstrated in example 3 and is also geometrically

demonstrated in example 4.

Example 4

Figure 17-a shows two polynomials p1, pe2 that represent a polynomial system in the
unknowns [x, y]. Figure 17-(b) represents the contours obtained by the intersection of the
manifolds of p: and p2 with z=0. The intersection points between these two contours
represent the points of the corresponding variety. The figure shows that there are four
points in V(p1, p2). Figure 17-(c) presents the two manifolds of two members, ps and p4, of
<p1, p2> and figure 17-(d) represents the contours for their intersection with z=0. The
intersection points of these contours represent the variety of <ps, ps>. The figure shows
that V(p1, p2) contains four points while V(ps, p4) has eight points — four of which are the
original points of V(p1, p2).

This example suggests that, as we defined a variety of an ideal V(I), there is a reverse

direction, in which , the ideal of a variety I(V) is defined.

Definition  Ideal of a variety
Given an affine variety Vz{a | aeKn} the symbol I(V) defines the ideal of all

polynomials vanishing on all points of V.

In example 4 the ideal <pi, p2> defined a variety V(<pi, pz>) constituted of the four
points in R* shown in figure 17-b. The polynomials p,,p,€<p,,p, > vanish on the points
of V(p1, p2) therefore they belong to I(V(<p1, pz>)). Moreover, I(V(<p1, p2>)) is a larger set
than < p1, p2>, 1.e., <p1, p2> < I(V(<p1, p2>)).

The method for determining whether a given polynomial f belongs to an ideal
I=< p1, ..., pr> 1s checking whether f can be written as a polynomial combination of the
generators p1, ..., pn: f = Z?zlaipi | a,eK[x,,...,x,]. This can be done through sequential
division of f by the generators of I (also called reduction of f with respect to I). If the
reminder after this sequence of divisions is zero, then fel, if not then one can not deduce
that fgl - as will be shown in example 9. Before presenting this example, the definition of

a division algorithm and term orders is presented in the following section.
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Figure 17. Simply taking two members of the ideal I=<pi, p2> does not maintain
the size of V(I). Initial polynomial system (a). Four points of V(I) (b). Two

polynomials of I (c). The corresponding variety for <ps, ps+> (d).
2.5 Division algorithm

Definition Leading term, leading power product, and leading coefficient
Let a polynomial feK][xi, ..., Xn] be written as f = Z?zlaixdi | a; e K where the symbol

x%is represents the product x4 = H?zlxjdi, d=[d,,d,,...d,]. The products alixdi ,1=1...n,

are called the terms of f, x% are called the monomials (power products) of f, and a; are
called the coefficients of f. The leading term It(f), leading coefficient lc(f) and leading
monomial lm(f), are the largest elements in their corresponding sets, according to a

predefined admissible term order.
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Definition Total degree of a polynomial
Let p be a polynomial in K[xi, ..., xa]. The total degree of p is the largest sum of powers

associated with the corresponding monomials set.

Example 5

Consider the polynomial p=3xy” +5bx’yz+6x’y* +5z° in K[x, y, z]. The non-ordered

monomials set of p is given by {xyz,x3yz, xzyz,zs} and the set of coefficients is

{3, 5b, 6,5 } The total degree of p is 5.

Definition Term order (monomial order)

A term order > on K][xi, ..., Xa] 1s any relation on the set of monomials in K[xi, ..., Xq]
that satisfies the following conditions:

e >1is a total ordering, i.e., p=1 for all peK]xi, ..., Xa].

o If pi>p2 then psp1>psp: for all p1, p2, ps € K[x1, ..., Xx].

o Every set of monomials in K[x1, ..., xn] has a unique smallest element under >.

There are many admissible term orders that can be defined; however, it is worth

mentioning three commonly used term orders:

Definition  Lexicographical term order (lex)
A lexicographical term order orders the monomials according to the lexical order as in

the dictionary. This order fulfills:

€y
n

d d d . . .
o XX, x> x,"%x, --x, " if in the difference vector (d-e), between the ordered

vectors of powers d=[d1,d2,...dn]T and e=[e1,ez,...en]T, the uppermost nonzero

element is positive.

Definition Reverse-lexicographical term order (revlex)
A reverse lexicographical term order orders the monomials reversed to the lexical
order in the dictionary. This order fulfills:

diy dp

d P .
o X, 7%, x> x,1x,7 --x, ™ if in the difference vector (d-e), between the ordered

vectors of powers d=[d,,d,,...d,]" and e=[e,,e,,...e,]", the bottommost nonzero

element is negative.

Definition Total degree term order
The largest monomial among a set of monomials, according to total degree order, is

the one with the largest total degree. If two monomials have the same total degree then
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they are ordered according to a second criterion. This criterion may be lexicographic or
reverse lexicographic order. In the case of lexicographic order, the term order is called
Degree-Lexicographic order (DeglLex). In the case of reverse lexicographic order, the term

order is called Degree-Reverse-Lexicographic order (DegRevLex).

Example 6

The monomials set L= {xyz, x’yz, x’y?, z° } is ordered in the following ways according

to the different term orders:

o Lex [x>y>z]: {x3yz >x’y? >xy’ >7° }
o Deglex [x>y>z]: {x3yz >z’ >x*y? > xyz}
e DegRevLex [x>y>z]: {x3yz >z’ >x*y? > xyz}

Although usually the leading term is different from one ordering to another, in this

example it is given by It(L)= x’yz.

Example 7
Consider the three monomials x’z*, x’y?z?, and xy*z. According to DegLex

x’y*z*>x’z* >xy*z while according to DegRevLex xy'z>xy*z’>x%z*.

Using one of the above-defined terms orders one can define a division algorithm of a
polynomial by another or division by a given set of polynomials G=[gu, ..., gu].

Consider the two polynomials f, geK][xi, ..., xn]. We say that g divides f if f can be
written as f=qg+h and indicate that by the symbol f, >h. To perform single-step

division, first the two polynomials are re-arranged such that their monomaials follow the
rules of the term orders. The process of division is based on dividing the power products
of f by 1t(g). Let X be the largest power product that divides by 1t(g), the reminder, h, of
this single-step division is given by: h=f —(X/ lt(g))g. This is demonstrated in the

following example from [Adams and Loustaunau, 1994].

Example 8
Consider f=6x2y-x+4y3-1 and g=2xy+y?, table 2 below presents the division f, —>h for

Lex(x>y) order and for DegLex(x>y):
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Table 2 division of f by g from example 8 for Lex and DeglLex ordering

DegLex(x>y) Lex(x>y)
4 3x
y3+2xy | 6x%y+4y3-x-1 2xy+y3 | 6x%y-x+4y3 -1
4y3+8xy 6x2y+3xy3
6x2y-8xy-x-1 -X-3xy3+4y3-1
Note: X=4y? It(g)=y? X=6x%y lt(g)=2xy

If the process of single-step division is repeatable after the first division, one can
continue and divide h by g until no power product of h is divisible by 1t(g). This process is
called the reduction of f modulo g and symbolized by f, —, h. The output, h, of the

reduction f, —, h is also called the normal form of f with respect to g and indicated by

N(f,g).

It is also possible to define the division of a polynomial f with respect to a set
G={g1, ..., gn}. In this process f is first divided by g: then the result is divided by g2 and so
on until this process repetition is not possible since the reminder has no term X divisible
by lt(gi), i€l...n, or it is zero. This process is symbolized by the symbol f; —, h where it
is understood that G is a set of polynomials and h is called the normal form of f with

respect to G and symbolized by h=N(f,G). If f does is not divisible by any of the

elements of G then it is said that f is reduced with respect to G.

Example 9

The following example divides f=x2y2-2y with by G=[gi, g2] where gi=xy%-x and
go=x2-2y according to Lex(x>y) order. The division is shown in table 3 for the case where f
is first divided by g1 and then the result is divided by g2 and the second case where f is
first divided by go.
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Table 3 Two reductions of f by G from example 9.

X 1
=xy?-x | x2y2-2 go=x2-2y | x2-2y :
g1=Xy y=-ay 4 —> f=xgitgs ,ie., , =, 0
X2y2-X2 X2-2y {g1.82} +
x2-2y 0
y2
go=x2-2y | x2y2-2y 1t(2y3-2y) does
K2v2-0v3 —> y. .Y) = flg 0 2+ 2y’ -2y
y=-4ay not divide 1t(g1)
2y3-2y

Example 9 shows that f belongs to the ideal of <gi,g2> since f=xgi+g2. However, if we

divide f by G by first dividing by g2 we have a different result that f (gre) O+ 2y° =2y #0.

This happens since g1 and gz do not have the lowest possible degrees for their leading
terms among other possible generating sets for the same monomial ideal. Therefore, to
determine whether a polynomial belongs to an ideal, it is not enough just to reduce it
with respect to the ideal generating set, but we should find another generating set whose
elements have the lowest possible degrees for their leading terms. This special basis is

the Grobner basis.

2.6 Grobner bases

Definition Grobner basis
A Grobner basis for an ideal IcK[x1, ..., Xn] is a subset G={g1, ...., gn}cl such that there
1s no polynomial, fel, f#0, that is reduced with respect to any of its elements, i.e, 1t(gi)

divides It(f) for all 1€[1, 2, ..., n].

This definition is equivalent to writing that the ideal of leading terms of every ideal I
1s the same as the ideal of leading terms of its Grobner basis generators gi, i=1..n, l.e.,
<lt(gy), 1t(g2), ...,1t(gn)> =<1t(I)>.

The definition of Grobner basis does not say how to compute it. The basic algorithm
for finding Groébner bases was devised by Buchberger [1965] and is presented here, but

first, the following definitions are needed.
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Definition  Least Common Multiple (lcm)
The least common multiple of Im(f), Im(g)eK][x1, ..., Xn] 1s defined as monomial h that
is divisible by both f and g and any other common multiple of f and g. This least common

multiple is indicated by LCM(Im(f), Im(g)).

d ---xnd“ and

Let the leading monomials Im(f) and lm(g) be given by lm(f):x1d1x2
Im(g)=x,"x,---x,> then the least common multiple is given by

LCM(Im(f),Im(g)) = x1h1x2h2 ---xnh“ such that h; =max(d;,e;) V 1<i<n.

Example 10

The least common multiple of x2y3z and x3yz?2 is x3y3z2.

Definition S-polynomial
Let f,geK[x1, ..., Xa], f, g#0. The corresponding S-polynomial is defined by:

LCM(Im(f),Im(g)) o LCM(Im(f),lm(g))
1t(f) 1t(g)

S(f.g) =

This definition produces a polynomial that belongs to <f, g>, and, more importantly,
accounts for problematic cases where a given polynomial qe<p,...,p, >= Z:in:lhipi ,

h; e K[x,,....x, ] , has a low degree of its leading term because of possible cancellation

occurrence among the leading terms of zin:lhipi. In this case it is possible that the

cancellation results in a problematic case where q is not divisible by any of the leading
terms of the ideal generators. This is what happened in example 9. Algorithm 1 presents
a method for producing a Grébner basis accounts for all these problematic cases.
Algorithm 1 produces a Grébner basis G={g1, ..., gs} for the ideal of F, for some seN,
which i1s not unique since it usually has more generators than the minimal number. This
happens because of the random arrangement of the polynomials in G during the
initialization and because the order of selecting the polynomials pairs from G also
depends on the initialization. To obtain a unique Groébner basis is necessary to obtain a

reduced Gréobner basis that fulfills the following definition.
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Algorithm 1. Buchberger’s algorithm for Grébner basis construction

Input: F = a finite subset of polynomials in K[x1, ..., Xu]
Output: G= a Grobner basis such that <G>=<F>
Initialization: G:=F

B:={{g1, g2} | g1, g2€@, g1#g2}= the set of all possible pairs in G

Loop:
While B do
Pick {g1, g2} from B
B:=B\{{ g1, g2}} (B gets the value of previous B excluding {g1, g2})
h:=S(g1, g2) (compute the S-polynomial of g1 and g2)
Compute the normal form hg —, r
If r#0 then
B:=Bu{{g,r} | geG} (add to G all constructible pairs with r)
G:=Guir}
End
End
Output: Output=G

Definition Reduced Grobner basis
A Grobner basis G=[g1, ..., gs] is called a reduced Grébner basis if it fulfills:
o lc(gi)=1 for all i=1,2, ...,s.
e Every gi is reduced with respect to the set G\{gi} for all i=1,2,..s, 1ie.,

ZiGyg) O+ h#0 or, in another formulation, g; ¢<G\{g;}> V i=12,..,s.

Given a set of polynomials it is possible to determine whether it constitutes a (non-

reduced) Grobner basis according to the following theorem.

Theorem 2
Let G={g1, ..., gs} be a given set of polynomials in IcK[xi, ..., xa]. G 1s a Grébner basis

for I if and only if the normal form of all S-polynomials S(gi, gj), i#j€1,2, ..., s, is zero.

The reduced Grobner Basis has, in addition to its uniqueness property*, a number of

important characteristics given in the following theorem.

* See page 90 in [Cox, Little, O’Shea, 1997] for a proof of uniqueness
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Theorem 3

Let G be a reduced Grobner basis of IcK][xi, ..., xa]. The following statements are
fulfilled:

e G is unique.

e The normal form of feK[x1, ..., Xn] is unique for a fixed term order.

e The normal form of feK|[x1, ..., xn] with respect to G is zero if and only if fel.

These properties allow solving the problems of ideal membership (determining if a
given polynomial belongs to an ideal), elimination, and solvability determination for a
given polynomial system.

The ideal membership problem is readily solved once a Grébner basis, G, of a given
ideal is computed. The polynomial subject to the membership test belongs to the ideal if
and only if its normal form with respect to G is zero in accordance with the definition of
the Grobner basis.

Polynomial system solving by elimination is the equivalent to the Gaussian
elimination for systems of linear equations. Using lexicographic (lex) term order and
computing the Grobner basis for the system results always in a set of polynomials such

that are the generators to all elimination ideals.

Definition Elimination ideal
The mtt elimination ideal, Im, of a given ideal I=<py, ..., pn>cK][x1, ..., Xn] 1s the ideal of
K[xm+1, ..., Xn] that consists of all polynomials in I that have only the variables xm+1, ..., Xn,

e, I, =INnK[X 10X, ]-

Theorem 4  Elimination theorem
Let IeK][x1, ..., xu] be an ideal and G its Grébner basis with respect to lexicographic

term order x1>x2>....>xn. For every set G, =GnNK[x ,X,], where 0<m<n, Gn is

m+l1> .-

the Grobner basis for the mth elimination ideal.

Example 11

Consider the problem of finding the intersection between z=2x2-1, 4z2=2x2+3y?, and

z=-2x2-3y+1, figure 18. This problem is tantamount to solving the system in Eq. (30).

p1:2x2 —-z-1
p2=2x2 +3y? —4z° (30)
p3=2x2 +3y+z-1
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Figure 18. The geometric interpretation to the polynomial problem in example 11

Using the symbolic manipulation program Maple® to compute the corresponding

Grobner basis with lexicographic term order X>y>z results in
G=[-3z-3+ 822,27 + 3y, 2x2—z- 1]. Note that g1 has only z as a parameter, g2 has y and

z, and g3 has x and z, which allows for solving g: for z, and substituting the solutions in
gz and g3 to solve for the solutions of x and y.

Example 11 is a trivial one and easy to solve using lexicographic term order, however,
using this term order to compute the Grobner basis is expensive in computation time
[Boege, Gebauer, Kerdel, 1986; Faugere and Lazard, 1995; Cox, Little, O’Shea, 1998].
Total degree orderings are more efficient in time and memory consumption; therefore it
1s recommended to avoid the computation of Grobner basis using lex order. If a
lexicographic Grébner basis is required, it is possible to obtain it from another Grébner
basis computed using Deglex or DegRevlLex orders by using FGLM (Faugere, Gianni,
Lazard, Mora) algorithm [Faugere, et. al., 1993; Cox, Little, O’Shea, 1998] for Grébner
basis conversion.

Determination of solvability of a given system of polynomial equations can be easily
determined once a Grébner basis is obtained. We begin by the observation that if any
constant is an element in a Grobner basis, then the corresponding reduced Grébner basis
is {1} and, inevitably, the ideal of G is improper, i.e., I=K[xi1, ..., xn]. Based on Hilbert’s

weak zero point theorem (weak Nullstellensatz theorem®) the variety V(I) is an empty

* Although this theorem is formulated for algebraically closed extension fields, we limit the

discussion for the complex field C, which constitutes an algebraically closed field of R.
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set if and only if I=C[x1, ..., xo] where C indicates the complex domain. Hence the

following theorem is introduced.

Theorem 5  Solvability criterion
A polynomial system with an associated Grobner basis for any term order is

unsolvable on C if and only if its associated reduced Grobner basis is {1}.

Up to now, we introduced the concept of Grobner bases and discussed some of their
characteristics. The passage from Grobner bases to the SM eigenvalues method goes
through the use of quotient rings and their properties. This subject is introduced in the

following section.

2.7 Quotient rings and quotient ring algebra

This section explains the relationship between the concept of quotient rings and
Grobner bases. The section presents clear methods for answering the following questions:

e Is the system solvable? Can we deduce that from its Grébner basis?

¢ How many solutions there are to a polynomial system?

¢ What is the relation between reminders of polynomials modulo G and the number

of solutions?

These questions are answered through inspecting the structure of quotient rings — a
concept defined below.

Theorem 3 states an important characteristic of Grobner bases, namely, the
uniqueness of normal forms. The consequence of this property is a definition of a
mapping ¢ from K[xi, ..., Xu] to a ring of reminders called the quotient ring of K modulo
the ideal I and indicated by K[x1, ..., xn]/I.

Every polynomial f¢l has a unique normal form N(f,G) where G is the Grébner basis
for I. However the reverse correspondence is not unique, i.e., a normal form N(f,G)
represents the reductions of all polynomials heK]xi, ..., xa] modulo I such that h=f+w
where wel. This phenomenon defines residue classes also called equivalence classes or

cosets that fulfill the following definition.

Definition Residue class (coset) (equivalence class)
Let I be an ideal of the ring R. Every element acR has an associated residue class
(also called a coset or equivalence class). The residue class of a modulo I is the set

[a]=a+1={a+b | beI}.

(59)



Based on this definition, it is said that all polynomials in the coset of [f], where
feK][xi, ..., xu], are congruent. Congruence relation between two polynomials is given in

the following definition.

Definition Congruence relation modulo an ideal
Let p1 and p2 be polynomials in K][xi, ..., xn] and IcK][x1, ..., xa] 1s an ideal with a
Grobner basis G. The polynomial pe is said to be congruent to p1 modulo I if and only if

p1-p2el.

A consequence of this definition is that N(p1,G)=N(p2,G), i.e., [p1]=[pz]. This means
that all polynomials in a coset are congruent.

In the same way we defined cosets and polynomial rings, it is possible to consider a
wider mapping from K[x1, ..., Xa] to the ring of all cosets of elements in K[xi, ..., xa]. This

mapping defines a term called a quotient ring modulo an ideal 1.

Definition Quotient ring R/1
The totality of all cosets of all elements acR denoted by R/I is given by:
R/I={[a] | aeR}={a+] V aecR}

and it is called the quotient ring® of R modulo I.

The mapping defined by ¢: K[x1, ..., xa] >K[x1, ..., xn]/I constitutes a surjective (onto)
homomorphism, i.e., for every [f]eK[x1, ..., xn)/I there exists feK[xi, ..., xn], and the
following hold:

o (f*2)=0(H)+4(g).

o 0(2)=0(DHo(g).

e O(1x)=0(1q) where 1s is the unit element in K[xi, ..., Xxn] and 14 is the unit element in

Kl[xi, ..., xa]\L.

Additionally to the above mapping K[x1, ..., xa]/I has the structure of a vector space
based on the one to one correspondence between reminders and cosets and the reminder
arithmetic defined by the following rules for a,beK][xi, ..., xn] and ceK.

¢ N(ab,G)=N(N(a,G)N(b,G), G).

e N(atb,G)=N(a,G)+N(b,G).

e N(ca,G)=cN(a,G).

* See pp. 221 of [Cox, Little, O’'Shea, 1997] for a proof that K[x1, ..., xn]/I is a ring .
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This reminder arithmetic defines a corresponding coset arithmetic in K[x1, ..., xa]/I. Also
K[x1, ..., xn]/I 1s a ring, therefore, since it is both a ring and a vector space K[xi, ..., xu]/I 1s

called an algebra and denoted by A=K|x1, ..., xa]/L.

Definition Zero-dimensional ideal
Let I be an ideal IcK[x1, ..., Xa]. I 1s said to be a zero-dimensional ideal if the number

of points in V(I) is a finite.

The statement that A=K[xi, ..., xn]/I is an algebra means that it has a finite basis* and
that every reminder of any feK[xi, ..., xa] 1s a combination of the reminders
corresponding to the cosets of the basis of A. This can be formulated in the following

theorem.

Definition  Ideal of leading monomials
Let I be an ideal of K[x1, ..., Xn] and a set L be the set of all leading monomials of its

Grobner basis G. The ideal of leading monomials is a finitely generated ideal with L as

its basis.
Theorem 6

Let IcK][x1, ..., Xno] be a zero-dimensional ideal and K][xi, ..., xn]/I its corresponding
quotient ring and G its Grobner basis. The quotient ring K[xi, ..., xa]/I is a finite vector

space with a finite basis B={b1, ..., bs} such that for every feK][xi, ..., xau] the following
holds:

e All b, 1=1...s, are independent, i.e, N(b;,G) =b;.

e All bido not belong to the ideal of leading monomials of I, i.e., b; ¢<1t(I)>.

e All reminders corresponding to cosets in K[xi, ..., xa]/I are combinations of the basis

elements B such that:
N(f,G) = Ziszlcibi | c;eK,b;eB V feK[x,..x,].
writing the same thing in congruence terms:

£=3" c¢bymod 1 | ¢;eK,bjeB V feK[X),..x,]

—1-ivi
The basis B 1s a called a monomial basis with bi called standard monomials for

K[x1, ..., xa)/L.

* We limit the discussion here for zero dimensional ideals, therefore A is a finite algebra
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Theorem 6 presents a method for obtaining the monomial basis, B, for K[x1, ..., xa]/I.
For a given polynomial system we can compute its corresponding Grébner basis and find
the ideal of leading terms. All monomials in B={bi, ..., bs} are not in <lt(I)> so each
variable xi, i=1...s, must have a degree lower than its maximal degree in <It(I)>. This
defines a set of monomaials, D, that contains B. Finding the elements of B from this set is

done by finding all elements that are equal to their normal forms.

Example 12

The Groébner basis for example 11 was obtained for lex(x>y>z) term order as:
G=[-3z-3+ 822, 27 + 3y, 2x% —z— 1]. The set D is defined as all the monomials not in
<Ilm(I)>=< z2, y, x2 >, KEq. (31).

D={x%y%z% | 0<d, <maxdeg(x),0<d, <maxdeg(y),0<d; < maxdeg(z) (31)
therefore D={1, z, x, xz }. It is obvious that the monomial basis B always contains the
element 1* so we have to compute only the normal forms of z, x, and xz to determine B.
The resulting monomial basis is B=D={1, z, x, xz } .

The number of elements in B is always equal or bigger than the number of solutions to
the problem where equality holds for radical ideals. We will see in example 13 that for
this problem there are exactly four points as the number of elements in B.

Note also that all variables x, y, and z appear in the ideal of leading monomials. If one
of these variables does not appear in the ideal of leading monomials, then there is no
corresponding elimination ideal for that variable, thus the problem has an infinite
number of solutions.

The example also shows that the number of elements in <Im(I)> and in B is finite for a
problem with a zero-dimensional ideal.

All of the above observations satisfy the following finiteness theorem:

Theorem 7
Let I be an ideal and V(I) be its affine variety in C". For any fixed term order in
C[x1, ..., Xn] the following statements are equivalent:

e Iis zero dimensional, i.e., V(I) is a finite set.

e Each variable xi, i=1, ..., n, appears alone for some degree m; as an element of
<lm()>.
o The monomial basis for C[xi, ..., xu]/I is finite dimensional.

* Otherwise the ideal is improper.
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¢ The quotient ring K[x1, ..., xn]/I is finite dimensional.

Theorem 7 gives a powerful tool for determining the finiteness of an ideal. Simply by
computing the Grobner basis and extracting the generating set for it’s ideal of leading
terms, one can look for all variables in this ideal. If any of the variables does not appear
alone in a monomial in <lm(I)>, then the problem has an infinite number of solutions.

The following theorem allows gives an upper bound for the number of solutions of a

polynomaial system.

Theorem 8

Let P represent a polynomial system in C[xi, ..., xn] and G represent its Grobner basis
for some fixed term order. Let B be the monomial basis of the quotient ring C[xu, ..., xn]/IL.
The following must hold:

e The number of points in V(I) is smaller or equal to the number of elements in B.

Equality holds if I is a radical ideal, i.e. if f™ €1 for any integer m>1 then fel.

These theorems answer the questions raised at the beginning of this section. Also,
until now we saw that a mapping exists from K[xi, ..., xa] to K[x1, ..., xa]/I. However,
looking at the endomorphism K][xi, ..., xu]/I>K][x1, ..., xu]/I is the key for understanding
the relation between eigenvalues and polynomial system solving. The following is the

description of the SM eigenvalues method.

2.8 The eigenvalues method for polynomial system solving

(SM method)

The definition of a coset of a polynomial feK][xi, ..., xu] associates f with the coset of
all polynomials in K[xi, ..., xo] having the same normal form with respect to an ideal I.
We saw that the normal form of every polynomials f is always a combination of the

monomial basis B={b1, ..., bs} such that:

f EZLCibi mod I | c;eK,b;eB V feK[x,..x,] (32)
Consider now another polynomial heKJ[x1, ..., xu] and define the following mapping of
cosets:
¥ K[x1, ..., xa)/I = K[x1, ..., xa)/I, P(f]):=[h-f] (33)

This mapping constitutes an endomorphism and has a matrix representation. Recall the
monomial basis B for K[xi, ..., xu]/I and define for each polynomial feK[xi, ..., xa] a

multiplication table as given in the following definition.
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Definition Multiplication table

Let I be an ideal over K[xi, ..., Xa], G its Grobner basis, and b = [bl,...,bs] T be a vector

of monomial basis elements of its quotient ring K[xi, ..., xn]/I. Every polynomial
feK[xu, ..., xn] has an associated multiplication table M; such that:

From the above definition it is possible to write the normal form N(fb;, G) as a
combination of the basis elements B:

N(fb;,G)=2" c;b (35)

Equation (35) defines the it" column of M as the vector of coefficients ¢=[c,,...,c,] .
The key point behind the method of Stetter is Eq. (34), which implies the following:
fb-Mbel (36)
Therefore, for all the points a of V(I), all polynomials in I vanish; hence we can write:
fb-Mb=0 V aeV(D) (37)
and this defines the eigenvalues problem:
(M; -fI)b=0 (38)

Equation (38) is the basis for the following theorem.

Theorem 9

Let IcK]|xi1, ..., xa] be a zero-dimensional ideal. Let feC[xi1, ..., xn] and M its
corresponding multiplication table in K[xi, ..., xa]/I. The following hold:

o The eigenvalues of Mr are the values of f on all points of V(I).

e If f=xi, then the minimal polynomial of Mr is a unique monic generator of the

elimination ideal InC[xi].

Theorem 9 defines the primitive form for the method of Stetter. According to this
method if one wants to solve a polynomial system in C[xi, ..., Xn] one has to compute all
multiplication tables Mr where f=xi, 1=1,2,...n, and find all their eigenvalues. Then by
substituting in the polynomial system it is possible to find all solution vectors in V(I).
This process is carried out in the following example for solving the polynomial problem in

example 12.

Example 13

The monomial basis of example 12 was obtained as B=={1, z, x, xz }. Computing the

multiplication tables Mx, My, and M. results in:
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0o o0 L
2
Mx=001
2

1 0 0
0 1 0

3 0
16 -2
I ovo=| 3
16 Y 0
0
0

. 0

— 0 0

4

-1 0 0

4

0 0 -1

0 -2 -1
3 4

The corresponding minimal polynomials for these matrices are:

=———X"+X

1 19 ,

Px=4 16

4 py =

L S
6 477

The solutions to these minimal polynomials are:

Solutions for x:

Solutions for y:

Solutions for z:

S SEE TR DETE MR M N WS M I e I M}

1 1
L=
8 24

0>

8

p 2

M,=| 8
0 0

0 0
=————z+z

P =3 g

4 105, —é—z—tlw/ 105

3 1 3 1
E-FE«/IOS,R—RMIOS

These solutions give the distinct eigenvalues of Mx, My, and M..

The corresponding four solutions of the system are given by table 4:

2

P WwWH|w O

Table 4

All four solutions of example 13

-.9560163239
9560163239
-.5230036219
5230036219

-.5519562821
-.5519562821
.3019562821
.3019562821

.8279344231
8279344231
-.4529344231
-.4529344231

(39)

(40)

(41)

(42)

(43)

The above example, although simple, shows the advantages of the eigenvalues method

over standard sequential elimination by resultants mentioned in [Roth, 1993; Raghavan

and Roth 1995; Nielsen and Roth 1999-a]. These advantages are listed here:

¢ In this method the numerical computation is kept to a minimum by using it only for

eigenvalues computation. Note that in example 13 the multiplication tables were

obtained exactly in rational numbers.

e Unlike sequential elimination, the solution of each variable x;is independent of the

other variables xj and, thus, it is unaffected by computation errors in x;j.
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e By using Grobner bases the solvability of the system of polynomial equations is
readily determined.

e The method allows using more efficient term orders than the lexicographic term
order (such as total degree order).

e By constructing the monomial basis usually a tight bound for the number of
solutions is obtained based on theorem 8.

Although the method of eigenvalues has all these advantages it suffers from one main

disadvantage:

e The method is prone to producing ill-conditioned multiplication tables if
lexicographic order is used. Using DegRevLex order usually eliminates this
problem and speeds up the computation of the Grobner basis [Stetter, 1993].

Example 13 is a simple one, therefore we used in it the direct approach of determining

the minimal polynomials. For large problems, this is a very heavy computational burden
and computing the eigenvalues by numerically stable methods (such as the commonly
known QR decomposition [Golub and Van Loan, 1983] is a better alternative.

It is possible to reduce the required number of multiplication tables for computing the

solutions of a polynomial system in C[xi, ..., Xa] to one multiplication table. This can be
done by defining a polynomial f :Z?zlaixi and computing its multiplication table M:

where { ai } represent a random set of numbers. The polynomial f has to have distinct
values over the points of V(I) for this method to succeed. Also it is necessary to transform
the ideal into a radical ideal. Once this is done then the solution points in V(I) are given
by the right eigenvectors of M: by normalizing each element in the eigenvectors by a set
of corresponding elements. Full details of this method are described in [Cox, Little,
O’Shea, 1998]. This method is not described here since it was not used in our works in
[Simaan and Shoam, 2002-b and 2002-c] for these reasons:

e The shortened method requires the computation of a radical ideal, which is a heavy
task by itself.

e The shortened method has numerical problems due to normalizations of the
eligenvectors.

e The solution algorithm of this method differentiates between roots with single
multiplicity and roots with multiplicities bigger than one. This presents a difficulty
in standardizing the code for general problems.

The above listed advantages and disadvantages of the eigenvalues problem led us to

choose a combination of the simplified eigenvalues method (the non-shortened method)

with resultants. This allows reducing the number of multiplication tables required and

(66)



does not introduce all the disadvantages of the shortened method, see [Simaan and

Shoham, 2002-b and 2002-c].

2.9 Conclusion

In this chapter we introduced the method of multiplication table eigenvalues (SM
method) for solving polynomial systems. In our works [Simaan and Shoham, 2002-b and
2002-c] we were interested in answering the following questions regarding the problem of
stiffness synthesis with a limited set of variable geometry parameters.

e Given a set of variable geometry parameters, can we characterize the space of
solvable stiffness synthesis problems? Can we prove that certain problems are not
solvable using the given set?

e Once solvability is determined for a given stiffness synthesis problem, can we
determine the number of solutions?

e What about symmetries among all solutions?

All these questions and the size of the polynomial problems associated with the
stiffness synthesis of the Double planar robot in [Simaan and Shoham, 2002-c] guided
our decision to select the method of multiplication table eigenvalues for the problem in a
modification of its simple form, which allows reducing the number of multiplication
tables to be computed and incorporating the use of resultants without introducing

extraneous roots.
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Chapter 3

3. Findings and Publications

This chapter presents all publications relevant to this work. The publications are
included in the format of their publication and each one has its own list of references.
These contributions describe the advancements of the work in the study of stiffness
synthesis, stiffness modulation, line-based singularity analysis, and its application to
stiffness modulation. All these works present our collective view of the subjects
concerning the design and synthesis of redundant parallel robots and variable geometry

paprallel robots.

The following is the listing of the publications. They are included in this chapter in the

order of their chronological publication.

e Simaan, N., and Shoham, M., 2000-b, "Remarks on Hidden Lines in Parallel
Robots," the 7th International Symposium on Advances in Robot Kinematics (ARK
2000), Piran-Portoroz, Slovenia, June 26-30*.

¢ Simaan, N., and Shoham, M., 2001, "Singularity Analysis of a Class of Composite
Serial In-Parallel Robots," IEEE transactions on Robotics and Automation, Vol. 17,
No. 3, pp. 301-311.

¢ Simaan, N., and Shoham M., 2002-a. “Geometric Interpretation of the Derivatives
of Parallel Robot's Jacobian Matrix with Application to Stiffness Control" accepted
for publication in ASME Journal of Mechanical Design.

e Simaan, N., and Shoham M., 2002-b. “Stiffness Synthesis of a Variable Geometry
Planar Robot,” Advances in Robot Kinematics: Theory and Applications, Lenarcic J.
and Thomas F. (eds.), Kluwer Academic Publishers, pp. 463-472.

e Simaan, N., and Shoham M., 2002-c. “Stiffness Synthesis of a Variable Geometry
Six degrees--of-freedom Parallel Robot,” submitted to Int. J. of Robotics Research.

* Conference presentation
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N. Simaan and M. Shoham
Robotics Laboratory
Department of Mechanical Engineering
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Abstract

This paper investigates the properties of the derivatives of the Jacobian matrices of fully-
parallel manipulators with respect to the moving platform’s position/orientation coordinates
from a geometrical point of view. A special formulation of the Jacobian matrix that simplifies
the sought derivatives and their geometric interpretation is presented. Similar to the Jacobian
matrix, its derivatives are proven to represent also a group of lines and the geometrical
interrelations between these two groups of lines are presented. Finally, the contribution of this
derivative and its explanation as a group of lines for active stiffness control is presented in a

case study of a 7-wire robot.

1. Introduction

Line geometry has been applied by several researchers to the kinematics and statics of
parallel manipulators (Merlet, 1989; Colling and Long, 1995; Ben Horin, 1997; Simaan,
1999; Pottman, Peternell, and Ravani, 1999). Line geometry is used because the rows of the
Jacobian matrix in a linearly actuated fully-parallel manipulator are the Pliicker line
coordinates of the axes of its extensible links (Hunt, Samuel, and McAree, 1991). Hence,
linear dependence of these lines determines the conditions for instability and singularity of a
parallel manipulator as Dandurand has shown in the context of stability of spatial grids
(Dandurand, 1984).

The present paper analyses the derivatives of the Jacobian matrix with respect to the six
position variables of the moving platform and seeks their geometrical interpretation. The
derivative of the Jacobian matrix is important in rigidity analysis (Yi, Freeman, and Tesar
1989; Kock and Schumacher, 1998), dynamic manipulability analysis (Yoshikawa, 1990), and

force-controlled compliant motions (Dutr¢, Bruyninckx, and Schutter, 1997).
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In contrast to the numerous investigations devoted to the formulation of parallel
manipulators’ Jacobian matrix e.g., (Cleary and Uebel, 1994; Simaan, Glozman, and Shoham,
1998; Tsai, 1998), there are only a few studies addressing the formulation of its derivative.
Dutr¢, et al., (1997) addressed this problem and obtained a closed form analytic expression of
the inverse Jacobian matrix derivative with respect to time and with respect to the joint active
variables. Merlet and Gosselin (1991) formulated the time derivative of the Jacobian of a fully
manipulator for use in acceleration analysis.

The present work investigates the geometric interpretation of the derivatives of the direct
Jacobian matrix with respect to the position/orientation variables of the moving platform, and
evaluates its contribution to the manipulator’s rigidity.

Duffy, in (Duffy, 1996) presented the infinitesimal motion and stiffness analysis of a
planar parallel manipulator and obtained a stiffness matrix of the manipulator with a
preloaded spring model. He showed that the part of the stiffness matrix that corresponds to the
preload effect is a product of two matrices having line-coordinates in their columns. To the
best of the authors’ knowledge, there are no prior studies that formulate the derivative of a
parallel manipulator’s Jacobian matrix as a separate group of lines — a fact that can be further
used for rigidity and compliant motion analysis.

2.0 Jacobian matrix formulation

Consider a general Stewart-Gough type parallel manipulator

fenv’menv
subject to a wrench Fey = [fo,' , me']" applied by the é /

®

environment, Fig. 1. Let X denote the end effector twist and q

the corresponding active joints’ rates. = The commonly used
expression of the Jacobian matrix is:

q=Jx, (1)
Figure 1: Typical Stewart-
which is the inverse of that of serial manipulators’ x =Jq . Gough
In this paper we use Eq. (1) to map the end effector twist, X, Manipulator

to active joint rates, . The Jacobian matrix is also used to relate the required active joints’
forces for a desired external wrench F. = [f.', m.]' to be exerted on the environment
(Fe=-Feny).

J't=F, )
Using the loop closure method (Ma and Angeles, 1992), or the static equilibrium method
(Cleary and Uebel, 1994; Simaan, Glozman, and Shoham, 1998; Simaan, 1999), along with
Egs. (1) and (2), respectively, yields the commonly used formulation of the Jacobian matrix.
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(A R u; x I
J= i 3)
I "Ryugx1g
where ii denotes a unit vector of the ith active prismatic joint pointing from its spherical joint

at the base to its spherical joint at the moving platform. We denote the platform-attached and

the base-attached coordinate systems by the letters P and W, respectively (Fig. 1).
Accordingly,WRp is the rotation matrix transforming vectors from P to W, and wu; is the

position vector of the ith spherical joint in P.

In order to interpret the Jacobian matrix as lines, the following basic definitions of line
geometry are reviewed. A given sextuplet of numbers [lx, lvy, Lz lmx, Imy, Imz] represents a
line in space only when it belongs to a five-dimensional quadratic manifold called the
Grassmannian (Merlet, 1989; Pellegrini, 1997), the Pliicker hypersurface (Graustein 1930,
Sommerville, 1934) or Klein quadric (Pottman, Peternell, and Ravani, 1999; Pellegrini, 1997)
or in other words it fulfils Eq. (4).

Lux I + Ly Iy + Lz I, = 0 4)
Observing Eq. (3), it is clear that the rows of the Jacobian are the Pliicker ray coordinates of
lines along the prismatic actuators. This physical interpretation is correct in a coordinate

system having its origin located at the center of the moving platform. In this representation

each row of the Jacobian matrix is a function of “Ryu; and the direction numbers of 1;, which

-,

env o mCllV

are both functions of the moving platform position.

3. Interpretation of the Jacobian matrix’s lines in the Tiiif[ \ é:

stationary versus the moving platform coordinate

system -7 ii&/ P
Consider another representation of the Jacobian matrix in 1 ')
the form: bi
s
Jpy't=F, (5) =M+ Pxfony

2: Static equilibrium
on base and moving
base rather than the moving platform on the environment platform

where Fb=[fbt, mbt]t represents the wrench exerted by the
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(see Fig 2). By using simple statics equations and representing Fy, by F. one obtains:

At =BF, (6)
. - 1 I 0

where: A= llA lf’A B= @)
blxll"'b6xl6 [px] I

I — 3%3 unit matrix
b; — position vector of the spherical joint of the ith prismatic actuator at the base in W
coordinate system.

[px] — skew-symmetric matrix representing vector multiplication.

0 -p, py
[px]=| p, 0 -p, ®)
_py Px 0
Egs. (5) and (7) yield: J'=B7'A 9)
-1 - . —1 I 0
Where B~ is given by: B = (10)
[-px] 1

Contrary to “R_u;, which is a varying vector in W, the vector b; is constant in W. This

simplifies the expression of the derivative of J'. It should be mentioned that the change
suggested above is not a change of coordinate system from tool to world coordinate system,
which clearly does not affect the derivation, but it is a change of the point about which the
moments of the lines are calculated. In this formulation, the lines of A are fixed in W and
therefore their derivative is easily shown to be lines as will be shown later.

The  physical interpretation  of

multiplying a Pliicker line’s coordinates

by the matrix B! is a translation the line
while maintaining its direction. Figure 3
shows a 6-6 Stewart-Gough platform o2

manipulator with the lines of the Jacobian 0154

0.1+

in W. Another important feature of B! is
0.05

that its determinant is equal to 1, which

means that the above multiplication does o

not add to the singularities of J.

Figure 3: Lines of the Jacobian in W
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4.0 Formulation of the derivative of the Jacobian matrix

The derivatives of J' with respect to the moving platform’s position variables is obtained

t -1
from Eq. (10) as: o _dB ,,pda (11)
dx X dx

t -1
The matrices (Li , dl; , (jl—A are three-dimensional 6x6x6 matrices for non-redundant six
X X X

degrees-of-freedom manipulators. The ith plane of these matrices is their derivative with
respect to the ith position/orientation coordinate, x;, of the moving platform.
The multiplication in Eq. (11) is performed plane by plane, i.e., for obtaining the derivative

of J' with respect to the ith position/orientation variable one should multiply the ith plane of

-1
dl; with A and multiply B” with the ith plane of ‘;—A .
X X

The derivative of B™! is simple and yields a matrix whose structure is similar to B! so

the first expression on the right hand side of Eq. (11) yields a matrix whose columns are the

-1
translated lines of A under the transformation

. If the derivative dA yields a matrix
dx dx

-1

. ) 1 dA . .
whose columns are also lines and the translated lines B~ d_ intersect the lines of A,

b ¢ dx
then the derivative of J is also a matrix with lines as its columns. This is true since any linear

combination of two given intersecting lines spans a flat pencil of lines (Graustein, 1930).

4.1 derivative of the matrix A
The matrix A in Eq. (8) is composed of the lines along the robot’s prismatic joints. Each

unit vector along these lines is characterized by its direction cosines a;, i, and v;:
i; =[cos(0), cos(B;), cos(y;)]' (12)

The matrix ((11_A is a three-dimensional 6x6x6 matrix with the ith plane being the derivative
X

of A with respect to the ith position/orientation coordinate of the moving platform, —
i

Since A has the lines I; as its columns, we are interested in finding the derivatives of these

lines.
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Using Eq. (7) while keeping in mind that the vectors b; are constant one can write:

6A o, oy (13)
6X 6Xi 6Xi
ol; 0l 0o ol op; Al Oy
where = +—Jﬂ+—J% (14)
aXi 6 6X GBJ aXi 6’YJ aXi
Define matrices J,,J pody such that:
_ 0oy, op oy
J =—0 J =—0 15
am,n 6X Bm,n 6Xn Ym,n 6Xn ( )
In order to write Eq. (14) in a matrix form, we define three matrices da , da ,and aa. :
da  dp dy
%_{ﬂ an} a_A_[ai %} a_A_[@L 6%} 16)
da | Oy dayy op | 9B MPn| O [0n OVn

We also define J ., J 44,4, as three diagonal matrices having on their main diagonals the

ith columns of J,, Jp, and J, respectively.
Using these definitions one can write Eq. (13) in matrix form as:

aA 6A d,+6—AJd,+6—AJd, (17)
6xi ~ Bo, e op P oy 7

The derivatives of the lines with respect to their variables (keeping in mind that b; is constant)

arc:
66 =[[-sin(@;) 0 0]b;x[-sin@;) 0 0] (18)
6B =[0 —sin@;) 0]b;x[0 —sin@;) O] (19)
2&:[[0 0 —sin@yp]bix[0 0 —sine;)]] (20)

It can be seen that Egs. (18-20) are also lines that intersect the lines of the matrix A at points
bi. Since only two independent variables are required to define the direction of a line in 3D

the following constraint equation exists:
cos(oci)2 + cos(Bi)2 + cos(yi)2 =1 (21)
O

Differentiating Eq. (21) with respect to x; and solving for — o yields:

i
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i

Oxj oSy

_ ~Co;Sq; Oa " —CpiSp; % (22)
Ox; ¢S, 0OXj

Where the abbreviations s, and ¢, stand for sin(a) and cos(a) respectively.

Substituting Eq. (22) in (14) yields:

- 1 0
_S(Xi
0 ~Sp;
Ctxisai CﬁiSB1
c. C,.

i _ T AT B S S (23)
ox . —s, OX | 0 OX
b; x 0 b, x| —sg.

CaiSa, Cg S
c. . Bi ®Bi
Y Cyi

The first and the second brackets in Eq. (23) are aaiand a—ll;, respectively. Both these

i i
brackets represent lines according to Eq. (4) and it is easy to see that both are perpendicular to

5 and ZB L are scalars. Consequently, the columns of oA in Eq. (13)
X . X .

j j Xj

a(li

Ii. The expressions

are lines that pass through the spherical joints in the points b; and belong to the flat pencils of
al; al;
6oci 6[31 .

Summarizing this section, we conclude that the lines of the derivative of A are

and

perpendicular to the lines of A and intersect them in the points b;, i.e., in the spherical joints at
the base platform. We use this fact next to show that the derivative of the Jacobian matrix is

also a group of lines.

4.2 Deriving J, Jg, and J,

Equations (17) and (15) give the expression for the
derivative of A as a function of three Jacobian matrices
Jo, Jp, and J,, This section derives the expressions of these
Jacobians. Figure 4 depicts a fully-parallel robot with six
independent closed loops. Each loop is governed by the
p+"Ryu; =b; +q;

loop equation: (24)

Figure 4: Kinematic closed loops
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Taking the time derivative of Eq. (24) yields:
p—"Ryux" o =gl; +q;l; (25)
where q; represents the length of the ith prismatic joint, p the position of the moving platform

in W, and "®" the angular velocity of the moving platform in W. Rewriting the right-hand side

of Eq. (25) in terms of the vector of linear/angular velocities of the moving platform,
(1t

X =|: p' (me) :| , yields: p-"Ryux" of = [I ,[— (W Rpui)x]])k =M;x (26)

Expression qiii in Eq. (25) is expressed in terms of X by using the velocity relation q =Jx

with reference to the ith row of J as J; and using Eq. (12) for ii :

cos(o;)J;
q 1 =| cos(B;)J; x=N;x (27)
cos(Y;i i |56
—sin(a;)ay
Substituting back into Eq. (25) yields:  q;| — sin(Bi)Bi =[Mi - Ni] X (28)
—sin(y;)7;

Solving Eq. (28) for its unknowns ¢ ,f;, and 7; yields:
. -1 . -1 .. -1 .
& = ———[M-N]J, |x, B =|———=[M-N], [x, #i=|—=M-N]; [x (29
q; sin(o;) q; sinB;) q; sin(y;)
Where [M;-Ni]; is the jth row of [Mi-Ni], j = 1, 2, 3. Equation (30) gives the ith rows of J,, Jg,

and J, as:

P L e R A e O N

This completes the formulation of the necessary terms in Eq. (17) and, thus, the derivative of
A is fully defined and proven to be a matrix whose columns are lines. These lines are
perpendicular to the lines of A and intersect them at the spherical joints at the base, b;. What

remains is to show that the sum of the terms in Eq. (11) gives a set of lines.

77



dB™! dA

4.3 Intersection of the lines of A and the lines of B! ——

dXi dXi
. dJ . oJ
Observing Eq. (11), one concludes that the last three planes of g 1.€. 6_ k=4,5,6, are
X Xk
. dA . 1
the translated lines of d_ under the transformation B™.
X
t
This can be written as o) _pg19A i=4,5,6. (31)
6Xi aXi
. oJ . . .
It remains to prove that the . fori=1, 2, 3 represent lines. In order to prove this, we must
Xi
0B~ 1 0A

A intersect the lines of B~

prove that the lines of

Ox.

0x; ;

i
The following proof relies on the condition of intersection between two given lines, 1 = [1;,
o, 13, 14, s, l¢]' and m = [m;, m,, ms, my, ms, mg]". This condition is given in Eq. (33) and has
the interpretation of the moment of a force acting along line 1 about line m (Hunt, 1978).
limy + Ibms + Ismg + lym; + lsmp + lgm; =0 (32)
This is proven symbolically using Maple® (a symbolic manipulation program) and also
verified numerically with a numerical and a graphical simulation using Matlab®.
The i column of A and the i row of J are given by Eq. (33). The i rows of J,, Jp, and J,
are given by Eq. (34) in the appendix.

Ji= [CUL!.’ Cﬁ; C'F!.’pz CFS!- -Py C,F!. +h €, - b, € Py CDLJ- +p, c},i + b!.z cmi - c,}},py cmi -7, CFS!- +5 i Booy ]

¥ z i x x 1 ¥ od (33)
Ai _ [ch.!_’ c|3!-’ C'F!.’ b!.y c,}} - b!.z c|3!.’ b!.z cm!l - bix C,F!., b!.x CFS!. - b{y cm!l]
-1
4.3.1 Formulation of A
dx
The derivatives of B™' are simple and can be written as:
- 0 0
oB~"!

=[o(xD (35)

aXi 6Xi
The last three derivatives of [px] with respect to the orientation angles of the moving platform

are three null matrices.
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-1
Let T1 be the three dimensional matrix

q A and T1k be the kth plane of this matrix, k
X

=1, ..., 6. The first three planes of T1 are given by:
T11! = [0 0 0 0 cos(y;) —cos(Bi)]t
T12!= [0 0 0 —cos(y;) O cos(OLi)]t (36)
T13' = [0 0 0 cos(B;) —cos(a;) 0]t

-1

The last three planes of A, ie. T14 T15 and T16, are 6x6 null matrices. The

dx

-1

superscript, i, indicates that Eq. (36) gives the expressions for the ith column of A,i=

dx

-1

1, ..., 6. The special form of T11, T12, and T13 shows that the lines of d A are lines at

dx

infinity since the first three Pliicker coordinates are zero (Hunt, 1978).

4.3.2 Formulating the expressions of B™ da

dx;

According to Egs. (17) and (10) we obtain the following expressions for the ith column of

B! 2—A . Let T2 be the three dimensional matrix B! c(il_A We refer to the kth plane of this
X X

matrix, B! 2}%{ , by the abbreviation T2k where k = 1, ..., 6. The expressions of T21 through
T26 are given in the appendix.

By substituting the expressions of the ith columns of T1k and T2k, k, i =1, ..., 6 in Eq.
(32) one can see that Eq. (32) is fulfilled. This means that the lines of T1 and the lines of T2
intersect each other. This completes the proof that the derivatives of J' with respect to position
variables are groups of lines. In total, we obtained 36 lines divided to six line-sextuplets with
each line-sextuplet representing the derivative of J' with respect to one position/orientation

variable of the moving platform.
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4.4 Simulation results
Numerical and graphical

simulations are given below

in order to visualize the

results. Figure 5 shows the 0.2
lines of the Jacobian matrix

with arrows indicating the "
direction of the internal forces 0.19
of the linear actuators. The 5|
dotted lines in Fig. 5 are the )
lines of the derivative of J' 0-‘%7

0.1

0.15

with respect to the x

Figure 5: The lines of the Jacobian and the lines of its

coordinate of the moving derivative with respect to x coordinate.

platform.

Numerical example:

The following are numerical results of a simulation of the Stewart-Gough 6—6 platform with a
moving platform and a base platform having radii of 0.05 and 0.09 m, respectively. The
moving platform is positioned at p =[-0.1 -0.02 0.16]" and rotated 30 degrees about the axis
[1, 1, 1] relative to the Cartesian coordinate system in Fig. 5. The inverse Jacobian matrix and

it derivatives with respect to x, and 0y, are given as example:

-0.5742 -0.6348 -0.2662 -0.1886 -0.6702 -0.5792
-0.3223 -0.2715 -0.0610 -0.3012 0.0799 0.3001
t 0.7526  0.7234 0.9620 0.9347 0.7379 0.7579
= 0.0154 0.0322 0.0245 -0.0441 -0.0349 0.0109
-0.0269 0.0070 0.0317 0.0196 0.0107 -0.0270
0.0002 0.0309 0.0088 -0.0026 -0.0328 0.0190
3.3431 24014 4.9488 5.8132 2.7368 3.4710
-0.9232 -0.6932 -0.0866 -0.3424 0.2661 0.9080
o\J') 21555 1.8473 13640 1.0626 24570 2.2932
ox =0.0440 0.0823 0.0348 -0.0501 -0.1161 0.0330
-0.1226  0.0976 0.1547 -0.0075 -0.0213 -0.1594
-0.1208 -0.0703 -0.1163 0.2719 0.1316 0.0131
- 0.1226 0.0976 0.1547 -0.0075 -0.0213 -0.1594
-0.0433  0.0076 0.0103 0.0355 -0.0043 0.0423
o\’ _ -0.1121 0.0885 0.0435 0.0099 -0.0189 -0.1386
00 -0.0169 0.0105 0.0032 0.0057 0.0005 0.0135
y 0.0373 -0.0272 -0.0252 0.0011 0.0059 0.0474
0.0041 -0.0092 -0.0054 0.0004 -0.0019 -0.0011
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It is easy to see, using Egs. (4) and (32), that the columns of J'and its derivatives intersect
each other and that the columns of the derivatives of J' are a group of lines.
Next, the derivative matrix and its lines are connected directly to the stiffness of the robot

and are shown to influence the stiffness directions of the robot.

5 Stiffness control of redundant robots and the derivative of the Jacobian

Stiffness analysis of parallel manipulators plays a key role in determining the degree of
adequacy of a given robot for performing a specific task that involves interaction with the
environment. This section relates the Jacobian derivative with the active stiffness and the
problem of stiffness modulation. The interpretation of this derivative as lines is shown to be

helpful for determining the extent of stiffness modulation capabilities.

5.1 Active stiffness and the derivative of the Jacobian
The stiffness mapping relates the change of the wrench that the robot applies on its

environment with the twist deflection of the moving platform. Denoting the i’th row of J' by
J'i, one can write the elements of the stiffness matrix, K, as in Eq. (37).

t t
o, _olyit) s, ot -

ij:axj_ 6Xj 6XJ- 6)(j

Unlike the definition in (Gosselin, 1990), this definition includes the stiffness effect of
introduced ‘preload’ (bias forces stemming from weight effects for example) in non-

redundant manipulators or antagonistic actuation in redundant robots. This effect is expressed

t.
i

T, which is referred to as the ‘active stiffness’ or ‘antagonistic stiffness’ (Yi

by the term (ZJ

j
and Freeman, 1993). The second term in Eq. (37) is referred to as the “passive stiffness’ of the
manipulator (Y1, et. al., 1992; Kock and Schumacher, 1998). Treating the actuators as springs
with a diagonal stiffness matrix Ky in joint space results in:

3, o J‘izﬁaq—m =J'K J (38)
OX m 04, OX;

Stiffness modulation is possible when actuation redundancy is introduced to the system,
thus, allowing the use of antagonistic actuation (Cho, et. al., 1989; Yi and Freeman, 1992;
kock and Schumacher, 1998; O’brien and Wen, 1999). In this case, the actuation forces are
divided into T, and Ty, where T, denotes the actuation forces balancing the external load and 1y,

denotes the internal actuation forces (antagonistic actuation forces). Antagonistic actuation
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forces do not affect the net force applied by the moving platform on its environment since
they belong to the null space of the Jacobian matrix, Eq. (39).
T=T,+Ty Jttsze Jit, =0 (39)
Jt
Equation (38) can be rewritten in a matrix form as in Eq. (39), where the matrix, o is a
X
three-dimensional matrix, as in Eq. (11), with the dimensions of 6xnx6 for n actuators (n>6).

The multiplication in Eq. (39) should be performed according to Eq. (37), i.e., in order to

obtain the active stiffness element, K1;; one should take the scalar product of the i’th row of

t

the j’th plane in the three-dimensional matrix, o with T.
X

oJ' . oJ' ¢
K=6—1+J K,J =K1+K2 Klsa—r K2=J'K,J (40)
X X

5.2 stiffness directions and the derivative of the Jacobian

Equation (37) can be written in a matrix form as:

AF, = KAx = K'Ax, + K?Ax, + K*Ax; + K*Ax, + K Ax + K°Ax, (41)
where K' denotes the i’th column of the stiffness matrix, K, AF, the change in the reaction of
the moving platform on its environment for a positional perturbation Ax.

Equation (41) shows that K’ the i’th column of K, is the stiffness in the x; direction since it
determines the net change in the moving platform’s reaction, AF., for a perturbation in the x;

direction. Larger norms of this column cause higher reaction force from the robot. Since K'is
determined by the product of the i’th plane of 66_{: with 7, then the linear dependence of the
lines of this plane causes its singularity. If the actuation vector, T, is in the direction of the
axis associated with the larger singular value of this plane, then the norm of K' is maximized
and the robot is stiffer in this direction.

Next, the importance of the active stiffness, K1, relative to the passive stiffness matrix, K2

is evaluated.

6 Simulation of a wire-driven robot for active stiffness evaluation
To evaluate the effect of active stiffness we performed a static simulation of the wire-
driven robot shown in Fig. 6 as a case study. This robot has seven wires and resembles the

Falcon robot presented by Kawamura (Kawamura, et. al., 1995). The central rod is
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manipulated in space by pulleys that change
the lengths of the wires. The robot has the
minimal number of wires for stable force
closure (Kawamura, et. al., 1996); hence, we
can only introduce internal forces to the wires
in order to maintain stable manipulation. The

problem of finding the necessary internal

Base Frame

Central ro/si: N

" End Effector

Figure 6: Falcon-like wire-driven robot as a

case-study

forces for maintaining force closure was solved using the method from grasp theory presented

in (Mason and Salisbury, 1986), but adapted to maintain pulling forces instead of pushing

forces.

For the simulation, we used the following dimensions and materials: The square-shaped

base frame has a base of 2.8 meters long and the central rod is 2 meters long. The cables are

made from Nylon 66 with 30% Glass-fiber
reinforcement and have a 1 [mm?’] cross-
sectional area. These cables have high
yield strength of S,=172 [Mpa] and a
Tensile Modulus, E, of 9.5 [Gpa] with low
elongation at break of about 3% (Marks’,
1996).

The Internal forces for maintaining
stable force-closure were kept to the
minimum for minimal energy consumption
by the system. The load applied by the
robot on its environment is [50, 50, 50 N,
2.5, 2.5, 2.5 Nm] and the end effector was
moved on a constant z plane of z=-0.5 [m]
with a constant orientation of 10 degrees
rotation about the [1, 1, 0] axis. The
simulation uses the formulation of the
Jacobian matrix and its derivative as in
section 4. The stiffness matrix in joint
space, K4, was computed with the linear

model of wire stiffness according to

S Of

Jacobian condition number

08r

06

04r

02r

-0.2r

04l

-06r

-08r

2 05 0 05 1
x [m]
Max tension force in the cables

in percents of the maximal allowable force
1 T T T

08F

06F

04t
0.2r 75
70
-02F
04k

061

-08r

R . . .
-1 05 0 05 1
x [rm]

> 7: Condition number of the

Jacobian and the maximal tension
ratio in the cables



Ky, = ]i—A i=1..7 where L; is the length of the i’th cable found from the inverse kinematics

solution. Figure 7, 8, and 9 depict the results for the simulation. The triangular workspace
agrees with the triangular shape in (Kawamura, et. al., 1995). The workspace is limited by the
maximal force limit set for 80% of the wire yield strength. The results in Fig. 7 show that the
Jacobian matrix is not singular within the workspace. The six figures of the condition
numbers of the Jacobian-derivative planes, Fig. 8, shows that planes 4, 5, 6, associated with
the derivatives with respect to the orientation variables, have singular points (high condition
numbers) in the workspace.
| | Ixr| | _—
Figure 9 shows the ratio of the norms ———" for i=1..6. The maximal value of this ratio is
2]

about 5% for the sixth plane, which means that the effect of active stiffness can be non-
negilable especially when the plane associated with the i’th column is singular. The active
stiffness is prominent when the internal forces are bigger and the possibility of introducing
redundancy into the system allows changing T in order to maximize the effect of active

stiffness. However, one should remember that there is a limit on the magnitude of T stemming

from strength limits of the wires.
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Figure 8: Condition numbers of the Jacobian derivatives with respect to the moving

platform’s position/orientation variables.
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T2i=

T22=

T2i=

Conclusions

It is well known that the Jacobian matrix of robot manipulators is composed of Pliicker
coordinates of lines. In particular, in a linearly actuated fully-parallel manipulator the lines are
aligned with the extensible links. This paper derived analytically the expression of the
derivatives of the Jacobian matrix of a six-degrees-of-freedom fully-parallel manipulator.
These derivatives were taken with respect to the moving platform’s position/orientation
variables rather than time or active joints’ variables. We proved that these derivatives are also
composed of lines. In total, we obtained 36 lines constituted from six line-sextuplets with
each line-sextuplet representing the derivative of J' with respect to one position/orientation
variable of the moving platform. The authors believe that interpreting geometrically the
Jacobian matrix derivative as being also lines and their relation with the original Jacobian
matrix lines, will facilitate the geometrical interpretation of rigidity, stability and dynamics
that requires expression of the derivative of the Jacobian matrix. The importance of the
Jacobian derivative for active stiffness control was shown with a case study of a wire-driven
parallel robot. The simulation results show that the singularity of one of the planes of the
Jacobian matrix affects the stiffness directions of the Robot. Further work is being done to
investigate the extent of the effect of the derivative of the Jacobian on the rigidity of

redundant robots having low rigidity constants.

Appendix

The following equations give the explicit expression of the ith column of T2k, k,i=1, ..., 6.

-]

Ty 1 Z 1 i

- - - + + - - - + + d + - -

I 4y ’ 4; N 4; ’ 4; 4; 4; 4; ’ 4; 4; 4y 4; 4; 4; 4; 4;
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The Jacobians i rows of the Jacobians J «» Jp>and J are given by Eq. (34):
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Singularity Analysis of a Class of Composite Serial
In-Parallel Robots

Nabil Simaan and Moshe ShohaMember, IEEE

Abstract—This paper presents the singularity analysis of a stantaneous direct kinematics matdxand the instantaneous

family of 14 composite serial in-parallel six degree-of-freedom inverse kinematics matriB asparallel andserial singularities
robots, having a common parallel submechanism. The singular respectively.

configurations of this class of robots are obtained by applying line . . . . . i
geometry methods to a single, augmented Jacobian matrix whose Hunt et al. [3] discussed the singular configurations in se

rows are Pliicker coordinates of the lines governing the submecha- "@l, parallel, and composite serial and in-parallel robots, by
nism motion. It is shown that this family of robots possesses three USing motion and action screws. They showed that a work-piece

general parallel singularities that are attributed to the general grasped by a serial kinematic chain robot can only lose DOF (or
complex singularity. The results were verified experimentally gain constraint) and a work-piece grasped by fully in-parallel
on a prototype of a composite serial in-parallel robot that was - manjpulator can only gain DOF (or lose constraint). A com-
synthesized and constructed for use in medical applications. posite serial in-parallel manipulator can either lose or gain DOF.
Index Terms—Composite serial in-parallel robots, geometric  |n a singular configuration, the relation between the input
approach, line geometry, parallel robots, RSPR robot, singularity - yariables’ velocities (active joints’ speeds) and the output vari-
analysis. ables’ velocities (linear/angular velocities of the end effector) is
not fully defined. For serial robots with six DOF, a configuration
. INTRODUCTION is singular when the instantaneous input—output saapJq is

. . singular. For parallel robots with < 6, there exists & x 6
UMEROUS researchers, e.g., [1]-9], have mvesUgatgﬂatriX A, that governs the static equilibrium of the moving

singularity co_nditions Of. parall_el_robot_s since COmF.)Ie'[Elatform. This matrix relates the internal forces/momenisg
knovyledge of t.he singular regions within thglrworkspace is e cting on the moving platform with the wreneh applied by
sential for design and control purposes. Singularity analyasths

based on the instantaneous kinematics of the manipulator, wh|cﬁ moving platform on its environment
is described by AsTin = Se. @)
The internal forces, acting on the moving platform are
Ax =Bq (1) divided into two groups. The first group represents the active
joints’ intensities{r ..., }. The second groupr,+1...76}
where forn degrees-of-freedom (DOF) manipulatér,andB  represents the intensities of the passive forces. These passive
are am x 6 and ann x n matrices referred to in this paper agorces stem from the kinematic constraints imposed by the joint
the instantaneous direct and inverse kinematics (IDK, 1IK) mayads of the links connected to the moving platform. The first
trices, respectively. These matrices were used by Gosselin angolumns ofA, are the action screws associated with the ac-
Angeles [2] for singularity analysis and were respectively callaile joints. The remaining — » columns are the action screws
the direct kinematics and inverse kinematics matrices in [10], @ssociated with the constraints of the passive joints.
direct kinematics and inverse kinematics Jacobians in l§.  Singularity of uncertainty configuration occurs when the
the moving platform twist, and, is the active joints’ speeds. column space oA, has a dimension less than six.Af, has
For fully parallel robots, the IIK matrixB, is a diagonal one a rank ofm < 6, then the manipulator cannot resist external
[4]. Hence, the common definition for the Jacobian matrix afrenches that belong to(& — m)-dimensional space and the
parallel robots takes the forth= B! A and the 1IK problem manipulator is in uncertainty configuration [3], [8].
is defined byq = Jx. The derivation of the Jacobian matrix frafy, is immediate
Based on rank-deficiency of the matricAsandB, Gosselin by writing the expression for the work rate of the forces/mo-
and Angeles [2] divided the singular configurations into thrg@ents acting on the moving platform. The work done by the con-
cases: the first, when onlk is singular; the second when onlystraints is zero. This leads to the result that the firsblumns of
B is singular; and the third when both andB are singular. A, are the rows of the x 6 Jacobian matrix. This result empha-
In this paper, we adopt the terminology in [10] and refer to th&izes the importance of the matu, for complete singularity
singular configurations associated with singularities of the i@nalysis. For robots with < 6, the Jacobian matrix by itself is
not sufficient to determine all conditions for singularity.
Since the IDK matrix is composed of line coordinates, the

Manuscript received June 12, 2000; revised January 9, 2001. This paper was . . . . L
recommended for publication by Associate Editor F. Park and Editor I. Walkgnalysis of parallel singularities is reduced to determining the

upon evaluation of the reviewers’ comments. geometric conditions for linear dependence between these lines,
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ineering, Technion—Israel Institute of Technology, Haifa 32000, Israel (emalil: N ..
gabil@tgtechnion.ac.il' shoham@tx.technion.ag.)ill). ( Dandurand [14] addressed the problem of rigidity conditions

Publisher Item Identifier S 1042-296X(01)06737-4. of compound spatial grids by using line geometry. Since the Ja-

1042-296X/01$10.00 © 2001 IEEE



302 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 3, JUNE 2001

TABLE |
A FAMILY OF 14 COMPOSITESERIAL IN-PARALLEL ROBOTS
RSPR PSPR HSPR PPSR RRSR
HHSR RPSR HRSR HPSR RHSR
PRSR PHSR USR CSR

cobian matrix of fully-parallel Stewart—-Gough robots consists

of Pllcker line coordinates of the lines along the prismatic agig. 1.

tuators, [2], the singularity analysis of these robots is based on
finding geometrical conditions for linear dependence betwee
these lines. Following Dandurand’s observations, a group of

searchers, [1], [7], [15], [16] investigated the parallel singularl-
ties of parallel robots using line geometry. Notash [8] used line
geometry to investigate redundant three-branch platform rob
and their preferable actuation distribution in order to elimina
singularities. Hao and McCarthy [13] discussed the conditiofys.

Waoving

Ao .

= rl
Spherical T ; ;.,_._:--""_"-?""
Jainl R
ok "'_'._:.:I' B | 5;
V|:. Revolste Feint il d_l.'-'-"'

B, Y

Force transmission in the tripod mechanism.

ré_hieved by writing loop-closure equations and taking their

erivative with respect to time.

All the robots in Table | have the same system of constraint

Eenches acting on the moving platform. This stems from the

act that all these robots have a common tripod mechanism com-
sed of a moving platform and three passive S-R joint dyads

of joint arrangements that ensure line-based singularities in pl t9- )-

form robots. They showed that in order to have line-based sin-
gularities, the kinematic chains should not transmit torque to the
moving platform. Even though the family of robots investigategd
in the present work does not fulfill this condition, nevertheless 4,
special Jacobian formulation allows maintaining the line-baseq
expression of the Jacobian matrix of the common parallel suh-
mechanism (defined in Section IlI) of this class of robots. &,
Unlike fully parallel robots that have a diagonal nonsingulas,,
IIK matrix, B (for a nonzero length of the linear actuators), com-
posite serial in-parallel robots require both matrideandB to  f,;
be examined for singularity. Singularity of mati#kindicatesa f;, f,
loss of DOF and singularity of matriA indicates gain in DOF
[2]. Se
The structure of a family of composite serial in-parallel robots
is presented next (Sections Il and Ill) and its parallel singulari-
ties are derived based on line geometry (Sections V and VI).
R,
[I. A FAMILY OF COMPOSITESERIAL IN-PARALLEL ROBOTS

A class of 14 composite serial in-parallel robots is listed iRP:
Table I. Each robot is represented by a code depicting the struc-
ture of its kinematic chains from the base platform to the movin
platform. The letter R stands for a revolute joint, S for spherica
P for prismatic, U for universal (Hooke’s), C for cylindrical, an
H for helical joint.

All the robots of this family have three similar kinematic,
chains connected to a moving platform by revolute joints. T
last links in the kinematic chaing};, ¢ = 1...3, are passive
binary spherical-revolute (S-R) dyads. Table | depicts all th
14 possible combinations of joints constituting connectivity th
equals six between the base and the moving platform. Althoug
some investigations use special distribution of actuators [17] an
passive sliders [18]-[20] to simplify the direct kinematics soll?
tion or to minimize singularities via redundancy [8], we limit
our discussion to symmetrical nonredundant robots with three
identical kinematic chains and symmetrical distribution of ac-
tuators.

I1l. L INE-BASED FORMULATION OF THE JACOBIAN

The formulation of the Jacobian matrix based on static
analysis is described next. The same formulation can also be

Nomenclature
Index referring tai'th kinematic chaing = 1,2, 3.
+'th link of the tripod mechanism.
Moving platform’s center point.
Unit vector along thé&'th revolute joint.
Unit vector along link4,; (Fig. 1).
Unit vector parallel tor; and passing through the
+'th spherical joint center.
Magnitude of force acting or;, alongss;.
Force vectors along linkd; and alongs,;, respec-
tively.
Six-dimensional external wrench applied by the
moving platform on its environmeng, = [f,, t.],
wheref, andt, are the resultant external force/mo-
ment, respectively.
Rotation matrix from platform-attached coordinate
system, P, to world coordinate system, W.
A vector fromo,, to a point ont; (written in plat-
form-attached coordinate system).

Link A; is connected to the moving platform by a passive
r?volute joint and to linkB; by a passive spherical joint. Con-
equently, it is capable of exerting on the platform a static force
in a direction spanned by the flat pencilagf andr;, and a mo-
ment in the direction of; x §;; (Fig. 1). Link B; can exert on
'Qk A;, through the center of the spherical joint, a static force in
a direction defined by the flat pencil éf; ands,;. Therefore,
we decompose the force transmitted from lidkto A; into two
1pmponents—one of magnitude; and in the direction of;
and the second of magnitude; and in the direction of,;.

guations (3) and (4) result from static equilibrium of forces
nd moments about the center pait

3 3
Zflié1i+2f2ié2i —fe=0 (3)
im1 im1

3 3
ZVWRPPPZ‘ X f1i81: + ZWRPPPZ‘ X f2i82;
=1 =1

3
+ Z —s1; X f2;80; —te = 0. (4)

i=1



SIMAAN AND SHOHAM: SINGULARITY ANALYSIS OF A CLASS OF COMPOSITE SERIAL IN-PARALLEL ROBOTS 303

Rewriting (3) and (4) in a matrix form yields

[ S14 82 } |:f1:| _ |:fe:|
“Rppp; X 81i (“Rppp; —s1i) X 82: | [f2] [ te ('5)

For parallel robots, the expression connecting the associated
active joints’ intensitiesr with s, is given byr = JTs..
Equating this expression with (5) yields the Jacobian of the
tripod mechanisnd.

A ~ T
T S14 S24
J=1, . , . . 6
[“’Rpppi X 81 (“Rppp; —s14) X 522} ©
The forces at the spherical joints are given by

DESCEN:

The rows of the Jacobian matrix of the tripddre the Pliicker
line coordinates of the lines along the links and the line$,;
(Fig. 1). These vectors can be found by the inverse kinematigg 2. RsPR robot.
of the tripod. Actually, the exact values 8f; ands,; are not

needed since, as will be seen in Section VI, the singularity anal- ) S
ysis is purely based on line geometry. In this analysis, the alf#se of [22], but due to formulation of the matiJxit is pos-

is to find the types of parallel singularities rather than the actu@lP!e to apply line geometry to analyze the parallel singularities.
joint values in these singular configurations.
The group of robots in Table | shares the same tripod mecha- IV. THE RSPR RBOT

nism. The complete Jacobian matrix of this group is easily Ob'The RSPR robot and another robot of this family, thiSR

Cmedical robotic assistant for laparoscopic and knee surgery
ﬁ]—[28] (bold letters indicate the active joints). These robots
were compared in terms of their workspace, dimensions, and
required actuator forces, and the RSPR manipulator was chosen
and constructed [41]. The prototype of the RSPR manipulator

T f1 is shown in Fig. 2.
=17 [fJ ) This manipulator consists of three identical kinematic chains
) . ) ] connecting the base and the moving platform. Each chain con-
whereJ, denotes the Jacobian matrix of the serial chains. - (aing a lower link rotating around a pivot perpendicular to the

_ Substituting the expression for the forces at the spherigilge piatform and offset-placed from the center of the base. At
joints, one obtains the other end of the lower link, a prismatic actuator is attached

f1; and fo; and the active joints’ forces. The relation betwee
the actuators’ force intensities and the forces at the spheri
joints is given by

r=J7T El} =JTJ Ts, (9) by a spherical joint. The upper end of the prismatic actuator

] 2 ] ) is connected to the moving platform by a revolute joint. The

hence, the Jacobian of the complete manipulator is axes of the revolute joints constitute an equilateral triangle in
J=J71J. (10)  the plane of the moving platform (Fig. 2).

Comparing (10) with] = B~1A (whereB andA are the IIK This robot is distinguished by the location of the lower links
and IDK matrices, respectively) shows that the IDK matAx, revolute axes being placed offset from the center of the base
and the IIK matrix,B, are the Jacobian matrix of the tripdd platform as compared to the RRPS robot in [29].

and the Jacobian matrix of the serial chaihs respectively.

Every manipulator of this class of manipulators has the same V. SINGULARITY ANALYSIS METHODOLOGY

J matrix, but a differentJ; matrix. For example, the Jacobian

matrices of the RSPR and the USR robots (Table I) were formu-Based on the Jacobian matrix formulation of Section Ill, the
lated in [24] using this method. singularity analysis for every robot in Table | is divided into two

Based on the observation thht(the IDK matrix) is associ- phases. The first phase deals with parallel singularities stem-
ated with the tripod mechanism, we will refer to it as the parall8hing from rank deficiency of the IDK matrixA (referred to
submechanism since it leadsptarallel singularitiescharacter- @sJ in Section Ill). The second phase deals with serial singu-
ized by the addition of DOF to the moving platform (loss ofarities of the IIK matrix,B. In this paper, we present only the
constraint). analysis of the parallel singularities, which is common to the 14

The formulation ofJ presents a matrix composed of linegobots of Table I. In [27], the serial singularities of the RSPR
of the parallel submechanism rather than screws of the whaled the USR robots were derived based on the determinants of
robot as is derived, for example, in [21]. The result obtained their IIK matrices [24].

[22] presents a formulation of the Jacobian matrix of the PPSRSince the IDK matrixJ of a typical manipulator of this class
(Table 1) manipulator in [23] based on the use of reciproc& composed of the Pliicker line coordinates of the parallel sub-
screws. The results of the derivation presented here accede wittchanism, we analyze its singularities using line geometry
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Fig. 3. Inverted tripod with variable moving platform laterals as an equivalent
linkage to the TSSM [35].

technique. Readers interested in a background on line geom
etry should refer to [30]-[33], [12], and [34], where the last

two books present the subject with its relevance to kinematigs. 4. Geometry off and its associated linds. .. s

of mechanisms.
An inversion of the tripod of Fig. 1 was used in [35] and [36]

Nomenclature

as an equivalent mechanism of the Stewart-Gough 3-3 and 3-6he following symbols facilitate the formulation of the ge-

robots for solution of the direct kinematics and Singularities [3@metrica] proofs in this section. All the Symbo|s are exp|ained
(Fig. 3). This suggests that the parallel singularities of the trip¢férein and shown in Fig. 4.

mechanism are categorically the same as the Stewart-Gough;3-6
and 3-3 robots since, in both cases, the basic problem from line-
geometry point of view is finding the possible linear dependep:
cies between the lines of thraechitectural flat pencil{defined 1,

in next section) maneuvering in space. However, the equivg-
lence is not direct since in Fig. 3 the equivalent mechanism pf
the triangular symmetric simplified manipulator (TSSM) [35p¢
is an inversion of the tripod of Fig. 1 with variable laterals ofyq
its triangular platform. Thus, direct geometric interpretation of
the singularities of the tripod of Fig. 1 is not possible by con,
structing its equivalent TSSM and analyzing it for singularity.
The analysis given here shows how, by using geometric assump;
tions stemming from the architecture, one finds the direct geo-
metric interpretation of the singularities with application to theX -
working space of the moving platform. Indeed, our results acX "
cede with [1], [36], and [37], but we showthatthemterpretatlorig
of Fichter's [38] and Hunt's [39] singularities are different inp
our case, which has a direct impact on the motion capab|I|t|@§k
of the moving platform.

Center points of the revolute joints on the moving
platform.i = 1,2, 3.

Vectors of the revolute joints’ axes through.
Center points of the spherical joints= 1, 2, 3.
Normal to the moving platform plane through.
Plane defined by and pointp;, i = 1,2, 3.

Plane defined by points;, i = 1,2, 3.

Plane defined by points;, : = 1,2, 3. This plane is
hereafter referred to as the tripod base plane.
Flat pencil generated by linds andli. k,j €
{1,2,3,4,5,6}, k # j.

Flat pencil generated by linég andl;, that belongs
to category of flat pencils(. (X ;. = Xu;).

Plane and center point of flat pendcil;;.

Line defined by pointg; andpy,.

Group of the lines of, I' = {11,12,13,14,15,16}.
Group of lines of excluding lined; andly, C;, =
{l.: L, e, n# 4, n#£k}

Next, the analysis of parallel singularities begins from the | jnes and planes are regarded as sets of points. Therefore, the
general complex and works out all the cases up to flat peng{mbolsn ande have the same interpretation as for groups of
Singularities. This way we economize the anaIySiS since we |ﬁ0|nts According|y' the expressimb indicates the intersec-
nore the special cases as, for example, flat pencil singularitigsn of two lines,a andb, in a common point, or the intersection
that are special cases of bundle singularities. of two planesa andb, along a common intersection line, or a
line a piercing a pland. The expression € b indicates that a
point, a, is on the line/plandy; or that a linea, lies in the plane
b.

Geometric Relations:The tripod mechanism of Fig. 4 fea-

Fig. 4 presents a geometric interpretation of the Jacewes the following architectural geometric relations:
bian matrixJ of the parallel submechanism (tripod) of the Al:
class of robots shown in Table I. We will use the symbols

VI. SINGULARITY ANALYSIS OF THE PARALLEL
SUBMECHANISM

Pointsp; are not collinear.
A2: by e P1, by € P2, bs € P3.

lg, & = 1...6, to refer to row number in the tripod’'s

Jacobian matrixJ, which are also the Plucker coordinates of A3: r; € PO, r; € PO, r3 € PO.
linesly, 1, 13, 14, 15, andls of Fig. 4. We employ line geometry Ad: Ly |ry, 15 || 2, 16 || ra.

to find all the configurations in which the rows df i.e., lines A5 r; LP1, 1o L P2, rs LP3.

11, 1, 13, 1y, 15, andlg are linearly dependent. o o
First the relevant nomenclature for this section and a list of A6 pidr;i,j=123 14

useful geometric relations, upon which all the following geo- Corollaries: The following corollaries, Crl.. Cr3, result

metrical proofs are based, is presented. from geometric relations Al.. A5. Each corollary is followed
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12 23|[34][45 36
1324 35 46
[1a 25 36|

15 26

16

) . Fig. 6. The lines of” and linesl~, 15, andly.
Fig. 5. Flat pencil groups. 9 s °

by brackets enclosing a list of geometric relations used to rotheeorem [32]A general linear complex has & pencil of lines in
ity 9 9 P é’very plane and a pencil of lines through every point in space

This theorem means that, for a given general complex, every

Crl [A2]:]; € PL, I, € P2, 13 € Ps. plane in space is associated with a flat pencil that belongs to
Cr2  [A3,Ad]:L || PO, 15 || PO, 1s || PO. it. Accordingly, the tripod base plane, B0, is associated with a
Cr3  [A4,A5:1, L P1, 15 L P2, 16 L P3. flat pencil of lines of the general complex. Any line in BO that

Crd [A2,A4AS:L L1, 1 L1y, 1 L 1. does not belong to this flgt penc_:ll does not belong to the gener_al
i ) i _complex and vise versa; any line belonging to this flat pencil
Categories of Flat PencilsWe use flat pencils as a bas'cbelongs to the general complex.
tool in deriving the singular configurations of the structure. It There are six line quintuplets i = {1, .. .1g}. Each one
is therefore useful to enumerate all possible flat pencils.  jncludes two architectural flat pencils. We consider the general
A group ofn lines in space can form up te(n — 1)/2 flat  complex@ of lines generated by the two architectural flat pen-

pencils. In our case, where= 6, all possible 15 flat pencils of cils F,, andF,; and either lind; or linels as a representative
the tripod are grouped into four groups T, R, S, and F (Fig. R)ase to all other cases.

where each two-digit numbg¥: represents a flat pencil formed  The following proof shows that all the six lines of

by linesl; andl. Due to the similarity of the kinematic chainsp _ {1, ...16} belong to one general comple%, if and
of the tripod, it is sufficient to analyze the singularity of onlyomy if lines1, ls, andly intersect in one point (copunctal).
one member in each group. Proof:

We distinguish betweearchitectural flat pencilsand tem- 1) Linesly, 1, andly fulfill 1; € Fia, g € Fas, 1o € Fa.
porary flat pencilswith temporary flat pencils being configu- 2) 14,1, andl; linearly depend on the flat pencils generated
ration-dependent, i.e., forming under certain conditions on the™ ' it line pairg(l 1), (I Ls), (Is Io).
configuration variables and architectural flat pencil being con- 3) Linesl; andlg fulfill 1, € @, 1y € G andl; € BO
figuration independent. Note that only category F includes ar- Is € BO. ’ ’

chitectural flat pencils. L : :

Next, we adopt the code of Dandurand [14] to indicate the gg }; anlg (;enf(ljnte);;\ezooif:ﬁtep;ebr:)%:eoti]her;ergégel SC);’ i(f);ﬁa
different line varieties. For each rarkr (» < 6) line variety, only if 1; e (15 1s).
we test all the cases in which more thatines belong to this 6) Ifline 15 € G andly € g, thenls € G and vise-versa; if
line group. This is tantamount to finding all the cases in which I; € Gandly € G thenl;): € G = The condition for th’is
r < rank(J) < 6. For example, the term “bundle singularities,” singularity is
includes all the cases in which more than three lines, out of the Singular configuratior$ 1:

six lines ofI", belong to one bundle. This includes singularities

with rank3 < r < 6. PF14 NPFo5 NPE36 N BO # {J}.
. . N Note that this is Fichter’s [38] singularity (5a), but in our
A. Linear Complex Singularities case with the inversion of the equivalent mechanism, rotating

A group of six lines degenerates from the space variety tee moving platform 9% about the vertical axis will not result
the linear complex variety in two ways. If all the six lines ofn singular configuration.
the group belong to a general spatial linear pentagon, then sin2) Six Lines in a Special Linear Complex (5Bgincel in-
gularity of the general complex occurs [30]. If all the six linesludes three permanent flat pencils of type F, all its lines inter-
intersect one common line, then a singularity of the special cosect a common line if this line is the line of intersection of planes
plex occurs. PFy4, PFo5, andPF g or if pointsby, bs, andbs are collinear.

1) Six Lines in a General Complex (5APefine linesl;, 1s, Since plane$ 4, P Fy;, and? F3¢ do not have a common in-
andly as the intersection lines of the flat pendils,, Fo5, F3¢  tersection line the only possible singular configuration occurs

with the base plane BO, respectively (Fig. 6). when pointsby, b2, andb; are collinear (Fig. 7).
1; = PF,, N BO lg = PFo5 N BO lg = PF35 N BO. Singular configuratiors2: Ab; + Bby 4+ Chs = 0,
Next, we prove that all six lines df = {1, .. .15} belong to A,B,CeR, (A B,C)#(0,0,0).

one general comple¥ if and only if linesl;, 1g, andlg intersect ~ This singularity is categorically the same (5b) as Hunt’s [39]
in one point (copunctal). The proof is based on the followingingularity, but co-planarity of one of the links with the moving
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Fig. 7. S2 singularity. Fig. 8. (a) Special cases of S1 singularity:= 1,. (b) Special cases of S1
singularity:1s = lo.
platform does not cause it as is the case with the Stewart-Gough
3-3 and 3-6 robots. Therefore, robots with such tripod may have il fs1
better tilting capabilities than the Stewart—-Gough 3-3 and 3-6 cases a_re Special cases o " »
robots. 3) Parabolic Congruence (4C)This case unifies all flat
We will henceforth exclude the possibility for collinearity ofPencil singularities related with one or more flat pencils of the

b1, bo, andbs since we already proved that this leads to a sifparabolic congruence, therefore, it does not add new singular
gular configuration. configurations to the ones that will be discussed in flat pencil

singularities.

B. Linear Congruence Singularities 4) Degenerate Congruence (4DYhe lines dependent on
four generators of a degenerate congruence are the lines of a
r’kﬁane (3D) and the lines that share the piercing point of the
fourth congruence line with the congruence plane. Since co-pla-
narity of four lines will be investigated in Section VI-C-4 (3D),
e inspect only the case in which two lines pierce the plane de-
Red by the other three lines in a common point. However, if
& considered line triplet is coplanar only when four or more
lines ofI" are coplanar, then degenerate congruence singularity
is marked.

I" has 20 line triplets. Table Il lists all these line triplets and
presents six groups of them, Ul. U6. We consider all the

1y is 13 and Fig. 8(b) shows the cake = 1y. Both these

This section presents the singularities of five lines in o
linear congruence.

1) Elliptic Congruence (4A):Four skew lines in space form
three distinct reguli and a fifth line linearly depends on them if
belongs to one of these requli. Elliptic congruence singulariti
are not possible in our case since there are no four lines in {
same regulus (see the proof in Section VI-C-1).

2) Hyperbolic Congruence (4B)Four lines concurrent with
two other skew lined,, andl,, form a hyperbolic congruence.
Any fifth line concurrent withl, andl,, linearly depends on

th?rshe four Ime_s. i intuplets i — {1 1 ith t cases in which these line triples are coplanar and two other lines
ere are six line quintuplets ifi = {1,...1¢} With WO 0 o0t their plane in a common point.

architectural flat pencils of type F in each quintuplet. Thus, line c } ; : Thi .
. . ) - ase 1: Ul Line Triples:This category includes only one
1, is defined by the centers of these flat pencils andlijnis the P gory y

flat pencils. Next, we prove that Imég or .1‘? intersect lined, plane and that in this casg 1., andl; belong to one flat pencil
andl;, only when the S1 and S2 singularities are formed. IgFig 9)
Fig. 9).

There are two distinct categories of line quintuplets, G1 a

Proof:
G2. They are defined as
y 1) Pointsp; andb; define linel;, and PO = 1...3.
Gl ={(1 121514 15), (li 12 I3 1y 16), (I 12 13 15 16 ) } 2) Pointsh; define BO.
Go={(l1 1214 1516), (I1 15 Ly 15 1), (12 13 14 15 16) }. 3) 1, e Pi,n=P1NP2NP3.

4) SinceP0 = BO then linesly, l,, andls lie in BO and
intersect in the piercing point af with BO. Hence, lines
11, 15, andlz belong to one flat pencil (Fig. 9).

This singularity is named singular configuration S3.

The quintupletgl; 15 13 14 15) and(1; 1> 14 15 1) are used
as category representing ones for G1 and G2, respectively. We
first exclude the possibility thai; € 1, since this clearly leads
to singular configuration S2.

Proof: Singular configuratiors3: BO =P0 = 1,, € Tz,

1) I, = F14°F 5, 1), = PF14 N PFos5. Jik,n=1,2,3, j#k#n.
2) by = ¢I4, by = °Fy5; thereforel, € BO. We will henceforth exclude the possibility that the moving
3) Lineslg andls pass throughbs. platform lies in the tripod base plane since we already showed
4) Leti; be the piercing point df, with BO. that this configuration is singular.
5) Lineslg andl; intersectl, only if they lie in BO. Case 2: U2 Line Triplets:Let (1; 13 15) be a category-repre-
6) Lineslg andl; intersect both lines, andl;, only if they  senting triplet. We assume that lingds 15 1) are coplanar, thus,

pass through poirit and lie in the base plane BO. linesl; andl; define the flat pencit'T3. There are two cases to

7) Insuch acase, linds andls are, respectively, defined by be considered, in which, the line pafis lg) and(1; 1), respec-
pointsb; andi; andbs andi;. Linely is defined by point tively, intersec??:3 in a single point. Lines,, 1», andlg pierce
b3 andi;. This shows that linek, lg, andlg intersectin  PTy3 in pointsby, bs, andbs, respectively. Accordingly, inter-
one point,iy, in BO. Fig. 8(a) shows the case when linesection of two lines out dfy, 15, andlg with PT3 in one point
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TABLE I
ALL 20 LINE-TRIPLESDIVIDED INTO SIX GROUPS

Ul={l L)}
U2={1;15), (L 1; L), I 1, k)}

U3 = {(hi L1y, h L Is), I s1s), (i s k), (1 1s), (L3 1)}
U4 = {(h L1s), (1 14 1e), (215 lg), (I3 ks Xe), (L5 1y L), (1214 1)}
U5 = {(i Is16), (Ll ks), (I3 14 15)}

U6 ={(l;15 ls)} Fig. 10. Special case of S1.

4) Pointbg lies onls, i.e.,bs € 13, andbs € PSy;.
5) Pointsb; andb, satisfy:b; € 14, b € 15; henceb; €
PS,5 andbs € PSys.

6) B0 = PS5 = PO sinceby, by, andbs belong toPS,;.

Case 6: U6 Line Triples:Lines(l4, 15,1s) are coplanar if the
moving platform and the tripod base plane are parallel one to
another. Excluding the ca$® = B0, two lines from the group
(11,12, 13) intersect the tripod base plane in a common point only
if two of the spherical joints coincide. This leads to a special case

Fig. 9. Singularity of type S3. of singular configuration S2 in Fig. 7.
Proof:
is possible only if two spherical joints coincide, i.b,, = b;, 1) Linesly, 1, 15 pierce the base plane in poirits, b, and
1,7 = 1,2,3; 1 # j. This configuration is a special case of S2 bz, respectively.
(Fig. 7). 2) 1, || PO 15 | PO lg || PO [corollary Cr2]. In a singular
Case 3: U3 Line Triples:All the line triplets in this category configuration two lines out ofy, 15, 13 pierce the base
include one flat pencil of type F. L¢t:11:14) be a category-rep- plane in a common point. Therefore, in such singular con-

resenting line triplet. We assume that the lines of this tripletare  figurationb; = b;, i=1,2,3, i # j.
coplanar and we examine the other lines. This examination leads
to a special case of S1 singularity (Fig. 10). In this configuratiop. Planes Singularities

lineslz, s, andly intersect in one common point in BO. This section presents the analysis of singularities that belong

Prgof: . o to a rank-three system. We inspect all the cases, in which, four
1) Linesr; andp:p: are the intersection lines 8’1, and  |ines belong to the planes variety.
iTl? W'T PO, respectively. 1) Regulus Singularities (3A)The group of lineg includes
2) PT1p = PF14 whenlines(l, 1, 14) are coplanar. three architectural flat pencil, 4, F25, andF s, Consequently,
3) Since linesr; andp;p; are distinct and coplanar, theyihe maximal number of skew lines Ihis three. We recall that
define the platform plane PO. all lines in the same regulus are skew and intersect all the lines

4) ForPTy, = PFy4 to be fulfilled then both lines; and i, the conjugate regulus [30]. Therefore, if lings 1, 1; form
p1p2 must belong to bothT, andPF 4. Thus, thisis 5 regulus, then linek, 15, andlg cannot belong to this regulus
achieved only whef T, = PF14 = PO. because ling, intersectd;, 15 intersectd,, andls intersectds.

5) Sincel; || PO andby € I; = 15 € P0. Thus, the four consequently, no group of more than three lines can belong to
linesly, 12, 14, 15 are coplanar (see Fig. 10). the same regulus and singularity of type (3A) is not possible.

In this configuration lines, 1s, andly intersectin one common  2) Union Singularities (3B): The lines that depend on the
point in BO resulting in a special case of S1. generators of a union are all the lines that depend on any of its

Case 4: U4 Line Triples:Let (11, 14,15) line triplet be a cat- two flat pencils. Therefore, this case does not add singularities

egory representing one. Using similar arguments as in the pf§the ones that stem from flat pencil singularities.

vious case, this line triplet is coplanar only if all its lines lie in  3) Bundle Singularities (3C):A bundle that is singular in-

the moving platform plane, PO, i.€54; = P14 = P0. Inthis  cludes more than three lines intersecting in a common point.

case linel; lies in PO since it is defined by poikt; € 1; and |n order to find all singular bundles iR, all the possible line

p2 € P0. This is the singular configuration of Fig. 10. quadruplets are registered and divided into four line quadruplet
Case 5: U5 Line Triples:This case leads to singular config-groups.

uration S3. Next, we assume that the lines in the category repTaple IlI lists all the 15 line quadruplets. A singular bundle

resenting line tripletls, 14, 1;) are coplanar and we show thaforms if all the lines of one of these line quadruplets are

this occurs only if thed>0 = B0 (S3 singularity in Fig. 9). copunctal. This table presents four different quadruplet groups,
Proof: namely, groups Q1, Q2, Q3, and Q4.
1) Ly || PO 15 || PO [corollary Cr2] thereforéS,; || PO. Case 1: Singularities of Q1 Line QuadrupletZhis case
2) Pointp; satisfies:ps € PO, p3 € 1s. leads to special cases of S1 singularity in which the six lines of

3) 13 € PSy5 = p3 € PS4 = PSSy = PO. I" or the four lineg1; 1, 13 1) belong to one bundle (Fig. 11(a)
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TABLE Il
15-LINE QUADRUPLETS IN FOUR DIFFERENT CATEGORIES

Ql={h Lk, 0GLL|Q3={(0LLk),1LLIs),
Is), i L s 16)} (L), U Lisle), (It

Llsls), (b3 14le)}.

Q2={ULLlk), 0Ll |Q={U0Lik), (LILL
le), (13 1s516)} le), (bl 14 1)}

Fig. 11. Special cases of S1 singularity.
and (b), respectively). We choogh 1. 13 1) as a category
representing line quadruplet.

Proof:

1) POintbg fulfills bs =13 Nlg, i.e.,bg = “F3g.

2) Inasingular configuration, linds, 1,, 15, andlg intersect
in one common point.

3) Sincebs = 13N1g andlz # 1g the only possible common
point of intersection for lineky, 15, 13, andlg is bs.

4) by € 13,15 € P3, 1, € P2, andl; € P1; therefore,
the intersection is possible only along the normak= Fig. 12.  Special cases of S1 singularity.
P1NnP2nP3,ie., bz € n.

5) bs € BO and in a singular configuratioh; € n; there-  Case 4: Singularities of Q4 Lines Quadrupletset
fore, bz = n N B0, namely,bs is the piercing pointofi (11 14 15 1) be a category-representing quadruplet. This case

with the tripod base plane BO. leads to two special cases of S1 singularity (Fig. 12).

6) In a singular configuratiofiT;> = “F3s = bs. There- Proof:
fore, there are two possibilitie®T ; is located above the 1) b; = 1; N1y; therefore, in a singular configuratiob; is
moving platform andT, is located beneath the moving the common intersection point of all lines in the quadru-
platform. plet.

7) If °T4, is beneath the moving platform it means that= 2) lg || PO, 15 || PO [corollary Cr2]; thusPSse || PO.
b2 = bgs; therefore, this is a special case of S1 singularity 3) b; € B0 and in singular a configuratiob; = ©Ssg;
[Fig. 11(a).] therefore°S;¢ € BO.

Pointsbs, bs, and®S;s definePS;4. Since all these points be-
long to BO, we conclude that in a singular configuratid ||
PO, i.e., the tripod base plane and the moving platform are par-

case of S1, Fig. 11(b). . . . -
Case 2. Singulariies of Q2 Line Quadrupletiet ?zlilt(iecl).nij%lﬂ presents the two special cases of singular configu

(L Iz L4 1;) be a category representing line quadruplet. This 4) Plane Singularities (3D):Singularities of type 3D are
line quadruplet forms a singular bundle if a pair of sphericaln . . ' . .
joints coincides Characterized by having more than three coplanar lines in the
) T _ ) . groupl’ = {1,15,13,14,15,16}. We inspect all the line quadru-
_ Proof: by = 1Linly, by = 1, N1;. The only possible plets to determine the singularities that stem from this case.
intersection point for the four distinct lineskg = bs. Hence, . . ]
this is the same special case of S2 sinaularity in Fia. 7 There are four line quadruplet groups as shown in Table IlI;
e pecial 9 Y g. 7. therefore, we consider the cases, in which, the lines of each cat-
Case 3: Singularities of Q3 Lines Quadrupletket eaOrV-re fi druplet |
2gory-representing quadruplet are coplanar.

(1 1> 14 I¢) be a category-representing quadruplet. Next, w {case 1: Q1 Coplanar Line Quadruple®ll line quadruplets

assume that this line quadruplet intersects in one point and, . group include lined, , 1, andls. We proved in Sec-

we show tha_t sing_ularity of this category is a special case ﬁncf)n VI-B-IV Case 1 that lined; 1, 13 are coplanar only if
singular configuration S2. B0 — PO leading to S3 sinqularit
Proof: g to S3 singularity.
Case 2: Q2 Coplanar Line Quadrupletet(l; 1,1, 15) be a
1) Pointb, fulfills b, € B0, by = 1; N1,; therefore, in a category representing line quadruplet. In Section VI-B-1V, Case
singular configuration linek;, 1, 1, andlg intersect in 3, we proved that the lines of this quadruplet are coplanar only
point by . when linedl; andl; lie in PO leading to the special case of S1
2) I, € P1,1, € P2; thus, the intersection points of thesesingularity in Fig. 10.
lines is located along = P1 N P2. Case 3: Q3 Coplanar Line QuadrupleChoosgl; 1, 1y 1g)
3) In a singular configuration ling, intersectsl; in point as a category-representing quadruplet. All quadruplets of this
b;. Henceb; = “Ts. category are coplanar only 0 = BO.
4) by =1, N BO, i.e., b, is the piercing point of; with the Proof:
tripod base plane. Therefokg = b, = “T;> and this is 1) Inasingular configuration, the coplanar liigg| PO and
the same special case of S2 shown in Fig. 7. l¢ || PO define a plan&S.s such thatS.e || PO.

If °T45 is above the moving platform thdp = b; bz andl; =
bsobs, thereforel; € B0, 1, € B0. This singularity is a special
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2) Pointp; fulfils p; € 1li, p1 € PO. Pointb; is the
piercing point ofl; with PS4, by = 1; N PSye. Accord-
ingly, the condition to fulfilll; € PS4 is PS4 = PO.

3) Pointp, fulfills p> € PO, thereforel, € PSys when
by € PO. This configuration is S3 singularity (Fig. 9).

Case 4: Q4 Coplanar Line Quadrupletet (1; 14 15 15) be

a category-representing line quadruplet. Based on the proof i
Case 3, all the lines of this quadruplet are coplanRoif= BO.

h - ¢
0| [ ERel) _"..E,_' f’l. T __POj|§va

D. Flat Pencil Singularities (ZB) Fig. 13. Special cases of S1 singularity.

In the following sections, a category representing flat pencil TABLE IV
defined by lined; andl, (1;,1, € ') is tested with each link, SUBCASES OFCASE 4 AND THEIR EQUIVALENT CASES
in the complementary grou@;;. The geometric relations that
renderl,, € flat-pencil(1;,1;) are considered. case: h=h |L=h b=l b=l
Case 1: Lind,, € Tjx, 5,k = 1,2,3,5 # k,1,, € Cj;: Let Equalto: | case 1.2 | case 1.3 | case 2.2 | case 3.2
T2 be a category representing flat pencil. Based on the sym-
metry of the tripod, there are three distinct casgs:= 1, PO0. The special cases of singular configuration S1 are
l, = 14, andl, = lg. The casd,, = 1; is equivalent to case illustrated in Fig. 13.
1, = 14 due to symmetry considerations. Case 4, € Rji, (5. k) € {(1,5), (1,6),(2,4), (2,5), (3,4),
Case 11]-n = 13: This case was inVeStigated in SeC(375)}7 ]-n c Cjk Let R15 be a Category representing flat
tion VI-B-4, Case 1. pencil. This case leads to four cases that we have already dealt

Case 1.2,, =1, (equivalent td,, = 1;): Section VI-B-4, jith Table IV.
Case 3, shows that If;, 1, andl, are coplanar then the
singular configuration in Fig. 10 forms. E. Point Singularities (1A)

Case 1.3l, = lg: This case is a special case of Sec- Gjyen the perpendicularity relation in Cr4, a line of
tion VI-C-3, Case 1.I|m|te.d .for an eqwlater.all—tnangqla[{ll712713} does not coincide with a line ofly,15,16}. Lines
moving platform. Using similar arguments, it is possiblg '}, "an41, belong to three distinct planes P1, P2, and P3, and
to see that this leads to the singularity of Fig. 11 with |Il’leﬁ]ey pass through three distinct poipts, p, andps. Conse-
151, andl, that belong to one flat pencil. Note that an equigyently, no line couple from these lines can be simultaneously
lateral triangular moving platform fulfilis || p1p2, and  concyrrent with the intersection line of the three planes P1,
Ig || P1P2- P2, and P3. This precludes the coincidence of a line-pair of
Case 2: Lindl, € Fj,(5,k) € {(1,4),(2,5),(3,6)}, 1. € {1, 1,15},
Cji: LetF .4 be a category representing flat pencil. Based on | jnes1,, 15, 1, move such that each one is perpendicular to
the symmetry of the tripod, we consider only two cadgs= 1> planes P1, P2, P3, respectively. Since these planes are distinct,

(equivalenttd,, =13) andl, =15 (equivalent td,, = l¢). any two lines of this group cannot coincide regardless of the
Case 2.11, = 1, (equivalent tol,, = l3): This case is configuration of the robot.
identical to Case 1.B, = l,. Based on the above arguments, we conclude that the point
Case 2.21, = 5 (equivalent tol, = lg): In Sec- singularity of the tripod of Fig. 4 is not possible because the

tion VI-B-4, Case 4, we proved that if linds, 14, and lines of I" are architecturally distinct (regardless of the robot

1; are coplanar then the singular configuration in Fig. 1€onfiguration).
forms. This completes the analysis of the parallel singularities that
Case 3: Lind,, € S, (4, k) € {(4,5).(4,6),(5,6)},1,, € characterize the family of composite serial in-parallel robots of
C;r: LetSy4; be a category representing flat pencil. There afEable I. To complete the singularity analysis for each robot in
three distinct cases to be considergd: = 1; (analogous to thistable, one should find the serial singularities stemming from

I, =1),1, =13, andl, = l;. singularities of the IIK matrix of each robot. The serial singu-
Case 3.11,, = 1; (equivalent tol,, = 1,): Same as Case larities of the RSPR and the USR robots were analyzed in [27]
22, based on their IIK matrices [24].

Case 3.2, = l5: In Section VI-B-4, Case 5, we proved Theresults of the analysis of the parallel singularities indicate
that if linesls, L, andl; are coplanar then S3 singularitythat there are three general parallel singularities, S1, S2, and S3,

forms. all of which are connected to the general complex singularity.
Case 3.3, = lg: This case leads to a special case of SRarallel singularities of lower rank were identified as special
singularity (Fig. 13). cases of S1, S2, and S3.
Proof:

1) 14 || PO 15 || PO (corollary Cr2) therefor&S,s || PO. VII. CONCLUSION

2) In a singular configuratiol; € PS4; and?Sy; € lg. This paper presented the analysis of the parallel singulari-
3) by € 1y, by € 1; andbs € lg; thereforeb; € ©Sy5, ties of a class of 14 composite serial in-parallel robots having
by € PSy;, b € PSy; and plane BO fulfillsBO = PS4; || a common tripod mechanism. A unified Jacobian formulation
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of this class of robots was achieved by formulating a line-baseg 5]
Jacobian matrix of the tripod mechanism (called here as the
common parallel submechanism), which is an inversion of th 16]
equivalent mechanism of the Stewart—-Gough 3-3 and 3-6 robots.
This line-based formulation provides a convenient method for
analyzing the parallel singularities of this class of robots utiH{17]
lizing line geometry.

The analysis revealed three general cases (that are in fact spe-
cial cases of the general complex singularity) of parallel singuf1s]
larities that are common to this family of robots. All other sin-
gular configurations were shown to be special cases of the gel[il—
eral complex.

Even though this family of robots suffers also from Hunt's [20]
[1], [39], [40] and Fichter’s [38] singularities, which are typical
of 3-3 and 3-6 Stewart—-Gough platforms; nevertheless, theg;l]
have different interpretation in its working capabilities. It
has been shown that rotation of the moving platform by 90 [22]
about the Z axis which leads to Fichter's singularity in the
Stewart-Gough 3-6 and 3-3 platforms, or aligning one of the
links with the moving platform plane which leads to Hunt's 3
singularity, does not correspond to parallel singularity of the
robots of this family.

This geometrically-based analysis of parallel singularities,[24]
complemented by serial singularity analysis and a comparison
between the USR and the RSPR robots [27], was an importars)
factor in the design and construction of a compact and a light-
weight RSPR robot for medical applications.
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1 Introduction

Line geometry has been applied by several researchers to gta
kinematics and statics of parallel manipulatpts-7]. Line geom-

Geometric Interpretation of the
Derivatives of Parallel Robots’
Jacobian Matrix With Application
to Stiffness Control

This paper presents a closed-form formulation and geometrical interpretation of the de-
rivatives of the Jacobian matrix of fully parallel robots with respect to the moving plat-
forms’ position/orientation variables. Similar to the Jacobian matrix, these derivatives are
proven to be also groups of lines that together with the lines of the instantaneous direct
kinematics matrix govern the singularities of the active stiffness control. This geometric
interpretation is utilized in an example of a planar 3 degrees-of-freedom redundant robot
to determine its active stiffness control singularity.

[DOI: 10.1115/1.1539514

matics matrix. Finally, an example of this singularity for a planar
degrees-of- freedom redundant parallel robot is presented in a
finess modulation singular position.

etry is used because the rows of the Jacobian matrix in a linearly
actuated fully-parallel manipulator are the &ker line coordi-
nates of the axes of its extensible linlg. Hence, linear depen- 2 Jacobian Formulation

dency of these lines determines the conditions for instability and
singularity of a parallel manipulator as Dandurd®di has shown
in the context of stability of spatial grids.

In contrast to the numerous investigations devoted to the f
mulation of parallel manipulators’ Jacobian matrix e[d0—-13,
there are only a few studies addressing the formulation of i
derivative. Dutreet al.,[14] addressed this problem and obtaine
a closed form analytic expression for the derivative of the inver %
Jacobian matrix with respect to time and with respect to the activ
joint variables. Merlet and Gosseljd5] formulated the time de- J

Consider a general Stewart-Gough type parallel manipulator
subject to a wrenchFg,,=[fl,, .mi,]" applied by the en-
vironment, Fig. 1. Let the position/orientation vector of the
oving platform relative to world coordinate system be
=[x,Y,z, 0X,0y,02]T, wherex, y, z are the Cartesian coordinates
thd 0y, 6y, and g, are three orientation variables of the moving
latform, and letx denote the end effector twist argdthe corre-
onding active joints’ rates.
For parallel manipulators, the commonly used expression of the
acobian matrix is:

rivative of the Jacobian of a fully parallel manipulator for use in

acceleration analysis.

L. JQ;
Duffy [16] presented the infinitesimal motion and stiffness q=Jx, (Jij: I) (1)

analysis of a planar parallel manipulator and obtained a stiffness \

ax;

matrix of the manipulator with a preloaded spring model. Hgnhich is the inverse of that of serial manipulatorgJg, (J;;
showed that the part of the stiffness matrix that corresponds to theyx; /Jq;).

preload effect is a product of two matrices having line-coordinates|n this paper we use the Jacobidn,n Eq. (1) to map the end

as their columns.

effector twist,x, to active joint ratesf]. This Jacobian matrix is

This paper is organized as the following: the first part, sectiordso used to relate the required active joints’ forcesfor a de-
2 and 3, formulates the derivatives of the Jacobian matrix witired external Wrencﬁe=[fl ,ml]T to be exerted on the environ-
respect to the moving platform position/orientation variables andent (F,= —Fen)-
associates a geometric interpretation to these derivatives as groups
of lines. These derivatives play a major role in stiffness analysis Jr=F, (2)
and controlmodulation [17,18], dynamic manipulability analysis
[19], and force-controlled compliant motiorj44]. The second
part, section 4 emphasizes the contribution of these derivatives to

manipulator’s rigidity and active stiffness control and relates each
one of these Jacobian derivatives with a direction of the controlled
stiffness. Section 5 relates singularities of the Jacobian derivatives
with singularities of the stiffness control scheme and singularities
of the derivatives of the instantaneous direct kinematics matrix,
presented in the next section. Section 6 shows that the stiffness
modulation singularities can be obtained by line-based interpreta-
tion of the Jacobian derivatives and the instantaneous direct kine-
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Contributed by the Mechanics and Robotics Committee for publication in the
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Fig. 1 Typical Stewart-Gough manipulator
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Fig. 2 Static equilibrium on base and moving platform

) ) o Fig. 3 Lines of the Jacobian in W (world coordinate system )
Using the loop closure methdd9], or the static equilibrium

method[4,9,10, along with Egs(1) and (2), respectively, yields

the commonly used formulation of the Jacobian matrix. 0 -p, By
T ("Rpuyxiy’ [px]=| P, O  —py 8)
J= A 3) “pPy Px O
Tg (WRPUGXTG)T Equations(5) and(6) yield:
0 - ' : : . J’=B"!A 9)
wherel; denotes a unit vector along théh active prismatic joint

pointing from its joint at the base to its joint at the moving platwhereB ! is given by:

form. The platform-attached and the base-attached coordinate sys-

tems are referred to by the lettdPsand W, respectively, Fig. 1. B-1— ' 0
Accordingly, "R, is the rotation matrix fronP to W, andu; is the [-px] |

constant position vector of th¢h joint in P, Fig. 1. L . .
Contrary to"Rpu;, which is a varying vector iW, the vector

In order to interpret the Jacobian matrix as lines, the following . S 2. . S
basic definitions of line geometry are reviewed. A given sextupl8t IS constant inV. This simplifies the expression of the derivative
of JT. In this formulation, the lines of pass through fixed points,

of numberg 1,1,y .lyz.lmx. I my.Im2] | rEPresents a line in space . - > :

only when it belongs to a five-dimensional quadratic manifoli: in W and therefore their derivatives are easily shown to be

calied the Grassmannid,20], the Plicker hypersurfacg21,22  n€s as will be shown later. o . o

or Klein quadric[6,20] or, in other words, it fulfils Eq(4). The physical interpretation of multiplying a Rker line’s co-

ordinates by the matriB ! is a translation the line while main-

Ldmxt Loylmyt 1210, =0 (4) taining its direction. Figure 3 shows a 6-6 Stewart-Gough plat-

Observing Eq(3), it is clear that the rows of the Jacobian ard®™M manipulator with the lines of the Jaccib_lan\Ahln_dlcated by

the Plicker ray coordinates of lines along the prismatic actuator$lin arrows. Another important feature Bf — is that its determi-

This geometrical interpretation is correct in a coordinate systef@nt is equal to 1, which means that the above multiplication, Eq.

having its origin attached to the moving platform. In this reprel9), does not add to the singularities &f

sentation each row of the Jacobian matrix is a functiofRft, 3 ormyation of the Derivative of the Jacobian

and the direction numbers &f, which are both functions of the .

moving platform position. Matrix

(10)

The derivatives ofJ' with respect to the moving platform’s

2.1 The Lines of the Jacobian Matrix in World Coordinate l;i))(()sition variables is obtained from E¢) as:

System. Consider another representation of the Jacobian mat
in the form: dJ" dB?! dA

—= +B71t (11)
Nr=F, (5) dx - dx

dx

_reT o THT The matricesdJ"/dx, dB~/dx, dA/dx are three-dimensional
where P, =[f,,my]" represents the wrench exerted by the basgex 6x6 matrices for non-redundant six degrees-of-freedom ma-

LastilplerstiI::?nlqaths(etar':?gs\llgguglt?;fr?srn;n%nr(teh?eesre“r/ilﬁrogm?:nt'orfleg'og: B|¥ipulators. Theath plane of these matrices is their derivative with
9 P q P Doy Fe respect to theth position/orientation coordinatg;, of the mov-

tains: ing platform.
A7=BF, (6) The multiplication in Eq(11) is performed plane by plane, i.e.,
where: the derivative ofJ' with respect to theth position/orientation
' variable is obtained by multiplying thi¢h planes otlB~/dx and
i [P | 0 dA/dx with A andB ™1, respectively.
A= - - = } (7) The derivative ofB™! is simple and yields a matrix whose
byxly +r beXle [p>] 1 structure is similar t&~* so the first expression on the right hand
| —3X 3 unit matrix side of Eq.(11) yields a matrix whose columns are the translated
b, —position vector of the spherical joint of thiéh prismatic ac- lines of A under the transformatiodB~/dx. If the derivative
tuator at the base iW coordinate system. dA/dx yields a matrix whose columns are also lines and the trans-

[px]—skew-symmetric matrix representing vector multiplicationlated linesB~*dA/dx intersect the lines ofiB~*/dxA, then the
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derivative ofJ" is also a matrix with lines as its columns. This isVhere the abbreviations, and c,, stand for sinx and cosx
true since any linear combination of two given intersecting linggspectively. ] o )
spans a flat pencil of ling21]. Substituting Eq(22) in (14) and eliminatingdy; /Jx; yields:

3.1 Derivative of the Matrix A. The matrixA in Eq. (7) is i g Ip;
> ST (bxp) T+
i i

|
composed of the lines along the robot’s prismatic joints. Each unit 8_Xj -
vector along these lines is characterized by its direction cosines
a;, Bi, andvy;, Eq.(12).
%i

li=[coga), cogp;), cogy)]" (12) _ _ _ _
. . ) . N The first and the second brackets in the expressiatt 66x; in
The matrixdA/dx is a three-dimensional66X 6 matrix with the Eq. (23) are the 6<1 column vectorsil; /da; and dl; /13, , re-

ith plane,gA/dx; , being the derivative oA with respect to theth  gpeciively. Both these brackets represent lines according toEg.
position/orientation coordinate; , of the moving platform. Since anq it is easy to see that both lines are perpendiculdy. t@he

A has the lines; as its columns, we are interested in finding th%xpressionsaai /ox; and B, 1dx; are scalars. Consequently, the
derivatives of these lines. columns of JA/dx; in Eq. (13) are lines that pass through the

Using Eqg.(7) while keeping in mind that the vectoly are  gpherical joints in the pointb, and belong to the flat pencils of
constant one can write: dli lda; and dl; /9B, . This interpretation will prove to be helpful
IA in section 6 where geometric interpretation to the stiffness modu-
= (13) lation singularities is sought.

[r (byxr)TT

T

a;>=a;

C,S
[

Pi _|: _Sailovc_

ri:

i

a,dl,

IXi [ X O Summarizing this section, we conclude that the lines of the
where derivative of A are perpendicular to the lines &f and intersect
them in the pointsb;, i.e., in the spherical joints at the base
oy dli day ’9_|i‘9_ﬁjJr KR (14) platform. This fact is used to show that the derivative of the Jaco-
X, da; o IB; I dyj I bian matrix, Eq.(11), is also a group of lines.

In order to write Eq.(14) in a matrix form, we define three 3.2 Explicit Expressions ofd,, Jg, and J,. The explicit
matricesdA/da, dA/dB, anddA/dy. expressions of,,, Jg, andJ, which constitute the derivative of

A, Egs.(17) and (16), are developed below. Figure 4 depicts a
%: ﬂ ol ﬁ: ﬂ ‘”“} %_[ﬂa_ln} fully-parallel robot with six independent closed loops. Each loop
da |day  dan| 9B |dB1  IBnl Iy |Iy1  IYn is governed by the loop equation:

. ) ) (15) p+WRpUi = bi + QiTi (24)
We aIsp de.flne.]dai, Jag,» ‘].dyi as three diagonal matrices havingyhere g represents the length of thieh prismatic joint,p the
on their main diagonals thi¢h columns ofJ,, Jz, andJ,, respec- position of the moving platform iW. Taking the time derivative

tively, whereJ,,, J5, andJ, are given by: of Eq. (24) yields:
S _ 9P _n e p—"Ryu X "eP =gl + g/, (25)
fmn Xy P %y’ mn 9Xn where "wP the angular velocity of the moving platform .

Using these definitions one can write E@3) in matrix form as: Rewriting the right-hand side of Eq25) in terms of the vector
of linear/angular velocities of the moving platformx

JA  JA JA JA =" (Yo" T1T. vi :
= dt e da, o=, ar) PN, yelds o
X  da P dy p—"RpU; X “aP=[1,[ — ("R,u;) X ]]x=M;X (26)
The derivatives of the lines with respect to their variatilesep- Expressior; in Eq. (25) is expressed in terms éfby using the
ing in mind thatb; are constantare: velocity relationg=Jx with reference to théth row of J asJ;,
) and using Eq(12) for I;:
Al T T 9T ; T
ﬁ_ai:[lvaf Ima] lva:[_SIn(ai)vovo] A Coqai)‘]i
_ gili=| coIBi)Ji [x=N;x  N; e ®3*® (27)
lma:[bix(_sm(ai):O,O)]T (18) cog vi)J,;
dl; oo ] N Substituting back into Eq25) yields:
or,_lBi_[lvB lmﬁ] Ivﬂ_[ov_SIr(Bi)vo] —sin(a;) &;
Img=[0, (0~ sin(),0)]" (19) G| —SIAOA | =[MiZNJk M N eR= e (28)
—sin(y;) ¥,

al; -
’7_')’i - [ll—y I-Im'y]T |v7= (0.0~ Sm(’}/i)]-r

lmy=[0;x(0,0,—sin(y;))]" (20)
It can be seen that Eq&l8)—(20) are also lines that intersect the
lines of the matrixA at pointsb; .
For each lind;, the direction cosines are related by E2):
cog a;)?+cog Bj)*+cog y)?=1 (21)

Differentiating Eq.(21) with respect to; and solving fordy; / x;
yields:

3y " CaSq da; T CpSp B
aXi  CyS, X C,S, dX

(22) Fig. 4 Kinematic closed loops
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Solving Eq.(28) for its unknownsa; , B;, and; yields: 3.3.1 Formulation of 8 Ydx A. The derivatives of3 ™!
are simple and can be written as:

- . -1
@;= -—[MiNi]J v Bim| =7 [Mi=Nilz |, -1 0
q; sin(e;) i q; sin(3;) _
| A<D (34)
IXi
Y= q; sin(y;) [Mi—Ni]s|X (29)  The last three derivatives op <] with respect to the orientation
angles of the moving platform are three null matrices.
. . . Let T1 be the three dimensional matri8~*/dx A and T1k/
WEere[Mi—gl\g]j 1S thekj]th rr]ow Of['\]f'i_Ni]' Jzé' 2,3 be thejth column of itskth plane,j, k=1, ... 6. Thefirst three
quation(30) gives theith rows ofJ,, Jg, andJ, as: planes ofT1 are given by:
1 -1 T11'=[0 0 0 O cosy) -—codp)]"
[Ja]i:[ﬁ[MiNi]l}v [Jpli= s-—)[MiNi]z}v , ' P
q; sin(ey g; sin(B; T12=[0 0 0 —cogy) O cose)]"} (35)
4 T13=[0 0 O co$B) -—coda;) O]
J)i=|——=—[M—N; 30
L2 q; sin( ')’i)[ ' ']3} (30) The last three planes B~ Y/dxA, i.e., T14 T15andT16, are

66 null matrices. The special forithe first three Ploker co-

This completes the formulation of the necessary terms in(Eq). ordjqates are zeyof T11, T12, andT13 shows that the lines of
and, thus, the derivative d is fully defined and proven to be a dB™/dxA are lines at infinity{23].
matrix whose columns are lines. These lines are perpendicular t%.s.z Formulating the Expressions Bf 19A/ax,. Accord-

the lines ofA and interest them at the spherical joints at the base, . . .
b; . What remains is to show that the supm of theJ terms in(Ed). Ing to Eqs.(17) and(10) we obtain the following expressions for

gives a set of lines. the iFh cglijmn ofB"19A/dx; . Let T2 be the three di_mensio_nal
matrix B”*dA/dx. We refer to thekth plane of this matrix,
B~ 19A/ax,, by the abbreviatiom2k wherek=1 ... 6. The ex-
3.3 Intersection of the Lines ofdB~Y%dx;A and the Lines pressions off21 throughT26 are given in the Appendix-A2.
of B~*dA/dx;. Recalling the definition oK and matrixB (sec- By substituting the expressions of thix columns ofT1k and

tion 2) and observing Eq(11), one concludes that the last threel2k, k,i=1...6 in Eq.(32) one can see that E(B2) is fulfilled.
planes ofdJ/dx, i.e., 3/ dx, (k=4,5,6) are the translated lines of This means that the lines dil and the lines off 2 intersect each

9Aldx, (k=4,5,6) under the transformatidi*. other. This completes the proof that the derivativesbfwith
This can be written as: respect to position variables are groups of lines. In total, we ob-
tained 36 lines divided to six line-sextuplets with each line-
o3T A sext_qplet r_epres_,enting_the derivative .il_ﬁ with respect to one
—_ Bl i=456. (31) position/orientation variable of the moving platform.
% % 3.4 Simulation Results. Numerical and graphical simula-
) o ) tions are given below in order to visualize the results. Figure 5
It remains to prove that the derivatives with respect to the Cartgnows the lines of the Jacobian matrix with arrows indicating the
sian coordinatesiJ/dx; for i=1, 2, 3, represent lines. In order togijrection of the internal forces of the linear actuators. The dashed
prove this, one must prove that the linesd ™ */dx;A intersect |ines in Fig. 5 are the lines of the derivative 3f with respect to
the lines ofB™*9A/dx; . the x coordinate of the moving platform.

The following proof relies on the condition of intersection
between two given lines,1=[ly,l5,13,04.15.16]" and m
=[m;,m,,mg,m,,ms,mg]". This condition is given in Eq(32)
and has the interpretation of the moment of a force acting alor~
line | about linem [23].

[1my+1oms+1smg+1,m;+1smy,+1gm;=0 (32)

This is proven symbolically using Maple@ symbolic manipu-
lation program and also verified numerically with a numerical , |
and a graphical simulation using Matlab®. ’

Theith column of A andith row of J are given by Eq(33).
Theith rows ofJ,, Jg, andJ, are given in Appendix-Al.

\

AN
\
“A

I

‘]i = [Caivcﬁiycyiv poBi - pycyi + biyc'yi - bizCBi’ - pZC(xi + pXC‘yi 014 ;
+b; c,—bjC,,PyCo—PxCa th; Cs—Dbj C, ] 0.05
1274 Y Py a; X* Bi ix"B; ly~a (33) .
AI:[Cai'cﬁi’cyi'biycﬁ_bizcﬁi'bizcai_bixc'yi’bixCBi_binai] .0'1%

In the following sub-sections we formulate the derivative
dB~Y/dx A andB~19A/dx; . The resulting expressions are used
in Eq. (32) to complete the proof that the derivatives of the Jac@sig. 5 The lines of the Jacobian and the lines of its derivative
bian are lines. with respect to x coordinate
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Numerical Example:

The following are numerical results of a simulation of the Stewart-Gough 6-6 platform with a moving
having radii of 0.05 and 0.09 m, respectively. The moving platform is positiongd=ht0.1, —0.02, 0.0

and rotated 30 degrees

about the axi$1, 1, 1] relative to the Cartesian coordinate system in Fig. 5. Equat@B)gjive the transpose of the Jacobian matrix and
its derivatives with respect to x, anj, as an example.

~0.5742 —0.6348 —0.2662 —0.1886 —0.6702 —0.579
-0.3223 —0.2715 —0.0610 —0.3012 0.0799  0.3001
07526 07234 09620 09347  0.7379  0.75]9
“| 00154 00322 00245 —0.0441 —0.0349 0.0109
~0.0269 0.0070  0.0317 0.0196  0.0107-0.0270
0.0002 00309  0.0088 —0.0026 —0.0328 0.0190
3.3431 24014 49488 58132 27368  3.4710
—0.9232 —0.6932 —0.0866 —0.3424 0.2661  0.9080
A" 21555  1.8473  1.3640  1.0626 24570  2.2932
o | 00440 00823 00348 —0.0501 —-0.1161 0.0330 (36)
-0.1226  0.0976  0.1547 —0.0075 —0.0213 —0.1594
-0.1208 —0.0703 —0.1163 02719 01316  0.013
(-0.1226 0.0976  0.1547 —0.0075 —0.0213 —0.159)
-0.0433 00076 00103  0.0355 —0.0043  0.0423
g(J) | —0.1121 00885 00435  0.0099 —0.0189 —0.1386
96, | —0.0169 00105 00032 0.0057  0.0005 0.01§5
00373 —0.0272 —0.0252 0.0011  0.0059  0.0474
[ 0.0041 -0.0092 —0.0054 0.0004 —0.0019 —0.001)

It is easy to see, using Eqel) and(32), that the columns ad”
and its derivatives intersect each other and that the columns of tress effect of introduced “preloadbias forces stemming from,

derivatives ofJT are a group of lines.

In the remaining part of this papésections 4—pthe impor-

Unlike the definition in[24], this definition includes the stiff-

e.g., gravity or external loadn non-redundant manipulators, or

antagonistic actuation in redundant robots. This effect is expressed

tance of the derivatives af" is emphasized for active stiffnessby the termaJ;/ dx;7, which is referred to as the “active stiff-
control (stiffness modulationin redundant parallel robots. It will ness” or “antagonistic stiffness[25]. The other term in Eq(37)
be shown that, in particular, this line-based formulation simplifigs referred to as the “passive stiffness” of the manipuldior,26.

the analysis of stiffness modulation singularities.

Denoting thejth column ofJ by JJ and treating the m actuators of
the robot as springs with a stiffness mati; in joint space

platform and a base platform

L L . results in:
4 Application of the Derivatives of the Jacobian to

Stiffness Control —=JTK I

Stiffness analysis of parallel manipulators plays a key role in 9Am 9X;

determining the degree of adequacy of a given robot to a specificstiffness modulation is possible when actuation redundancy is
task that involves interaction with the environment. This sectigtroduced to the system, thus, allowing the use of antagonistic
relates the Jacobian derivative with active stiffness control, alggtyatiorn[17,27—-29. In this case, the actuation forces are divided

known as stiffness modulation. The interpretation of this derivanto 7 and 7, , where 7, denotes the actuation forces balancing

tive as lines is helpful in determining to what extent the stiffnesge external load and, denotes the internal actuation fora@s-
can be controlled. tagonistic actuation forcgsAntagonistic actuation forces do not
affect the net force applied by the moving platform on its envi-

4.1 Active Stiffness and the Derivative of the Jacobian. ronment since they belong to the null space of the Jacobian ma-

The stiffness matrix maps the change of the wrench that the roliox, Eq. (39).

applies on its environment with the twist deflection of the moving

platform. Denoting theth row of J7 by J!, one can write the

elements of the stiffness matrik,, as:

b _ o0l
Uax ax; X;

a7 JdQqm

‘]Tﬁ—‘]rz _

i (?Xj - = (38)

=7t1 J7=F J7=0 (39)

Equation(37) can be rewritten in a matrix form as in E@0),
where the matrixdJ'/dx, is a three-dimensional matrix, as in Eq.
(11), with the dimensions of 8mXx6 for m actuators fi>6).
The multiplication in Eq.(40) should be performed according to

T
T
7% (37)
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Eq.(37), i.e., in order to obtain the active stiffness elemédt;, , Previous workq16,25,26,28 addressed the problem of active
one should take the scalar product of tlie row of thejth plane stiffness generation via redundancy and mentioned “second order

in the three- dimensional matriglJ"/dx, with 7. geometric singularities” that prevent exact stiffness modulation.

All the above-mentioned works dealt with non-fully parallel ma-

g7 237 nipulators having serial chains supporting the moving platform.
K=——7+ JKJ=K1+K2 Kil= i K2=J"Ky4J The formulations in these works lead to a matrix similad tthat

(40) is composed of an augmented Hessian matrix. The singularities in
stiffness modulation were attributed in these works to both the
4.2 Stiffness Directions and the Derivative of the Jacobian singularity of the Hessian matrix and the singularities of the Jaco-

Equation(37) can be written in a matrix form as: bian. However, geometrical interpretations were given to the sin-
gularity of the Jacobian only. In the above-mentioned investiga-
AFo=KAxXx=KIAx;+K2Ax,+ K3A X5+ K4AX, tions the definition of the Hessian matrix varied from one work to
another. Yi, Freeman, and Tesét6,26 defined an augmented
+K5Axs+KBAXg (41) Hessian matrix having the Hessians of the inverse kinematics

functions of the serial chains, whi[@5] defined this augmented

whereK' denotes thé'th column of the stiffness matri¥<, AF, Hessians matrix based on the Hessians of the auxiliary equations
the change in the reaction wrench of the moving platform on it§at relate the values of passive joints with the values of the active
environment for a positional perturbatidx. ones. These matrices were not given a geometric interpretation as

Equation(41) shows tha', theith column ofK, is the stiff- lines of the Jacobian and it_s deriva_tives since the Jacobian matrix
ness in thex; direction since it determines the net change in thef @ non-fully parallel manipulator is generally not composed of
moving platform’s reactionAF,, for a perturbation in they di- rows of lines. o ) .
rection. Larger norms of this column cause higher reaction forceThe present investigation shows that an arbitrary stiffness
of the robot for the same displacement. modulation is precluded iflA/dx or A are singular. We also ob-

By Egs. (40), (41), the ith derivative of the Jacobian matrix tain, _fc_)r the first time, a geometric interpretation to the singularity
maps the joint effortsy, into theith column of the active stiffness conditions ofdA/dx.
matrix, K1, thus, modifying the stiffness of the robot in its corre-
sponding direction in the Cartesian world.

Next, the effect of the singularitiegank deficiency of the . . . . ~
Jacobian derivatives on stiffness modulation capabilities § Geometric Interpretation of the Singularities of J

presented. In this section we will prove that the singularity df has a
geometric interpretation and is directly related to the linear depen-
dencies of the lines 0bA/dx;. The cases wheré is singular

. . . (rank(@)<n) are excluded since in these cases the robot is singu-

5 _Stlffness Control in R_edqndant Robots and Singu- lar from structural rigidity considerations. We also limit the dis-

larity of the Jacobian Derivatives cussion to the cases where the number of actuatgrylfills m

Equation(37) gives the expression of the elements of the stiff=2n which means that there are enough redundant actuators to
ness matrix. The equation for theh column of the stiffness ma- fully control a column in the active stiffness matrikl, of Eq.

trix is given by: (40).
proof:
AL ar " : N .
Kl=— 74+ J"—= — 7+ J'KJ! (42) From the definition of] and Eq.(11) one obtains
X ax; X

T -1

The fi ibuti J=—(1-3"0")= A+ B‘la—A)(I—JT+JT) (45)
e first term of Eq(42) corresponds to the contribution of the X X

active stiffness gained by redundant actuation. If a given stiffness ) !
is required, then the unknowns in Eg2) are the actuator forces, By Eq. (9) and the fact thaB~! is a non- singular square
7, needed to cause the required stiffness colhnThe general matrix one obtains:

solution of the static equilibrium problertEq. (2)) is given b

[30]: q b q ’ g J7I =B lA)"(BlA)=A*B 1B lA=ATA  (46)

IX;

_ Tt T aT (Note that we usedg *A)*=A*B~1" which is true only ifB~*
=3 Fet(1=37J)¢ (43) andA are of the same rank, i.eA (andJ) is non-singular.

where theJ”" indicates the Moore- Penrose pseudo inversa'of

and (—J7 J") is a projector of any arbitrary actuation intensities
vector £ R™ to the kernel of]J". The minimum-norm solution
for ¢ that satisfies Eq42) is given by:

~.| RN LI -
£=J% K’—JTKdJJ—WJT Fo|=Jb (44)
]

whereJ is given byJ=aJ3"ax;(1-37 J7).

Equation(44) has an exadtcompatible solution in the general
case only if rank §)=n where n is the number of the robots’
degrees-of-freedom. By the definitidnit is clear that ifaJT/ax,« (b)
is rank-deficient then in general there is no exact solution to Eg.

(42). We note that additional singularities dMmay also stem from Fig. 6 Line and flat pencil singularities of the derivatives of

the matrix ( —JT+JT). the matrix A
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(b)

Fig. 7 Line and flat pencil singularities of the Jacobian

S0

59.739333

110.202632

Fig. 8 A planar redundant parallel manipulator in a stiffness
modulation singularity

Applying the properties of the generalized inverse, the first ter

on the right-hand side of in E¢45) vanishes:

BB A B paea

X ( )= X X
—aBilA aBilA—o 47
X ax; (47

then:

- alr N IA

Y gt a1 At

J axj(l J7IH)=B axj(l AtA) (48)

Thus, we proved that the singularity dfstems from the singular-
ity of dA/dx; .

Table 1 Singular values of J ~

3, 3, 3,
1.2050 1.0353 1.3279
0.6957 0.9204 0.7667
9.330%-006 4.7368-016 5.5248-006
0 0 0
0 0 0
0 0 0

6(a)] and point singularityFig. 6(b)] of JA/dx; for a planar 3
DOF non-redundant manipulator. In both configurations the ma-
trix J has a rank of 2, which means that E¢3) has no exact
solution for an arbitrarK’. Figure 7a) and 7b) show flat pencil
and point singularities of the matrik (andJ).

Figure 8 illustrates a redundant planar parallel manipulator with
six linear actuators. The dimension of the nullspace of the Jaco-
bian of this planar robot is 3 or higher. This means that we can
control the stiffness elements in theh column of the stiffness
matrix provided that rank of the matri associated with this
column is no less than 3.

The manipulator in the configuration of Fig. 8 illustrates a sin-
gularity of J (rank{@)<3) caused by flat pencil singularity of
dAlax; since the lines oBA/Jx; intersect in one point as shown
in the figure. The singular values dfare given by Table 1, where
the J, is associated with the derivative of the Jacobian with re-
spect to the X coordinatd, with respect to the Y coordinate and
Jy, With respect to the rotation about the Z axis. The third singular

value is small enough to indicate singularitgractically J has
rank 2 since the formulation of and the SVD process have cu-
mulative numerical errors and because the dimensions in Fig. 8
were given with 6 digits accuragy

Conclusions

This paper presents a line-based analytical formulation to the
derivatives of the Jacobian of parallel robots. The derivatives were
mken with respect to the position/orientation variables of the mov-
ing platform rather than time or active joints’ variables. The Jaco-
bian derivatives formulation resulted in 36 lines divided into six
line-sextuplets, each one representing the derivative of the Jaco-
bian with respect to one position/orientation variable of the mov-
ing platform.

The problem of controlling the stiffness of the robot in Carte-
sian spacdalso known as the stiffness modulation probjemas
solved and each derivative of the Jacobian was associated with
active stiffness modification in a corresponding direction in space.
The significance of the line-based formulation of the Jacobian
derivatives for stiffness modulation was emphasized and used to
interpret stiffness modulation singularities of redundant parallel
robots. It was shown that these stiffness modulation singularities
are function ofA (the instantaneous direct kinematics matard
its derivative. This interpretation allows the use of line geometry
tools for stiffness modulation singularity analysis similarly to the
line-based structural rigidity singularity analysis of parallel robots.
In this sense, this paper adds to the knowledge of previous inves-

The importance of this proof is that it is easy to visualize thégations that analyze the stiffness modulation singularities stem-
lines of 9A/dx; for planar manipulators and special cases of spaiing only from the classical first-order singularities of the Jaco-

tial manipulators. One should recall that the linesi8f 9x; pass

bian matrix.

through the joints in the base platform and are perpendicular toThe authors believe that the line geometry-based formulation of
the actuators. For planar robots, when more than two lines thie Jacobian derivatives facilitates the geometrical interpretation
dAldx; intersect at one point it causes flat pencil singularity of thef rigidity, stability and dynamics that are based on the derivative

Jacobian derivatives. Figure 6 shows a flat pencil singullity.
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Appendix A-1

Theith rows of the Jacobian,, Jg, andJ, are given by:
r N
] Sa; Calp, Caly, ca’_p:cﬂ’_—car_pycy’_+ca’_biycy’_—ca’_bizcﬂ’_
“ q;i’ q4iSa, ' q4iSa, ' 9iS o '
2 2 2 2
—qicy’_+p:sa’_—bizsa’_+ca’_pxcy’_—ca’_bixcy’_ qicﬂ’_—pysa’_+biysa’_—car_pxcﬂ’_-l—ca’_bixcﬂ’_
qisa,- ’ qisa,-
2 2
Calp, Sp, Cply, q,vcy’_—p:sﬂ’_+bizsﬂ’_—cﬂ’_pycy’_+cﬁ’_biycy’_
[Jsli= T , )
q4:5g; q; 4qi5p, 45,
S 2 2 ’
—ca’_p:cﬂ’_+cﬁr_pxcy’_+ca’_bizcﬂ’_—cﬂ’_bixcy’_ —qica’_-l—pxsﬂ’_—bixsﬂ’_+cﬂr_pyca’_—cﬂ’_biyca’_
458, ’ q:5 B,
2 2
(0] Caly, CpCy, Sy, —qicﬂ’_+pysy’_—bivsy’_+cyr_p:cﬂ’_—cy’_bizcﬂ’_
Jyli= ) T, - )
7 qiSy,  4iSy, q; 48+,
2 2
GiCa,PxSy, this, —Cypcotey by ca’_pycy’_—cﬁ’_pxcy’_-l—cﬁ’_bixcy’_—ca’_blycy’}
L qisy,- qisy,- J
Appendix A-2
.,6.

The following equations give the explicit expression of ttte column of T2K, k, i=1, ..
bizcaicﬂi biycaicvi

Sii CoCp CoCy PLaCp  PyCoyCy,
T21=| —,— — — + + ,
i i i i i *] i
pZSii PxCa;Cy, bizsii bixC“iCVi pys‘z"i PxCq;Cp; biys‘z"i bixCaiCBi
— — + s + —
q; i *] q; i i i i
T2 Cflicﬁi szi CB C7i pzsf%i pyCBiCyi bizséi binBiC}/i pzcaicﬁi pXCBiCYi
=|— Nt ) + )
i i i [°] i di i i *]
biCaCps  DiCsCy  PyCaCp PxSh bi Ca,Cp bixséi}
- + ,— — + +
Qi i °] i i *]
2 2 2
CaCy  CpCy Sy PLC, PyS; bicgc, bis, pc,c,
T23=| — ,— =, + + ,
i i i i i i i i
pxsi’i bizC“iCVi bixsii PyCqCy  PxCpCy bin“iCVi bixCBiCVi:|
+ ,— + +
i i i di i i *]

- Cﬁipycyi + CBibinVi + quVi _pzsfs‘*'bizszﬁi

caipzcﬂi—caipycyinLcaibi c,/i—cﬂibizcﬁi
T24=| — ! . :
q; q;
—cyibizcﬁi—#c,/ipzcﬁi—qicﬁi+pysii—biysii pz(_CBipyCyi+Cﬁibiycyi+Qicyi_pzsf?ierizséi)
Qi ' Qi
N Py(—C,bi Cp +C,PCs—diCp+ pysii—biysii) N bi (= CPyCy,+CpbiCyHaliCy, pzs§i+bizs§i)
di di

bi, (=€, bi,C4,+ €, PoCs —GiCs + PyS3, —bi S3) PoCaPoCp— CaPyCyyt Cabi €y = CaiDi C)
' Qi

- di
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2 2
Px(— Cyibizcﬁi FCy P2~ diCp + PyS,, — binVi) biz(caipzcﬁi ~CaPyCy,t C“ibiyc“yi B C“ibilcﬁi)

di di
bi, (= Cybi,Cp+CyPoCs ~GiCs T PyS3 i S3)  Py(CaPuCp —CaPyCy+Cabi €y = CabiCp)
+ =
i i

Bi, (= Cybi,Cp,+ CyPoCp — UiCh + pysii B biysz’i)

py(cai pzcﬂi - Caipycyi + Caibiycyi - Caibizcﬁi)

+
i

i

2 2
Px(—Cp,PyCy, + cﬂibiycyi +0iCy, — PSS+ bizsﬁi) pz(CaipoBi— Cu,PyCy, T caibiycyi - caibizcﬁi)

+
i

*]

2 2
Px(— Cnbizcﬂi +Cy,P;Cp —diCp +PyS; — biysyi) biz(cuipzcﬁi— Cq,PyCy + caibiycyi - caibizcﬁi)

i

bix( B Cyibizcﬁi t Cyi pZCIBi - qicﬁi + pys?/i N biysii)

i

py(cai pZCBi - Caipycyi + Caibiycyi - Caibizcﬂi)

+
i

i

2 2
Px(—Cp,PyCy,+ cﬁibiycyi +0iCy, — PSS+ bizSBi) . biy(cai P2Cp,—Ca,PyCy+ caibiycyi - Caibichi)

+
i

2 2
bix( —Cp,PyCy,+ cﬁibiycyi +0iCy,— P,S, + bizsﬁi)

i

2 2
Ca,PxCy, —Ca bi Cy = TiCy, + DS, — b S5,

i

—CqPsCp T CpPxC, +Cy T Caibizcﬁi — Cﬁibixcvi

T25=| - -
°]

_ P S
CVibizC“i CyPzLo; +GiCy, px57i+b|xs7’i

i

P2(—CyPCp +CpPxCy +Co b Cp—Cpbi )

i

i

2 2
Py(Cy D Co = CyP2C, T 0iCa —PxSy, D SY) i (—Co P2Cp +CpPxCy, +Cobi €5 —Cpbi C,))
+ +

i

°]

by (Cy,bi Cay = Cy\PaCa, + UiCa, ~ PuSy, D1 5) PolCaPuCy = Co By €y = 0iCy, + PS5 — by S7)

i

i

17

P(Cy,Di Ca, = Cy P+ 0iCa,~ PuS, D1, S5) Dy (CoPxCy = Co by € —iC, + PS5 — by S%)

°]

i

bi (€01 Co, = Cy\P Loyt UiCa,~ PS5, TD1S5)  Py(CaPxCy,— Cabi €y —iC,, + PS5 — by S5)

+
i

Px(—Ca,PCp, T Cp,PxCy, + Cubi Cp, —

Cp,D1,C) PoCaPACy — Co b1 Cy —GiC,, +PS7, —bi S3)

i

i

[*]

17

P(Cy,Di Ca, = Cy P+ 0iCa, — PuS5, D1 S5) Dy (CoPxCy = Co by €y —iC, + PS5 — by S%)

di

i

by (Cy,Di Co, = Cy\PoCay T UiCa,~ PS5, TD1S5)  Py(CaPxCy— Caby €y —iC, + PS5 — by S5)

+
i

i

2 2
px( - Caipzcﬂi + CBi pXCyi + Caibizcﬁi - Cﬂibixcyi) n biy(cai pxc'yi - Caibixcyi - qic'yi + szai - bizsai)

i

bix( —CqPsCp,+Cp PxCy, + caibizcﬁi — Cﬁibixcvi

)

i
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_ . . _ 2 2 _ . A 2 K &2
caipxcﬁi+caiblxc/3i+q|cﬁi pysai+b|ysai cﬁib,ycai+cﬁipycai 0iCa, T PxSp, b'xsﬁi

T26=| — ,— )
i ;
2 2
Ca,PyCy, —Cp PxCy, + Cﬁibixcvi — (:aibiycyi p,(— c,;ibiycc,i +CpPyCq, ~ UiCo T PxS bixsﬁi)
i ' i
_ . A 2 K 2
. py(cai pycyi—cﬁipxcyi+cﬁibixcyi—caibiycyi) . biz( c,,jiblycai+cﬁipycai 0iCa, T PxSp, bleBi)
i i
2 2
bi (€4, PyCy, = CpPxCy, T Cp DI Cyp = Cabi Cy) Pol—CaPxCp+Cabi Cp +0iCs— PyS,, i S5,
i ' Qi
2 2
B pX(CaipyCyi —CpPxCy + Cﬁibixcyi - Caibiycyi) biz( ~CyPxCp, T Caibixcﬁi +0iCs— PySy, biysai)
°] i
2 2
bix(cai pycyi - C,Bi pXC'yi + cﬁibixc'yi - Caibiycyi) py( - CaipXCBi + Caibixcﬁi + quBi - pysai + biysai)
i ' i
2 2 2 2
py(— c,;ibiycai +CpPyCs —GiCo, T PxSp,— bixsﬁi) . biy( —Cq,PxCp, T caibixcﬁi +0iCq- PySq, + biysai)
°] °]
2 2
by (= CgPy Cuy € PyCa, ~ GiCa + PSF, b1, S5)
i
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Abstract This paper addresses the problem of task-based stiffness synthesis of a
variable geometry three DOF (Degrees Of Freedom) planar robot. The
synthesis considers the case where the robot has a limited number of free
geometric parameters and constant actuator stiffness coefficients. This
defines twenty problems of stiffness synthesis, in which, three parameters of
the stiffness matrix are controlled according to task requirements. These
problems are modeled as systems of polynomials in the free geometric
parameters of the robot’s base platform. Using Grobner bases, the solubility
of these polynomial systems is characterized. It is shown that arbitrary
desired values of the Cartesian stiffness elements (k« and kyy) are
unattainable when only the geometry of the base platform is variable. An
example of synthesizing three stiffness elements of the planar robot is solved
and shown to have at most 48 solutions in the complex plane. In a numerical
case study, sixteen real solutions are obtained, of which only eight are non-
singular.

Keywords: Parallel robot, Re-configurable, Stiffness Synthesis, Grobner bases.

1. Introduction

Robots are wused to perform various tasks involving complex
manipulations and interactions with their environment. Consequently,
there are inevitable compromises when using a fixed-geometry robot for
some tasks. To overcome this problem, the use of variable geometry
robots is considered. In particular we concentrate here on variable
geometry parallel robots. These robots can change the geometry of their
base/moving platforms to accommodate the required characteristics, e.g.
stiffness, specific to each task.

Researchers used various methods to enhance parallel robots’
capabilities for better fitting task requirements in terms of stiffness,
singularity avoidance, and inclusion of specific paths in the workspace.
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Actuation redundancy was used by Yi and Freeman (1993), Kim et al.
(2000) for stiffness modulation. Kinematic redundancy of the robot for a
given task was used by Merlet, et al. (2000) for path inclusion in the
workspace and singularity avoidance. Stiffness/compliance synthesis
algorithms were presented by Huang and Schimmels, (1998), and
Roberts, (1999) for a system of springs supporting a rigid body.

Works directly addressing variable geometry parallel robots are
limited in number. Zhiming and Song (1998) investigated the design
aspects of modular Stewart-Gough platforms with workspace and joint
limits considerations. Zhiming and Zhenqun (1999) presented an
algorithm for identifying the parameters of the joint locations on the base
in a modular Stewart-Gough platform. Merlet, (1997, 2000) presented a
design algorithm for achieving a constant-orientation workspace of
Stewart-Gough robots, which can be adapted for workspace modification
of variable geometry robots*.

In the present investigation, a case study of stiffness synthesis for a
point in a given path of a planar 3 DOF robot with a variable geometry of
its base platform is presented. The aim of the synthesis is to obtain a
specific stiffness in a given position/orientation of the robot’s moving
platform. Under a simplifying assumption that the stiffness coefficients
of the redundant actuators that change the base geometry are
considerably larger than the coefficients of the other actuators, this work
may be viewed as an algorithm for changing the geometry of the base
platform of a variable geometry 3 DOF planar robot for obtaining a
required stiffness in a point along a path specified by the given task.

2. Variable Geometry Planar Robot

The planar robot of Fig. 1 has an
equilateral triangular moving
platform connected to a circular base
by three kinematic chains composed
of a slider on the circular base, a
revolute joint, a prismatic joint, and
a revolute joint on its moving
platform. The sliders on the circular
base control the geometry of the B=1= prismatic © = revolute
base platform and the prismatic  Figure 1. Planar Robot with variable
actuators manipulate the moving geometry base platform
platform. This introduces a kinematic redundancy in this three DOF
planar robot. The objective of this paper is to determine the geometry of

geometry
base

* The authors acknowledge the valuable discussions with J.-P. Merlet on this subject
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the base platform by computing the locations of these three redundant
sliders for achieving a desired stiffness goal in a point of a path defined
by the task.

3. Stiffness Polynomial Formulation

In this section, the stiffness matrix of the robot of Fig. 1 is formulated
as a function of the positions of the sliders on the circular base and is
described in a Platform—attached Coordinate System (PCS). The location
and orientation of the moving platform are given by the task while the
orientations of the prismatic actuators are given by the stiffness
synthesis solution and are easily transformed to desired positions of the
redundant sliders on the circular base.

The transformation of the desired stiffness from World Coordinate
System (WCS) to PCS is given by, Tsai (1999):

R O
pKdes:ATWKdesA A:|:0 R:l 1)

where R is the 3x3 rotation matrix from the PCS to WCS, PK, and
“Kges are the desired stiffness matrix in PCS and WCS, respectively.
Hereafter, all vectors and matrices are represented in PCS.

The only controllable geometric variables by the sliders’ locations are
the unit vectors of the prismatic actuators’ axes, (ii ,1=1,2,3), Figs. 1-2.

li=a;8,+b; &, =123 @)

where the symbol » indicates a unit vector, €1 and €2 are unit vectors
indicated in Fig. 2, Ti is a unit vector along the 1t prismatic actuator, and
ai, bi are the projections of I, on & and &q. In order for I; to be a unit
vector, ai and bi (1i=1,2,3) must obey:

For an equilateral platform, Eq. (3) is an ellipse in ai-b; plane:
aZ+b?+ab-1=0 =123 (4)

A simplifying assumption is made that
the sliders on the circular platform have
a mechanical means to lock rigidly on
the circular base once the desired
geometry of the base is obtained or that
the stiffness coefficients of the sliders
are considerably larger than the
stiffness coefficients of the prismatic
actuators. With  this  simplifying A
assumption, the stiffness matrix

depends only on the stiffness coefficients Figure 2. Gleometril;: r;otations for the
of the three remaining active prismatic planar robo
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actuators. These three active actuators are assumed identical having
stiffness coefficient kq. The rows of the Jacobian matrix of the robot of
Fig. 1, with its sliders locked on the circular base, are the Plicker line
coordinates of the three axes of the prismatic actuators, Eq. (5).

al+b% bl‘/gé 000 %(a1+b%j—%rbl
J= —a%ﬂ’% —azﬁg—bzﬁg 000 —r(‘a%+b%j (5)

A 33‘@4 000 %(_a%—b3)+%ra3
The 6x6 Stiffness matrix of the planar robot with three identical
prismatic actuators is given by K =kg JTJ, Tsai (1999), and the reduced

planar 3x3 stiffness matrix is then, obtained. Notations of the elements
of this symmetric stiffness matrix are given in Eq. (6).

kxx kxy kxe
K=k, ky ky (6)
kxe kye kee
4. Stiffness synthesis with limited number of

variable geometry parameters

Given a desired triplet of stiffness elements from the upper triangular
part of K in Eq. (6), the problem of stiffness synthesis with limited
number of variable geometry parameters deals with finding the geometry
of the base platform (i.e., finding ai, bi, i=1,2,3) of the robot in Fig. 1.

To fully depict the 3x3 stiffness matrix, all the six equations in Eq.
(7)given below must be fulfilled together with the three equations in Eq
(4).

Since the planar robot of Fig. 1 has a kinematic redundancy of order
three, only three stiffness equations from Eq. (7) can be simultaneously
fulfilled.

k =0,1=123 | n; #n,#n; € {xx,xy,x0,yy,y0,00} (7)

nj Didesired
Note that this results in (2)220 systems of six polynomials with each
having a total degree of 2 in aj, bi (1I=1,2,3).

Generally, we ask whether it is possible to solve this problem for any
such triplet and, if so, is changing the directions of the lines in Fig. 2
enough to allow controlling all such triplets?

To solve the polynomial systems derived from Eq. (4) and Eq. (7) ,the
method of multiplication tables’ eigenvalues (see Stetter (1993)) is used.
The following sub-section briefly describes this method. Further details
can be found in Méller and Stetter (1995) and Cox et al. (1998).
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5. The method of eigenvalues for solving
polynomial systems

Let #[x1..xm] represent the ring of polynomials with variables x1..Xm,
and coefficients over the complex field, @ Let also S={p1,p2,..pn |
P1,p2..pn€ €[X1..xm]} be a system of n polynomials with a corresponding
zero-dimensional Ideal .#=<p1,ps,..pn>, F C€[x1..xm]. The variety V(9 of
solution is defined by all the m-tuples of x1..xm such that pi=ps=..pn=0,
1e., V(9)={[x1..Xxm] € @ | p1=p2=..pn=0}. We seek all the solutions of S.

The original system of polynomial equations, S, can be replaced by
another minimal set of polynomials, G={g1...gt}, called standard basis (or
Grobner basis) of the ideal .# using Buchberger’s algorithm, Buchberger
(1965), which is not reviewed here for lack of space. Questions regarding
ideal-membership of a given polynomial to ., solubility of S, and
finiteness of the dimension of V(%) are readily answered when using this
basis, Heck (1997). Also, for lexographic ordering G is a system of
polynomials with successively eliminated number of variables as in the
result of Gauss-Jordan elimination method for linear equations.
However, this elimination method is unfavorable for large systems due to
the computation effort associated with this ordering, Cox et al. (1998).

Two polynomials f,ge@[x,.x,,], are said to be congruent modulo .
,f=gmod .7, if f-ge 4 Consequently, f and g have the same normal form
with respect to G and equal cosets [g]=[f]. A coset [f] of fe #[x1..xm] is the
sub-group of #[xi..xm] in which all its elements have the same normal
form with respect to G, [f]=f+s={f+h | he4. The totality of cosets of the
polynomials in #[x1..xm] is the quotient ring of #[xi..Xxm] modulo .#
indicated by #[x1..xm]/.% 1.e., €x1..Xn]/F={f+7 | fe €x1..Xm]}.

Given two polynomials f, g e @[x;..x,,] then a normal form arithmetic
similar to number arithmetic exists for addition and multiplication:
ne(f+9)=n;(f)+ns(g) and n¢(f g)=n;(ns(F)ns(g)). Since every normal
form is associated with a coset and vise-versa, this arithmetic is also
translated to an associated coset arithmetic in the ring €[xi..xm]/¥
resulting in the fact that @[xi1..xm]/.# is a vector space in @". Let B be a
basis of monomials for this space B={bi, i=1..n}. This means that the
remainder (or normal form) of any fe #[x1..xu] is given by:

nf(f):nf( Zcibi) | c; €e¢,b; €B (8)

i=l.n

or in congruence terms: f= Yc;b; mod & )
i=l.n

Define the monomial basis vector b=[b1, bz, ...bs]t, bieB, i=1..n, then each
polynomial fe #[x1..xm] has a multiplication table M such that:
fb=M;b mod.& (10)
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Since the congruence relation in Eq. (10) indicates that fb-M;be.s
then fb-M¢b=0 for all the points of V(4. Consequently, the
eigenvalues method is based on Eq. (11):

(M; —-fI)b=0 (11)
Equation (11) shows that the eigenvalues of Mt are the values of f for all
the points of V(9. If f is taken as f=x1 then Eq. (11) gives all the
coordinates x1 of the points of V(¢#. Thus, by constructing the
multiplication tables M,;..M,,, and solving for their eigenvalues, all the
values of the coordinates xi...xm for the points of V(%) are obtained. The
minimal polynomials of M,;, i=1..m, when written with xi as its variable,
give the monic generators of the elimination ideals & N €[x;].

There are both symbolic and numerical advantages of this method
compared to standard sequential elimination of variables by resultants,
Raghavan and Roth (1995), Neilsen and Roth (1999). Since this method
is based on Grobner basis construction, solvability of the system of
polynomial equations is readily determined. Moreover, this method is
unaffected by the term order used for the computation of G, which
reduces the computation time when using more efficient term orders
such as total degree order, Cox et al. (1998). Compared to sequential
elimination methods, in this method the numerical computation is kept
to a minimum since numerical values are used only in the computation
procedure of eigenvalues and the solution of each coordinate xi is
independent of the numerical solutions of the other variables and, thus,
it is unaffected by computation errors in the other variables x;.

6. Application to the parallel planar robot

To answer the questions of section 4, the reduced Grobner bases
associated with all the 20 possible systems of equations in the form of Eq.
(7) were computed. A total-degree ordering with ai>bi>az>bs>as>bs was
used for reducing the computation effort of these bases.

The non-solubility of a polynomial system is determined by checking
whether its reduced Grobner basis is {1}, Adams and Loustanau (1994).
Performing this task using Maple® shows that all the polynomial systems
including equations for simultaneously fulfilling the desired values of kxx
and kyy are unsolvable. Consequently, changing the directions of the
prismatic actuators relative to the moving platform is not sufficient for
simultaneously achieving these stiffness elements.

Next, the problem of Eq. (7) for kxx, kxy, and kxg is solved, i.e., all the
stiffness elements in the x direction of PCS are prescribed based on task
requirements. The reduced Grobner basis for this problem, hereafter
called G, with total degree ordering ai>bi1>a2>bz>as>bs has 28 generators
of degrees ranging from 1 to 5 in the variables. The ith column in table 1
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presents the degrees of the ith basis polynomial in the variables
corresponding to ai,bi,azbz,a3,bs. It can be seen that the total degree
ranges from 4 to 8. This basis is not presented here due to lack of space.

Table 1. Degrees of the 28 polynomials of G in the variables

ai

The leading terms of G are given by:

LT= [a32, a9 by, a22, b12, ay by, a12, agay by azay a,, b23, b22 by, b22 ap,
b32 ag by, b32 ag dy. b32 b a,, b32 ayay, b22 b32, b32 byay, b32 4y by, b32 ajay (12)
by2 a3 by, a3 by byay, byS, bydag, byd by, byday, bydby,a; byt ba3by by ]

Based on the finiteness theorem, Adams and Loustaunau (1994), the
system of polynomials corresponding to G is solvable and has a zero-
dimensional variety. This is established by examining the group of
leading terms in Eq. (12) which shows that each variable among
{a1,b1,a2,bz,a3,bs} appears alone as a leading term in G with the
corresponding degrees of {2, 2, 2, 3, 2, 5}. Consequently, the group of all
the remainders in #ai,bi,a2,bs,a3,bs]/.#, denoted by D, has terms with
maximal degrees of {1, 1, 1, 2, 1, 4} in {a1, b1, a2, b, as, bs}, respectively.
The monomial basis of #[ai,bi,az,bz,a3,bs]/.% denoted by B, is found

from D by extracting all the monomials in D that are equal to their own
normal forms, Cox et al. (1998). This leads to the 48-dimensional
monomial basis in Eq. (13):
B=[1, b3, as, b2, an, bl, al, b32, ay b3, b2 b3, ay b3, b1 b3, al b3, ay b2, a5 8y, 8 bl’ a al,

b22, byb,byal,ay by ala,, b33, b32 az, by b32, b32 2y, b32 by, b32 al,byagb,,

agay by, byay by agal by by b22, byby by bybyal by ay by al ay by ag b22, aq by by, (13)

a3 by al, by, a3 33, by3 by, ay ba3, b33 by al by3,ba2 by by, by byag by

Next, three 48x48 multiplication tables, Mfi, M and Mg for f; =a; +b,,
f,=a,+b,, fy=a;+b; are computed together with their corresponding
minimal polynomials mpr, mpr, and mps. These minimal polynomials
have only even degrees, so there are at most 24 pairs of complex
solutions and their conjugate solutions (48 in total). These solutions give
the values of fi=ai1+b1, fo=as+bs, and fs=as+bs. The next step is solving for
the values of ai, b1, as, be, a3, ba. These values establish the locations of
the sliders on the circular base. The solution algorithms for obtaining the
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values of (a1, b1), (az, b2), and (as, bs) are identical, hence, only the
algorithm for obtaining (a1, b1) is presented herein.
Let +C be one of the 24 solution pairs of mpri. The matching solutions
for (a1, b1) are the intersections of the line and the ellipse of Eq. (14).
a, +b,=+C N a,>+b,*>+ab, -1=0 (14)
The solutions for +C and for —C are:

for +Ci(al,b1):(%Ci%A,éC¢lA]

15
1 L1 21 A=+4-3C? (15)
for -c:(a1,b1)=—(50¢5A,EC¢§AJ

Since only real solutions for (a1, b1) are of interest, only the admissible
real solution pairs of mprn satisfying |C| < 2/ J3 are used in Eq. (15). Note
that the two solutions for +C (and —C) represent a mirror image about
the bisector of the angle a in Fig. 2 and that the two solutions for +C are
mirror images of the two solutions for —C about the normal to the
bisector of the angle a in Fig. 2.

Once this procedure is repeated for the roots of mpp and mpss, sets of
solutions for (a1, b1), (a2, b2) and (as, bs) are obtained and all the
sextuplets (al, b1, as, be, as, bs) satisfying Egs. (4, 7) are found.

7. Numerical Example

To verify the solution procedure, a predefined geometry of the planar
robot was selected with [a1,bi,a2bz2,a3,b3]=[43/3,43/3,1,0,1,0]. This
corresponds to [01, 02, ©3]=[30°, 240°, 120°], where 01, 02, and 03 are the
angles of Tl, iz cand i3 relative to xp in Fig. 2. The corresponding stiffness
matrix, using a platform radius of 0.1[m] and ke=1e+5 [N/m], is:

125000.00000 43301.270189 -5000.00000
K =| 43301.2701  174999.99999 0. (16)
-5000.00000 0. 500.00000
The aim of the following example is finding all the solutions for (ai, bi),
i=1,2,3, for obtaining the stiffness elements kxx, kxy, and kxg of Eq. (16) at
a given manipulation point of the path. The solution method is validated
if one of the solutions gives the values of the predefined geometry.

Three minimal polynomials, mpsi, mpg, and mpss are obtained with
their solutions. Table 2 lists only the admissible distinct solution pairs
Ci1, Cq, and Cs, of mpr, mpe, and mprs, respectively. These solutions are
distinct up to le-3 resolution from other close solutions. Table 3 lists the
distinct 16 solutions for ai, bi, 1=1,2,3. Note that, as expected, Table 3
contains a solution corresponding to the exact values of [3/3,43/3,1,0,1,0]
of the pre-defined example. These 16 solutions are presented in Fig. 3.
Note also that only the last eight solutions, (i) through (p), are non-
singular.
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Table 2. Admissible real distinct solutions of mpsi, mps2, and mpss

Ci1 £0.577350 1(1-4.4e-15)" +1.145112 +1.154700
C2 +0.38207e-13 +0.376135 +0.967869 +0.999999
Cs £0.514087 +0.968432 +(1+12e-30)" +1.154700

* All numerical computations were made with 32 digits, but results are
truncated to 6 decimal digits for presesntation purposes

Table 3. 16 real solutions to the problem in the numerical example
al b1 a2 b2 a3 b3
0.8869987582 1 -1 —1 0.33502100 10™° +0.57735027 +0.57735027
0.8869987582 1 -1 1 -0.33502100 10™° +0.57735027 +0.57735027
—0.8869987582 1 1 -1 0.33502100 10™° +0.57735027 +0.57735027
—0.8869987582 1 1 -0.33502100 10™° +0.57735027 +0.57735027
0.57735027 0.57735027 -1 0.33502100 107° +1 +0.224010728
0.57735027 0.57735027 1 -0.33502100 107° +1 +0.2240107%8
—0.57735027 —~0.57735027 -1 0.33502100 107° + +0.2240107%

1 -~
@) ’A/Z\K ) ) (m) (n) ©) (®)
Y, y y y ; y y y y
:(a) () ~ ¢ © ~ @ /S ~ ® @) ;(h)

Figure 3. 16 solutions with only eight non-singular solutions (i, through p)

8. Conclusions

This investigation addresses the stiffness synthesis problem of a
planar kinematically redundant 3-DOF robot by controlling a limited
number of its free geometric parameters. It is shown that it is impossible
to control both Cartesian stiffness elements kxx and kyy, by only changing
the locations of the sliders on its circular base. In an example of
controlling kxx, kxy, and ke, it is shown that, at most, there are 48
solutions in the complex plane. The numerical example solved shows only
eight real non-singular solutions.
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Abstract fixed geometry platformssariable geometry parallel robots

can change the geometry of their base/moving platforms. In
In this paper, we address the stiffness synthesis problem of vari-  the present study we focus on variable geometry robots that
able geometry double planar parallel robots. For a desired stiffness  can change their geometry to accommodate task-based re-
matrix, the free geometrical variables are calculated as a solution  quirements of stiffness and we present a solution for double
of a corresponding polynomial system. Snce in practice the set of  planar (DP) variable geometry robdts.
free geometrical variables might be deficient, the suggested solution Various methods of adding redundancy were suggested in
addresses also the case where not all stiffness matrix elementsare  the literature to enhance robot performances. Actuation re-
attainable. This is done through the use of Grébner basesthat de-  dundancy (antagonistic actuation) was used in stiffness mod-
termine the solvability of the stiffness synthesis polynomial systems  ulation of parallel manipulators and synthesis of RCC (Re-
and by transforming these systems into corresponding eigenvalue  mote Center of Complience) devices to control their stiffness
problems using multiplication tables. This method is demonstrated  and compliance center (Yi, Freeman, and Tesar 1989; Yi and
on anovel variable geometry double planar six-degrees-of-freedom  Freeman 1992; Kim, Lee, and Yi 1997; Kock and Schumacher
robot having six free geometric variables. A solution of the double  1998). However, for robots with actuators having high stiff-
planar stiffness synthesis problemis obtained through decomposing  ness values or non-back-drivable actuators, the contribution
itsstiffnessmatrixintermsof thestiffnessmatricesof itsplanar units.  of the antagonistic actuation to the overall stiffness is dimin-
An example of this procedure is presented in which synthesizing six  ished unless large antagonistic forces are used (Yi and Free-
elements of the robot’s stiffness matrix is obtained symbolicallyand ~ man 1993). Furthermore, stiffness modulation is affected by
validated numerically yielding 384 real solutions. higher-order singularities (Yi and Freeman 1993; Simaan and

KEY WORDS—parallel robot, double planar robot, re_Shﬁ?naen:nzziggsr).edundancy of robots was used by Merlet
configurable, stiffness synthesis, Grobner bases : . '
g y Preng, and Daney (2000) to design a six-degrees-of-freedom

(6-DoF) Stewart—Gough robot as a five-axis milling machine.
1. Introduction The robot’s one extra DoF was used to include a desired tra-

jectory inside the workspace of the robot and to ensure that
Robots are designed to perform various tasks that involtke robot path is singularity-free. Investigations focusing on
complex manipulations and interactions with their environstiffness/compliance characteristics include the works of Pat-
ment. Consequently, the performance of fixed geometry (noterson and Lipkin (1990, 1993) who classified robot compli-
redundant) robots is compromised for some tasks, e.g., a fixadce matrices based on their eigenscrews and twist compli-
geometry robot performing a task involving contact with thent axes and discussed the relations among twist compliant
environment has stiffness characteristics determined by ages and wrench compliant axes. Loncaric (1985) and Huang
inverse kinematics solution rather than by the task specificand Schimmels (1998a) characterized the space of realizable
tions. In contrast tfixed geometry parallel robots, using rigid ~ stiffness matrices using only simple springs. Other works fo-
cused on stiffness synthesis of systems of springs. Huang

*Mr. Simaan is currently affiliated with CISST at Johns-Hopkins Universityand Schimmels (1998b) and Roberts (1999) determined the
The International Journal of Robotics Research
Vol. 22, No. 9, September 2003, pp. 757-775, 1. The method was also applied for special cases of Stewart—-Gough robots
©2002 Sage Publications and is a subject of a future publication.
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minimal number of simple springs for realizing a stiffness
matrix while Ciblak and Lipkin (1999) discussed the lim-
its on the minimal number of linear and torsional springs for
achieving a general rank-r stiffness matrix. Huang and Schim-
mels (1998a, 1998b), Roberts (1999), and Ciblak and Lipkin
(1999) presented synthesis algorithms using Cholesky decom-
position of the desired stiffness matrix to compute the required
springs for obtaining a desired stiffness of a system of two
rigid bodies connected by springs. These algorithms consid-
ered the general synthesis problem and assumed no limitation
on the geometry of the springs (connection points and spring
constants). Yw

The present investigation differs from the above-
mentioned works. It suggests a method to synthesize a re-
quired stiffness with given actuator stiffness. Moreover, since
in practice only alimited number of variable geometry param-
eters are available, the present investigation offers a scheme 5= - prismatic
to determine which set of stiffness matrix elements can be
synthesized. Fig. 1. Planar robot with variable geometry base.

One promising method to overcome the robot-to-task fit-
ness problem is the use of variable geometry parallel robots.
However, currently there are only a small number of works ) )
that address this approach. Among these works are the wdf State the task-based stiffness synthesis problem. In Sec-
of Zhiming and Song (1998), who investigated the design aon 4 We decompose the stiffness of the DP robot in such a
pects of modular Stewart-Gough platforms with workspac‘@ay as to allow the decornposmon.of. the s.tn‘fness synthe§|s
and joint limits considerations, and the work of Zhiming androPlem of the DP robot into two similar stiffness synthesis
Zhenqun (1999) who presented an algorithm for identifyin roblem§ for each of its planar pnlts. In Sectlon 5 we present
the parameters of the joint locations on the base in a modiie solution algorlth_m for the stiffness synthesis problems of
lar Stewart-Gough platform. The recent work of Du Pless@e 3-DoF planar units and the complete DP robot. In Section 6

and Snyman (2002) presented an algorithm for changing iiie present a numerical example of the algorithm validating

geometry of a planar 3-DoF manufacturing robot. Their afhe theoretical results.

gorithm is based on minimizing an objective function defined

by the overall maximal magnitude of the actuator forces fd2. Variable Geometry 6-DoF Double Planar
a given desired path. These forces were updated by the Robot

verse dynamics model of the robot. The optimization was

constrained with given limits on the length of the actuators.2-1. Variable Geometry Planar Robot

Recently, Simaan and Shoham (2002) investigated a vaFiigure 1 shows the variable geometry robot presented in
able geometry planar 3-DoF robot for stiffness synthesis pu&imaan and Shoham (2002) for stiffness synthesis. This robot
poses. This robot can change the geometry of its base platfohais a triangular moving platform connected to a circular base
to accommodate the required stiffness characteristics specliigthree kinematic chains composed of an active slider on the
to each task. It has been shown, via polynomial formulatiogircular base, a passive revolute joint, an active prismatic joint,
of the stiffness matrix in terms of the free geometry paramand another passive revolute joint on the moving platform.
eters, that for a given set of variable geometry parameters The sliders on the circular base control the geometry of
not all stiffness matrix terms are attainable, and a solution gie base platform and the prismatic actuators are the active
the task-based stiffness synthesis problem through the usgaifts that manipulate the moving platform. This introduces a
Grobner bases was presented. kinematic redundancy of three in this 3-DoF planar robot.

In the present investigation we utilize the results of above-
mentioned work for the stiffness synthesis of a 6-DoF robgf
composed of two variable geometry 3-DoF planar units. The
aim of the synthesis is to obtain a specific stiffness for a giverigure 2 shows the variable geometry DP robot based on two
position/orientation of the robot's moving platform. similar planar units as in Figure 1. These planar units consti-

The following section of this work presents the architectute a variation over thBouble Circular-Triangular (DCT)
tures of the planar 3-DoF variable geometry units—one levebhot presented in Simaan, Glozman, and Shoham (1998) and
out of two—that composes the DP 6-DoF robot. In Section Brodsky, Glozman, and Shoham (1998), which, in its turn, is

Variable
geometry
base

Xw

QO = revolute

2. Variable Geometry Double Planar Robot
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Gripper (end effector) @ Lead screw s Center point of the spline joint
Lead-screw nut Linear spline joint X0, Y0,Zo World Coordinate System (WCS)
Upper universal joint @ Lower universal joint ﬁg’ §7g, ig Gripper Coordinate System (GCS)
Upper moving platform Lower moving platform Xy Vo 2y Upper platform-attached

coordinate System

ONONOIOOXC,

Prismatic joint (active) g  Center point of the X b> y b> 2 b Lower platform-attached
gripper coordinate System
Slider (active) n  Center point of the nut q Universal joints’ inclination angle

Fig. 2. The DP variable geometry robot.

a variation over théouble Triangular Robot presented by supported on a universal joint on the upper moving platform
Daniali, Zsombar-Murray, and Angeles (1993). and passes through a passive linear spline coupling supported
The two planar units of the DP robot control the positioron a universal joint on the lower moving platform. Changing
and orientation of their moving platforms by changing théhe planar positions of the upper and lower moving platforms
lengths of their prismatic joints and the location of the slidersontrols the four DoFs of the line passing through their cen-
on their circular bases. In total, the DP robot has twelve coters while controlling their rotations controls the displacement
trollable parameters: the six prismatic actuator lengths and taing the line and the orientation of the end effector about the
six locations of the sliders on their circular bases. All jointéine. The inverse kinematics of this robot is presented in detail

in this robot, other than the prismatic joints and the sliders an Appendix A.

the circular bases, are passive joints. The objective of this paper is to determine the locations of
The end effector of the DP robot is a gripper connected the six redundant sliders in order to achieve a desired stiffness

a screw body that passes through the centers of the moviggal for the DP robot.

platforms of the planar units. The screw body mates with a nut
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3. Stiffness Synthesiswith a Limited Number of

Variable Geometry Parameters <
y |,-=a,»é1+b,-é2 l=1,2,3

1)
Since in the DP robot only six parameters are redundant and &=1[10 0" &=[0 1 0
their freedom lies in two planes, not any required stiffness is
attainable. Stiffness synthesis with a limited number of varivhere the symboh indicates a unit vectog, andé; are unit
able geometry parameters, as in our case, calls for theoretiegttors along,, andy, respectlvely,l is a unit vector anng
analysis that determines which terms of the stiffness matrtke ith prismatic actuator, ang. b, are the projections of,
are controlled by the free geometrical parameters. In this pan & andé,. To make sure that the vectdris a unit vector,
per the stiffness of the DP robot is formulated as a lineahe coordinates; andb; (i = 1,2,3) must fulfill
combination of the stiffnesses of its planar units. This allows
us to decompose the stiffness synthesis problem of the DP a’+b>—1=0. 2
robot into two similar stiffness synthesis problems dealing
with finding the required locations of the sliders for each of The geometry of the moving platform used for this exam-
the two planar units. ple approximates an equilateral triangle with a characteristic

The stiffness matrices of the planar units are formulatedimension h. The three revolute joints in the platform coordi-
(see Section 4) as polynomials in the free geometric variabldte system (PCS), see Figure 1, are given by
thus, different stiffness synthesis problems correspond to dif-
ferent systems of polynomials in these variables. The solubil- P, =[-5h —3h0I" P, =[0,6h 0"
ity of these polynomial systems was investigated in Simaan P, = [5h, —3h, 0]".
and Shoham (2002). This paper elaborates on the solution
method and extends the solution procedure of the stiffne$hese vectors are transformed to the world coordinate system
synthesis problem presented therein to the 6-DoF DP robofWCS) by a rotation transformatioR, given by the param-
To solve the stiffness synthesis polynomial systems, tteters representing the tangent of half the moving platform’s

method of multiplication table eigenvalues (Stetter 1993) itation angle:
used. This method was explained in Simaan and Shoham

3)

(2002) and it is briefly described in Appendix B. Further de- 1-7 5 !
tails of this method can be found in Méller and Stetter (1995) 1412 1+
and Cox, Little, and O’Shea (1998). R= o ! 1;t2 ol (4)
1412 1412
0 0 1

The Jacobian of the planar robot in Figure 1, with its sliders
locked on the circular base, is given in eq. (5). The rows of

4. Robot Stiffness Formulation this Jacobian are the Pliicker line coordinates of the three axes
of the prismatic actuators (Merlet 1989, 2000):

4.1. Polynomial Formulation for the Stiffness of the th 4 302N 7
Planar Units a by 0 00 (101+, ST )al

1412 112

+ (_5(lft2)h _6th ) bl
In this section, the stiffness matrices of the planar units of the

DP robot are formulated as a function of the variable geome- a b, 0 0 O —6% — % . (5
try parameters of its base platform, i.e., the slider positions on
the circular bases. For any given desired gripper position and az b3 0 0 O ( 101+[2 3%:2)“) as
orientation, the inverse kinematics of the DP robot is solved
and the corresponding positions and orientations of the planar (5(11 oh + 1‘1’:}) by
units’ moving platforms are found (see Appendix A). Once -
this solution is obtained, the only free geometric parameters Since in this paper we study the effect of stiffness mod-
that remain undetermined are the slider locations of the pldication/synthesis using a limited number of free geometric
nar units. These locations are derived from stiffness synthes@riables and a given set of actuators, we focus on the effect
requirements. of geometry change instead of changing the stiffness coef-
The unitvectors direction®,i=1, 2, 3) along the prismatic ficients of each actuator, as was done in previous works on
actuator axes are the only free parameters that can be cetiffness control (Mason and Salisbury 1985). Accordingly, a
trolled by moving the sliders on the circular bases (Figure Eimplifying assumption is made that the sliders on the circular
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platform have a mechanical means to lock rigidly on the ciprismatic actuators in Figure 1. The vector of actuator speeds
cular base once the desired geometry of the base is obtairfedthe DP robot is defined bg:

or that the stiffness coefficients of the sliders are considerably . R

larger than the stiffness coefficients of the prismatic actuators. q=[a,. a;] - (©)

The three active prismatic actuators are assumed to be idejkingJ to denote the Jacobian of the DP parallel robot allows
cal, having stiffness coefficieng KThis stiffness coefficientis |5 to write its instantaneous inverse kinematics:

either determined by the control law and transmission prop-

erties of each actuator or it is determined by the mechanical q = JXx,. (10)
properties of the actuator for the case of non-back-driva
actuators. In this paper we assume non-back-drivable ac
tors with fixed stiffness coefficientykand that there is no
preload on the robot. In accordance with all these assump- Gy = X = AKX, q, =%, =JAX, (12)
tions, the 6x 6 stiffness matrix is symmetric and is given .

by K = kaJ7J, (Gosselin 1990; Tsai 1999) and the reduce&'here‘]b and J, are the Jacobians of the lower and upper

planar 3x 3 stiffness matrix is then constructed by takingflanar units given in eq. (5) aml, andA, are 3x 6 matrices

. : 0 be formulated in the following subsection.
only the stiffness elements in the, xy, x6, yy, y8, and6o . o
dirgctions AV AT Yy According to the definition in egs. (9) and (10), the Jaco-

bian of the DP robot is given by
4.2. Formulation of the Stiffness of the Double Planar Robot 3 [ JA, }

In this section we combine the stiffness of the planar units to JLA,
obtain the stiffness of the DP robot. This is used in Section 5 . _— . .
to determine which of the stiffness matrix elements can be> 9 the deflnltlon Qf the stiffness matrices of the plangr
controlled by the robot's redundant geometry variables. units, we obtain the st'lffness of the DP robot as a combination

Referring to Figure 2, the letters “s” and “n” indicate the()ftheg’>< 3reduced s_t|f.fness matricés, andK ;, of the upper
center points of the spline joint and the nut, respectively, Whil‘%nd lower planar units:
the letter “g” represents the gripper center point and the letters K =kJ"J=ATK,A, +ATK,A,. (13)
“u” and “b” represent the upper and lower planar platforms.

.Throughput this paper, the Iette'r.s “v" apd)"‘ are used 43 Formul ating A, and A,
to indicate linear and angular velocities while the letters “s”,
“n”, and “g”, whenever used as subscripts, indicate a properfihe explicit expressions for matricés, andA, in eq. (13)
associated with the linear spline, the nut and the gripper, rare formulated herein based on velocity constraint analysis of
spectively. Also, the letters “u” and “b” are used as subscript§€ planar units. These equations stem from the fact that the
to indicate properties associated with the upper and the lowyt and the spline have no velocity componentin the direction
moving platforms, respectively. Using this symbol convenof Z, (Figure 2), since they are constrained by the upper and
tion, v, indicates the linear velocity of the spline center poinlower moving platforms to planar motions.
while w, indicates the angular velocity vector of the gripper Letr; (i, j =1, 2, 3) indicate the elements of the rotation
andw,, indicates the component of this vector alongitkexis ~ matrix from the gripper coordinate system (GCS) to the WCS.
of the WCS. The symbols,, X, andx, are respectively used The unit vectog, in Figure 2 is given by the third column of
to indicate the generalized velocities of the gripper and tHBis matrix, eq. (14), whil&, is given by[0, 0, 1]":
upper and lower moving platforms of the planar units. These 2. = [ris 12 Faol" (14)
generalized velocities are defined in egs. (6)—(8) (all vectors ¢ T L Tes fes
are column vectors expressed in the WCS unless otherwié respectively define the vectors from the gripper center to

?llene instantaneous inverse kinematics of the upper and lower
lflﬁléving platforms are given by

(12)

specified): the nut and spline center pointsras andr
Xy = [Vers Veys Verr @gay @y, wgz]T (6) los = =12y Vo =—1,2, (15)
wherel, andl, respectively indicate the distances between the
% = [vm - éu]T @) g;lgi)r;]):r center and the center points of the nut and the linear
Based on the generalized velocity, in eq. (6), the angular
Xy = [vsxs Vs éb]T . (8) Vvelocity matrix of the gripper is give b2, :
The actuator speeds of the upper planar platform and lower 0 —w.
planar platform are respectively indicateddyandc,. These Q=] . 0 -0 |. (16)

vectors are 3x 1 vectors having the speeds of the active Wy Wy 0
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The angular velocity of the linear spling,, is the same as the driving yokes are rigidly connected to the moving platforms
angular velocity of the grippes,, which is rigidly attached while the lower and upper driven yokes are, respectively, the

to the screw body (Figure 2): spline body and the nut with their corresponding hinges (see
Figures A3 and A4 in Appendix A).
w; = @,. (17) Both the nut and spline center points are limited to perform

lanar motions. Accordingly, the velocity constraint equations
sed for finding the angular velocity component,of the nut
and the sliding velocity of the spline joint,, are given by

The projection of the angular velocity of the nut along th%
screw axis is indicated hy;,:

o 2, =a, (18) viZy;=0 vz, =0. (23)

Let the symbols/,, andv,, indicate the velocities of the nut By using the formulation in eq. (20) and solving eq. (23)
and the spline relative to the gripper, which is rigidly attachetpr @, anda, we obtain

to the screw. Also, lei, indicate the speed of slip in the linear Lrsswgyr13 + Lrsswg,ras + Lro,.
spline and let L be the lead of the screw (the amount of linear an = Lras
translation per turn of the screw relative to its nut). Using these
definitions,v,, is given by the slip speed along the screw + Ve — Wgylul1s + @guliras (24)
axis, z,, while the velocity of the nut relative to the gripper Lrss
is given by the relative angular velocity of the nut about the Vor + @ lr1s — @il raa
screw times the lead of the screw: a, = ——+—= sr ==, (25)
33
Vo =a,2, Vy=[L (0, —)" 2] 2,. (19) Next these expressions fay anda, are substituted in egs.

_ _ ) N ) (19)—(21) and egs. (7) and (8). Nowy andx, are expressed
Referring to Figure 2, the linear velocities of the spline angy terms of the elements of,. Noticing the relations:, =
nut center points are given by the linear velocity of the grippex, %, andx, = A, %, in eq. (11), we obtain the expression for
center point, the angular velocity matrix of the gripp(,  the elements oA, andA, by reading off the corresponding

the corresponding relative slip velocity along the screw axigefficients of the elements f. This results in the following
and their corresponding location with respect to the gripp@ipressions fo, andA,:

center point:

V, =V, +V, +Q, T 1 0 _I= Fialaras
(20) 33 V33
V, =V,, +V, +Q,I,,. Lr2 4] y2
n ng g g Van A 0 1 _E nr33+ nFo3
Since both the linear spline and the nut are each supported r]§3 £l r33+l )
on their corresponding universal joint (Figure 2), we need to 0 o —Jn JnltTedus T fulas
consider the instantaneous kinematics of these joints in order L Lrss Lrss (26)
to relate the angular velocity of their corresponding moving 22
platform with their angular velocity about the screw axis. The s na3 1,23
instantaneous kinematics of these universal joints is given by r 313
r13l, 723
) ) . ) == Lr
9}; = fbes = fb ((D; Zg) eu = JuQn. (21) r33 '
Su(Lraaras — 1,r13)
The angular velocity transmission functiofs and f,, of the Lras Jaras
U-joints, according to Wagner and Cooney (1979), are
1 0 T3 r1alsras
_ (1—sir* (B, sin’ (6)) I3 I
u — COS(@) (22) Ab = 0 1 _% lxr§3+l,r223
1 —sir? (B,) si’ (8 fs3 '3
P (By) sint (0)) 00 o Foren
cos(9) (27
. . . X A L+ Lk
whereg is the universal joint angle (angle betwegrandz), o lsra3
and g, andg, are the angles from the axes of the upper and - 13?;
lower driving yokes to the normal to the plane defineczpy s

andz,. Figure A3 (in Appendix A) shows the anghs; the "33
other angles, is defined similarly for the upper U-joint. The Joras Jforss
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SubstitutingA,, andA,, in eq. (13) yields the stiffness ma- degree. Therefore, an indirect approach using the stiffness
trix of the DP robot in the WCS. The explicit expression foldecomposition of eq. (13) is implemented. This stiffness de-
this matrix is not given for space considerations; however, omemposition gives the DP robot’s stiffness matrix in terms of
noticeable remark is in order regarding the characteristics thfe stiffness matrices of its upper and lower planar units. Us-
this matrix. ing this approach, the stiffness synthesis algorithm begins by

Huang and Schimmels (1998a) discussed the form of tldecomposing the given stiffness synthesis problem into two
stiffness matrix of a rigid body supported on simple linear asimpler stiffness synthesis problems for the planar units and,
rotational springs and showed that, if the stiffness matrix isiter, these systems are solved separately.
divided according to eq. (28), then it can be characterized by In Section 5.2 we present the stiffness synthesis problems
the nullification of the trace of its submati eq. (29): for the planar units. In Section 5.3 we present the solution to

these stiffness synthesis problems and characterize the non-
K — {[AT B} cR**: A=AT. C=C". A.Ce mgxg} solvable'stiffness synthfesis problgms for the given set _of free
B' C geometric parameters, i.e., the slider locations. In Section 5.4
(28) we presentthe method for decomposing the stiffness synthesis
problems of the DP robotinto two stiffness synthesis problems
of its planar units.
tr (KA)=2tr(B) =0 AE[O ! } (29)

I 0
5.2. Stiffness Synthesis for the Planar Units

The condition in eq. (29) stems from the fact that the axgs, .n planar 3-DoF unit has an associated 3 symmetric

of simple linear springs are Plicker line coordinates fum”in%tiffness matrix (mentioned in Section 4.1) and the slider lo-

theKleinquadric condition (Pottman 1999). For the DP robot,” _ . . :
. L . cations as three redundant parameters available for stiffness
the trace in eq. (29) has a distinct value given by . . . . ;
synthesis. Given a desired triplet of stiffness elements from
f2K, the upper triangular part of the symmetrix3 stiffness ma-
tr (KA) =2tr (B) = —2——% (30) trix, the associated problem of stiffness synthesis is finding
the required geometry of the base platform (i.e., finding
WhereKu% indicates the rotational stiffness of the upper plab;, i = 1,2,3) of the planar robot in Figure 1.
nar unit, and L is the screw lead. This is an important char- To fully synthesize the symmetric 8 3 stiffness matrix,
acteristic of the DP robot since its architecture producesal six equations in eq. (31) must be fulfilled together with
screw spring acting on its gripper, although all its actuatotbe three equations in eq. (2). Since each planar mechanism
are simple linear springs. of Figure 1 has a kinematic redundancy of order 3, only three
In the following section we present the solution of the stiffstiffness equations from eq. (31) can be simultaneously ful-
ness synthesis problem for the DP robot based on the stiffnddled. Accordingly, there arfég)=20 systems of six polyno-
decomposition according to eq. (13). The desired stiffnessials with each having a total degree of Zijnb; (i =1,2,3).
characteristics of the DP robot are decomposed into two sé&ach of these systems represents a different stiffness synthesis
of desired stiffness characteristics for its planar units, and tipgoblem in which a corresponding triplet of stiffness elements
slider locations are then calculated. of the 3x 3 stiffness matrix is being synthesized:

5. Stiffness Synthesis for the Double Planar Kij = Koesieqy =0 1=1,2.3 i =] (31)

Robot Equation (31) poses the question whether it is possible to

solve all the 20 stiffness synthesis problems, i.e., is changing
the directions of the lines in Figure 1 enough to allow control-
Theoretically, it is possible to use a direct approach for thiéng all the stiffness triplets corresponding to the 20 stiffness
stiffness synthesis by using a polynomial formulation to theynthesis problems?

stiffness of the DP robot in terms of the locations of the six

sliders of its planar units. This approach requires solving g3 Application of the Eigenvalue Method to the

system of twelve polynomials for twelve unknowns, (b;, Planar Units

i =1,2,3 for each planar unit), in which six polynomials are

in the form of eq. (2) and the other six are the equations fdn this subsection we use the method of multiplication ta-
depicting the values of the six synthesized stiffness elemeritke eigenvalues given in Appendix B to solve the stiffness
in the stiffness matrix. However, the polynomial systems asynthesis problem for the planar units. To answer the ques-
sociated with this approach are not practically solvable fdions listed in the previous subsection, the reduced Grob-
the slider locations in the general case due to their size andr bases associated with all the 20 possible systems of

5.1. General Description of the Synthesis Algorithm
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equations in the form of eq. (31) were computed. A total-
degree ordering (degree reverse lexicographical order) with | — |
a; > by > a, > b, > a; > b; was used.

When the reduced Grébner basis equals {1}, the system of
polynomials has no solution (Adams and Loustanau 1994). L]
Hence, the use of Grobner bases allows us to characterize the o ]
space of solvable synthesis problems of robots with a lim-

ited number of free geometric parameters. For the particular N
example of the planar units of the DP robot, it was found — — ]

that whenever bothk,, andk,, are specified then there is no

solution to the system of polynomials (Simaan and Shoham

2002b). Physically, this means that with the free geometry pa-

rameters (slider locations) it is impossible to synthesize both

k.. andk,, terms of the stiffness matrix. [ ] T [ [ ]
To determine the solvability of the stiffness synthesis prob- L

lems for the planar units, all 20 corresponding polynomial ]

systems mentioned in Section 5.2 were symbolically formuFig. 3. Solvability map for the stiffness synthesis problems

lated. These polynomial systems stem from eq. (31) for thsf the planar units.

corresponding triplets of synthesized stiffness elements and

from eq. (2) for fulfilling the unit vector constraint on the

lines of the Jacobian. Then, the corresponding reduced Grob- b2h,as

ner bases for these polynomial systems were computed. All > =

the non-solvable stiffness synthesis problems correspond to @ bsbias, byashsbs, asb.aibs, b3, byas, bobs, azbi, bab,

reduced Grébner basis = {1} since in this case the ideal is

improper, i.e.] = C[x;...x,]whereCl[x;...x,]isthering bgal, blbzbgv bzbgal] . (32)

of polynomials with variables; . .. x,, and coefficients over

the complex field” (Appendix B). Based on Hilbert's weak  £5ch variable amongus, by, as, by, as, bs) appears alone

nullstellensatz theorem (Becker and Weispfenning 1993), an 4 leading term i with the corresponding degrees of {2,

ideal has an empty variety (/) (i.e., empty solution set) if 5 5 3 5 5} eq. (32). Consequently, based on the finiteness

and only if/ = Clx,...x,]. Hence, by computing the re- y,o5rem (Adams and Loustaunau 1994), the system in egs.

duced Grébner bases and finding those that reduce t0 {1} Wg1) and (2) has a zero-dimensional variety. Also, the group
find all the stiffness synthesis problems that are unsolvableys 4| the reminders irClay, by, as, by, as, bs]/ I, denoted by

Figure 3 gives a solvability map of all 20 possible stiffness, has terms with maximal degrees of {1, 1, 1, 2, 1, 4} in

synthesis problems mentioned in Section 5.1. Each tile FePTE: by, ay, by, as, bs), respectively. Hence, the monomial ba-

sents an entry in the reduceck3® symmetric stiffness matrix ;g of Clay, by, az, by, as, bs]/I, denoted byB, is found from
of the planar unit. Light gray tiles indicate the synthesizablg, by extracting all the monomials iP that are equal to their
triplets while dark tiles indicate the non-synthesizable triplet§,n normal forms (Cox, Little, and O’Shea 1998). This pro-

of the stiffness matrix elements. _ cedure took 97 s to compute and resulted in the following
As an example, consider stiffness synthesis, gfk,,, and 48-dimensional monomial basis:

k.s elements of the stiffness matrix, i.e., all the stiffness ele-
ments in thex-direction are prescribed based on task require{ 1, bs, as, bz, az, by, a1, b3, bsas, bybs, asbs, bibs, asbs,
ments. The reduced Grdbner basis for this problem, hereafter
called G, with total degree ordering, > b, > a, > b, >
as > bs has 29 generators of degrees ranging from 1105 p2p,y, b2ay, byb2, blay, ashsbs, azashs, byasbs, asasbs,
in the free geometry variables. The symbolic computation of
this particular basis took about 16 h using Maple on a 1Ghz bsb5, bobibs, aibsbs, azbibs, azaibs, bias, byazb,,
Pentium IIl processor. Th&h column in Table 1 presents 4 5 5 s 3 5 ) )
the degrees of thigh basis polynomial in the variables corre- 910203, by, asbs, babs, azbs, b3by, byas, bibabs, arbabs) -
sponding tau, by, a,, by, as, bs. Table 1 shows that the total (33)
degree of the equations ranges from 4 to 8. Due to space con-To solve for the geometry free parameters (location of the
side_rations, this Grdbner_basis is not presented here, butdigiers) three 48< 48 multiplication tablesM 1, My, and
leading terms are shown in eq. (32). M s for fy = ay + by, fo = a, + by, and fs = as + by, are
computed together with their corresponding minimal poly-
(a5, azbs, a5, bZ, aiby, a2, biazas, axaias, by, bby, a;bs, nomials,mp 1, mp ;,, andmp ;3. These minimal polynomials

2 2 2 212 2 12
a3b3a2, b3b1a3, alb3a3, b3b2, blazbs, bzazal,

2 3 72
beas, axas, bias, a,as, bz, boby, boay, bias, azay, bg, b3a31
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Table 1. Degrees of the 29 Polynomials of G in the Variables
0 1 11 0 1 1 0

a
by
as
b,
as
b3

NNOOOO
NFEPNRFR OO
OONNOO
NONON

NEFENOR

NONOON
e

e = S

N R WR O

NP NOR

NEFRNOR

WRrRPRRPROO
WKk RPRREPO

WFROOR R
WFRrOOR R
AR NOOO
NORRRR
NORRRPR
ARLrNOOO
NP RRRR
NP RPRRRPR
R NOOO
AR NOOO
AR PP OO
AR PRPPRPROO
AR OORR
AP OORR
WRrRPRRRPR
WRrRPRRRPR

have only even degrees. Consequently, this stiffness synthesis
problem has at most 24 pairs of complex solutionsfforf,,
fs and their conjugate solutions (48 solutions in total in terms
ofa, b i =1,2,3).

Once the sums; + b; (i = 1,2,3) are known, the values of
ay, by, ay, b,, as, b; can be computed separately and the slider
locations are found. The following is the solution procedure
for (ay, b1), which is identical for &, b,), and @s, b3).

Let +C be one of the solution pairs efp,,. The corre-
sponding solutions forg, b,) are given by solving

The two solutions for +C and two solutions for —C are Fig. 4. Geometric interpretation to the solution in eq (39)

cC A C A
f0r+C (alvbl): EiEvE:FZ

C A C A
) (35) In the next subsection we solve the problem of task-based

for —C: (al,bl):—<_:F_ 4+ =2

2 22 2 stiffness synthesis of the DP robot by using the results ob-
A=4+2_C2 tained fro.m the stiffness synthesis of the variable geometry
planar units.

Figure 4 shows the corresponding four solutions. The sym-
bols Cp1, Cp2 indicate the two solutions in eq. (35)faf i .
while Cm1, Cm2 designate the other two solutionsfar. -4 Stiffness Synthesisfor the Double Planar Robot
Note that each pair of solutions is a mirror image of th
other about the unit vectox(2/2, +/2/2) with each solution
forming an anglé& according to

&he stiffness synthesis problem of the 6-DoF DP robot is
solved next. Given a desired sextuplet of stiffness parameters,
we can solve linear equations stemming from eq. (13) for the
C desired stiffness elements of the planar units. Then, we have
£ =cos* (72> (36)  to solve two similar stiffness synthesis problems of the planar
units by using the method of the previous section. Once the
Since only real solutions fou(, b,) are of interest, only solutions for ¢;, ), i = 1..3, are found for each planar unit,
the real solution pairs ofip ,, whose absolute values smallerthe slider locations are readily found.
than+/2 are substituted in eq. (35) (see eq. (36)). To define solvability of all the stiffness synthesis problems
Once this procedure is repeated for the roots:pf, and for the DP robot, we have to compute all the corresponding
mp 3, Sets of solutions ford,, b,) and @, b;) are obtained. Grobner bases of all equations depicting sextuplets of stiff-
Then all sextupletsag, by, a,, b,, as, bs) satisfying egs. (31) ness elements. There are six redundant geometric variables
are found; thus, determining the slider locations. in the DP robot and its & 6 symmetric stiffness matrix has
In this subsection we have presented a method to solve th@ independent variables since it is bound to fulfill eq. (30).
stiffness synthesis of the planar units and to determine whidtis is tantamount to computir(@o) Grobner bases, which is
combinations of the stiffness matrix terms are attainable. fractically an impossible task. However, the stiffness of the
was shown that for the robot of Figure 1, it is impossible t®P robot is given according to eq. (13); therefore, synthesiz-
concurrently fulfill requirements of Cartesian stiffness matriing sextuplets of stiffness elements is limited only to those
elements,, andk,, by only changing the slider locations. sextuplets that the planar units can attain. Accordingly, Fig-
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ure 3 depicts the solvable synthesis problems for the planar Ku,, = —LrisK. s — LK., — Kx.zl—rss.

units and also draws the limits for the solvable stiffness syn- a I

thesis problems of the DP robot with the given redundancy. | the following section we demonstrate a numerical ex-

The unsolvable stiffness synthesis problems for the DP rObé’anle of this algorithm.

are all the stiffness synthesis problems for which one of the

corresponding stiffness synthesis problems of its planar units . . .

is unsolvable according to Figure 3. Note also that eq. (13) iséa Numerical Example: Stiffness Synthesisof the

linear combination of the two stifiness synthesis problems épouble Planar Robot

the planar units, therefore the non-solvable stiffness synthe- ) ) )

sis problems for the DP robot are only those associated with this section we demonstrate the solution of a stiffness syn-

non-solvable stiffness synthesis problems of one of its plangesis problem for the DP robot of Figure 2. The unknowns

units. are the locations of the sliders of the planar units. These lo-
The stiffness synthesis process for the DP robot is demog@tions are readily found once the solutions for the variables

strated herein for stiffness synthesis in theirection of the (@i, 1), i = 1..3, are found for each planar unit of the DP

WCS. The solutions of the equations stemming from the stiffoPot. The aim of the synthesis problem is to specify all the

ness decomposition equation (eq. (13)) for this problem afé elements of the stiffness matrix in thedirection of the

given by egs. (37)—(42) wheté, ., k., k.., k.o, k. gk, ] IS . ) ]

the vector of desired (task-based) stiffness elements of the DPTO Validate the solution we first set up an example of the

robot in thex-direction and, andK , respectively designate DP rpbot with given slider locations gnd compute its s_tlffness

the corresponding desired<3 stiffness matrices of the upper Matrix according to eq. (13). The first row of this stiffness

and lower planar units. Note that these equations show tHRtrx (the stiffness elements in thedirection) is used to set

this problem is solvable since egs. (37)—(42) do not requil the desired stiffness values for the stiffness synthesis algo-

simultaneously depicting,. . andK, . nork, . andk, . 'ithm. After solving for all possible solutions, the computed
In eqs. (37)—(42),,, i, j = 1,2,3 indicate the elements of theSolutions are expected to include also the same values used

rotation matrix R from the GCS to the WCS: for setting up the example.
Lr13K, 133+ 1rsK,, — K, gras

(42)

Ky, = 1 6.1. Setting Up The Example
Faal rsK oy + K, 112 — K, (37) The geometric properties of the DP robot used for setting up
RELAGL S ; ”l" o the numerical example are listed in Table 2. The gripper of
—h the robot is positioned ig = [-0.1, —0.1, 0.3] [m] and rotated
12K,y 4 LrssK, Py FialrasK 20 abo.ut thec—a?as of the W'CS. . ' .
Ky, , = £ 231’ ”133 Sl The inverse kinematics given in Appendix A results in the
—h (38) rotation angles of the lower and upper moving platforms and
K, ors3—risK,, —Lr5K, in the positions of the spline and the nut together with the
) universal joint angleg, and g, (see Figure A3). The corre-
’ sponding results for the required position and orientation of
(Kxﬁ + LKX,,) oz + (Kw + K“L) Fa3 this example are given in Table 3. o
Ky, = 7, Next, the angles of the prismatic actuator axed4, |5 in
| (39) Figure 1) of the upper and lower planar units are selected as
(Kiow+ LK, )ris ¢, =[30°, 240, 120] and¢, = [60°, 200, 100], respectively.
+ £ The corresponding values foy, b;, i = 1,2,3, are termed,,
andb,, for the upper planar unit ang. andb,, for the lower
K - —1, 713K, 133 — 123K, + K, pTa3 planar unit:
—b + 1 (40) for upper planar unita,; = cos(¢.;)
— _ 2
+ r23l"r13K—*‘-)‘_l Iif;lnrla + K.l b,, = sin(¢,;)
for lower planar unit:a,; = cos(¢,;) (43)
K = 113K, — Ky alss — r1al, 23Ky o — 113K, 733 )
Uxyy — _ln + lx bu’. = SIFI((P;,,)
N K., + 13K, +1LriK,, — LK, , =123
_ln + ls

(41)

The resulting reduced 3 3 stiffness matricek, andK, for
the upper and lower platforms are
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Table 2. Numerical Parameters Used for Setting Up the Numerical Example

Upper platform height 0.2 Charactersitic dimension of lower moving 0.02

(Z, in Figure Al) [m] platform [m] (see eq. (3))

Homing height [m] 0.3 Characteristic dimension of upper moving 0.02
platform [m] (see eq. (3))

Radius of lower base circle [m] 0.3 Actuator stiffness of lower planar uynit k 1 x 1¢°
[Nm™]

Radius of upper base circle [m] 0.3 Actuator stiffness of upper planar ynit k 1 x 10°
[Nm™]

Screw lead (m per rotation) 0.02

respectively, are used here as an input to the stiffness synthesis
algorithm. For each planar unit, three minimal polynomials,
mp 1, mp o, andmp 5, are obtained using the procedure of
Section 5.3. Table 4 lists all distinct real solutionsmgs ;,

mp s, andmp ;5 for the upper and lower planar units.

© 1163175911 583364351 —1495557226 Next, all the real solutions foqz,-, b;, i = 1,2,3 that are
K,=| 5833964351 1836821089 —86.24677281 smaller thany/2 are found by using eq. (34) (see eq. (36)).

1495557226 —86.24677281 2367426309 From these paired sets the sextuplets#,, a,, b,, as, bs] that
- (44) fulfill the stiffness equations, of each planar unit, are saved.

For the upper planar unit, this results in 48 real solutions for
The resulting stiffness matrix of the DP robot is given by @, b, i = 1,2,3 while for the lower planar unit, eight real

K.=|[4330127019 17500000 —5084097143

1250000000 4330127019 249577993
| 2495777993 —5084097143 392457238

solutions fora,,, b,,, i = 1,2,3 are found. Figures 5 and 6
2413175911  10164M137 136598936 present the geometry of the upper and lower planar units for
1016409137 3586821089 —7235298440 the solutions given numerically in Appendix C. The three
1365989936 —7235298440 .6150181290 10 actuators in Figure 1 are distinguished in these figures by
2834951789 748303025 231752923 circular, hexagram, and square symbols, respectively. The so-
—4163992352 —2310675538 2180®3549 lutions corresponding to the angles used to set up the example
—3306317483 —4443898975 —1156270068 are encircled. The time for the numerical computation of the

eigenvalues took about 500 s for each planar unit.

Appendix C presents all real solutions for the upper and
lower planar units, respectively. All computations were car-
ried out with 64 digit accuracy. The values fat [b;, a,, b,,

3005333637 —5474412144 —6114035530 as, bs] are presented as angles of the prismatic actuators in
—5474412144 905655994 660474634 Appendix C f,-, i =1,2,3in Figure 1) in the-y plane. Any
—6114035531 660074636 878349878 solution for the upper planar unit can be used with any so-

(45)  |ution for the lower planar units; hence Appendix C presents
all 384 real solutions for the stiffness synthesis problem of

IThte glemter?tsdof f[hedflrs;[ rowfof :E'S st'glffffness ma’g:x "?‘“?hF DP robot of this example. Highlighted rows in Appendix
selected as the desired vaiues Tor the Stliness syntnesis a represent the solutions corresponding to the values of the

gonthm. Using the algquthm In Section 6.2, eqs. (37)_(42)actuator angles used for setting up the numerical example.
results in the desired stiffness elements of the upper and lower

units that are (as they should be) equal to the elements of the _
first rows ofK, andK, of eq (45), respectively. 7. Conclusions

2834951789 —4163992352 —3306317483
7483793025 —2310675538 —4443898975
2317552923 218093547 —1156270068

A solution for the stiffness synthesis problem of DP variable
geometry parallel robots is presented in this investigation.
This solution uses Grébner bases and applies multiplication
The three desired stiffness elements for the upper and lowables that transform the solution of the stiffness synthesis
planar platforms that are given by the first rowgfandK,, polynomial equations into an eigenvalue problem. Since in

6.2. Solving for the Geometric Parameters of the Upper and
Lower Platforms
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Table 3. Results of the I nver se Kinematics of the Double Planar Robot

n = position of the nut [-0.1, -0.0636,0 .2-6] B, = lower U-joint angle (see Fig- 0.0
ure A3 in Appendix A)

Bu =upper U-jointangle (see Fig- —65.8384
ure A3 in Appendix A)

0,, = relative rotation between -115.5120
screw and nut

s = position of the spline [-0.1,0.0092, 0.-5]
6, = rotation of lower moving platform 00

6, = upper moving platform rotation -114.1616
The number of four digits after the decimal points is only for numerical purposes.

A (A)A
& it

Fig. 5. Geometry of the lower planar unit for all eight solutions of the stiffness synthesis example of the DP robot. The
encircled solution corresponds to the data used for setting up the numerical example.

Table 4. Real Solutions of mpy,, mps,, and mp ;5 for the Upper Planar Unit and L ower Planar Unit

Results for Upper Planar Unit Results for Lower Planar Unit

G G G G G G
+0.20894173  +£0.96642204  +0.36602540 +1.3636051 +0.29022483  +£0.81115957
+0.22517095 +1.0048748 +0.56625616 +1.1215331 +0.8328858
+0.99510127 +1.0509660 +0.94629300 +1.2703051 +1.1445878
+1.3659867 +1.3660254 +1.0324865 +1.2817127 +1.3356068
+1.3660254 +1.3926714 +1.2881221 +1.3525921 +1.3615997

+1.3986934 +1.3613936
+1.4003424 +1.3660254
+1.3961726

All numerical computations in this work were made with 64 digits, but results are truncated to eight significant decimal

digits for presentation purposes.
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Fig. 6. Geometry of the upper planar unit for all 48 solutions of the stiffness synthesis example of the DP robot. The encircled
solution corresponds to the data used for setting up the numerical example.

practice the number of actuators is deficient for synthesizirthat synthesizes the stiffness matrix elements of the DP robot
the complete stiffness matrix, we take advantage of Grobnierthe X-direction that was shown to have 384 real solutions.
bases to characterize the space of solvable stiffness synthesis

problems for a given set of variable geometry parameters. The

effectiveness of this method was demonstrated on a novel Xppendix A: Inver se Kinematics of the Double
variable geometry robot which has six free geometry variablgs| gnar Robot

and can control at most six elements of its stiffness matrix.

Due to the special structgre of the DP robot it is pgssiblpigure A1 shows a schematic view of the gripper in four po-
to decompose the problem into two stiffness synthesis probitions. The upright position of the screw body is considered
lems of its upper and lower planar platforms that have thrgge home position (position 1 in Figure Al). In this position,
free geometry variables each. The solution of the stiffnegge moving platforms of the two planar units are at the centers
synthesis of the planar units was shown to have at most gtheir circular bases and their PCS are parallel to the WCS.
solutions. For each planar unit it was shown, for example, th@the fourth position represents a general position of the grip-
it is impossible to control both two element,, and K, per. Subscript h in Figure Al indicates all the properties at the
of the stiffness matrix by only changing the locations of thg,gme position and the lettegsn, s respectively indicate the

sliders on the circ.ular base. (_Zomposing the sollvable Setspﬂfsitions of the gripper, the nut, and the spline center points
elements of the stiffness matrix of the planar units draws thg the WcCS.

limits of the solvable sets of the stiffness matrix elements for 14 reach any desired configuration from the home posi-
the 6-DoF DP robot. This method was verified by an exampigyn the motion is conceptually decomposed into three parts.
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£y

Driving
£ yoke

Fig. A1l. Motion from the home position to a general giver
position.

>

8 Driving

voke T

Fig. A2. Cross-section of the spline joint. Driven ¥
yvoke =
Ve
Fig. A4. Upper moving platform, universal joint, screw body

The first part (transition from position 1 to position 2) is rota- .
tion about the center point of the nut at home positignin and gripper.

Figure A1, such that the desired orientation of the gripper is

reached and the corresponding rotation of the lower platform

is determined by the inverse kinematics of the lower U-joint

(eq. (A3)). To maintain the axial position of the screw body-direction of the WCS (see Figure 2) respectivlyis given
relative to the nut, the upper moving platform is rotated in they the third column of R,, the rotation matrix from the GCS
same amount as the lower moving platform. Next, parallé WCS. The parametric locus of all points along the screw
translation of both the upper and lower moving platforms igxis is indicated by in eq. (A1) where; < 9t is the position
performed until the desired position of the screw axis is olparameter along the screw axis:

tained (position 3, Figure Al). Finally, only the upper moving N

platform is rotated in order to move the end effector axially on l=g9-¢2. (A1)

the screw to the desired axial position (position 4, Figure Alyne nut and spline center points (pointands) are found by
Apartfromthe GCS and WCS, we introduce an upper PC3ypstituting in eq. (A1} = z, andz = 0, respectively:
lower PCS, and nut-attached coordinate system (NCS). The
detalls of these systems are given in Figures A2—A4 and are g2\ . 02—z, \ .
explained in the subsequent paragraphs. At the home position S~ 9~ <2T20> Z, N=9- (T) 2. (A2)
all these coordinate systems are parallel to the WCS. ¢ ¢

Let the symboh indicate a unit vector. Accordingly, 1&t Figure A2 introduces the geometry of the spline supported
andz, indicate the unit vectors along the screw axis and thay the lower U-joint. The direction from the center point to
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the groove of the spline is parallel %, thex-direction of the whereR
GCS (Figures Al and A2). Figure A3 gives the geometry of

.¢., IS the rotation matrix by an angjeaboutz,:

the U-joint connecting the spline to the lower platform. The ¢ —s, 0
“driving yoke” of this universal joint is rigidly connected to Rev=1|s ¢ O0f. (A7)
the lower moving platform and the lower PCS is indicated by 0 0 1

subscriptb such that itsc-direction,X,, is along the pivot of _ . _ .

the driving yoke and itg-direction is always parallel tg, 1 ne unit vecto, is obtained by normalizing the vector pro-
(Figure A3). The driven yoke of this U-joint is the spline withduced by projecting, on thex, — yo plane and, is found
its hinge always parallel t§,, the y-direction of the GCS. from the cross product g, with 2,. The directed angle from
The geometry of the upper U-joint fixed to the upper moving 1 %« is given by

platform is identical when the spline of the lower U-joint is oTe oTo

replaced with the nut of the upper joint. However, since the “= Atan2(xuyb, %)« €0, 21). (A8)

nut can rotate about the screw, the NCS is defined with ifSy ,, indicate the number of complete revolutions made by
z-direction alongz, and y-direction perpendicular &, and o serew relative to the nut. The total rotation angleof

along the axis of the driven yoke (sgeandy, in Figure Ad). e moving platform relative to its orientation at the home

The_x-direction of the upper PCS,, is along the pivot of the position is given by eq. (A9) and explained in Figure A5
driving yoke connected to the upper moving platform.

The angle betweefy andz, is labeled (Figures A3 and 6, = 6, — (2n, + B)sign(a,.) (A9)
A4). The rotation angle of the lower moving platform rela-
tive to the home position is given by the direction’gfin  whereg is related tax and the sign ofi,,:
theX, — ¥, plane. Since the structure of the U-joint depicts
perpendicularity of, to %,, the direction o, is given by B = n(sign(a,) + 1) — signa,)a. (A10)

0, = AaNAy,/y) — /2, (A3) Equatipns (A2), (A3) and (A9) complete the inverse position
analysis of the DP robot.

where (.1, y,2) indicate the projections df, on theX, — ¥,

plane. This solution is one of two possible solutions to thAppendix B: TheEigenvalueM ethod for Solving
inverse kinematics of the U-joint and it corresponds to thp0|ynomia| Systems

geometry in Figure A3.

Once the lower and upper moving platforms are rotated h¥et C|x,..x, ] represent theing of polynomials with vari-
6, and translated to pointsandsgiven by eq. (A2), the desired gplesy, ... x,,, and coefficients over the complex field,
orientation of the gripper is achieved such that the desiregyt glsos = {(P1, P2s - PulP1s P2..pn € Clx1..x,]} be a sys-
gripper positiong, lies alongz, . In this position, homothetic tem of n polynomials with a corresponding zero-dimensional
edges of the upper and lower platforms are paralleand  |deal7 =< pi, ps, ... py >, 1 C Clxi1...x,]. Thevariety
parallel toy,. To achieve the desired positigpwhatremains v (1) of solution is defined by all the m-tuples of . ... x,,

is rotating only the upper moving platform (and thus the nWych thatp, = p, = ... p, = 0,i.e.,V({I) = {[x1...x,] €
about the screw) in order to produce the desired axial motiopy |, = p, = ... p, = 0}. We seek all the solutions &f

a,,, of the screw relative to the nut. The axial motion is given The 0rigina| System of po'ynomia' equationS, can

by be replaced by another minimal set of polynomials,=
{g:...g:}, calledstandard basis (or Grébner basis) of the
a, =19 —=nl = 19, — |l (A4)  ideal I via the use of Buchberger's algorithm (Buchberger
1965), which is not reviewed here due to lack of space. Ques-
Since the axial motion,,, is achieved by rotating the nut andyjons regarding ideal-membership of a given polynomidl,to
notthe screw, the corresponding required rotation angle of tag|ypility of S, and finiteness of the dimension 6f(7) are

nut aboutz,, is given by readily answered when using this basis (Heck 1997). Also,
if G is computed with a lexographic ordering, it results in a
Oy = =27 (an/L) (an/ | anl) (AS)  system of polynomials with a consecutively eliminated num-

o ) ber of variables as in the result of the Gauss—Jordan elimina-
where L indicates the lead of the right-handed screw thregn method for linear equations. However, this elimination

in mm per revolution. . method is unfavorable for large systems because of the com-
Rotatingy, aboutz, in an angle ofy = 6,,, definesy,  pytation effort associated with this ordering (Cox, Little, and
corresponding to the desired orientation of the nut O’Shea 1998).

It is said that two polynomialg andg, f, ¢ € C[x;..x,,],

¥, ="R,R,[0.1,0" (A6) arecongruent, f = ¢ mod I, if f-g € I. In such a case
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Sign(a,,)<0

Fig. A5. Relations betweeg, «, 6,, andg, for sign@,,) = £1.

they have the sammrmal formwhen reduced with respectto  To define this matrix representation, we recall the mono-
G and, therefore, are associated with equal cdgéts- [ f]. mial basis B forC[x, ..., x,]/I and we define for each
A coset[ f] of a polynomialf € C[x;..x,] is defined as the polynomial f € C[x, ... ,x,] a multiplication tableM ,,
subgroup ofC[x;..x,,] in which all its elements have the sameas given in the following definition.

normal form with respectt6,[f]1 = f+1 = {f+h|h € I}.
The totality of cosets of the polynomials @[x;..x,,] is the
quotientring ofC[x;..x,,] modulo! indicated byC[x;..x,,1/1,
i.e.,Clxy.x, /I ={f +1|f € Clx1..x,]}.

The definition of a coset of a polynomiaf €
Clxy, ..., x,] associateg with the coset of all polynomials
in C[xy, ..., x,] having the same normal form with respect to fb=M;b mod I (B3)
anideal I. One interesting property of normal forms is that the
normal form of any polynomiaf € C[xy, ..., x,] is always ) i,
a complex combination of monomials ov€lixi, . .. , x,]. form with respect to_the Grobner basisof fb; for eac_h el_e-
These monomials are called thasis monomials (Cox, Lit- ment of the m(_)nomla_ll basis;,, i =1... s, as acombination
tle, and O’Shea 1998) or, simply, thenomial basisand are  ©f the monomial basis elements i

DerINITION 1. Multiplication table Let I be an ideal over
Clx1, ..., x,], G its Grobner basis, ardl= [b,, ... , b,]" be

a vector of the monomial basis elements of its quotient ring
C[xa,...,x,]/1. Every polynomialf € C[xy,...,x,] has

an associated multiplication takiié, such that

From the above definition, it is possible to write the normal

indicated byB = {b, . ,l_;s}. This means thgt the normal ny (fb) = Z“ e | ¢ e C,b; € B. (B4)
form of every polynomial inC[x,, ..., x,] is given by the ' i=1
complex combinatiory";_, ¢;b; wherec; € C andb;, € B. Equation (B4) defines thigh column of the matri ; as the
This is expressed by the congruence relation in the followingector of coefficients = [c1, ... , ¢,] .
equation: The key point behind the method of the multiplication table
. eigenvalues is eq. (B3), which implies the following
f=Zi:lc,-b,- mod I | ¢ €C, b eB Fb-Mb e 1 (85)
V feClxy, ..., x,l (B1) Therefore, for all the pointsa € V(I), of the solution set
. . V (I), all polynomials inl vanish; hence we can write
Consider now another polynomiagl € C[x,...,x,] and
define the following linear mapping of cosets: fb—M;b =0 V aeV(). (B6)
W, Clxy, xal/I — Clx, L xal/1, Equa'Fion_ (B6)indicat§sth_at, forgllthe poirts V(I),Wher_w
substituting these points ifi and in the vector of monomial
W, ([fD=Ipfl. p,feClxy,..., x,l (B2) basis elementdy, all s equations in eq. (B6) vanish simulta-
neously. This defines the eigenvalue problem:

This mapping constitutes an endomorphism (Méller 1998),

and has a matrix representation and eigenvalues. (M, - f1)b=0 (B7)
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Table C-1: All 48 real solutions for prismatic actuators’ angles T, ,, T of the upper planar unit
306.5037827 216.5037827 240.0000000, 270.2799935 180.2799936 240.0000000 210.0000001  240.0000000  300.0000000,
306.5037827 216.5037827 59.99999998 270.2799935 180.2799936 59.99999998 210.0000001  240.0000000  120.0000000!
306.5037827 36.50378270 240.0000000 270.2799935 2799934890 240.0000000 210.0000001  59.99999998  300.0000000;
306.5037827 36.50378270 59.99999998 270.2799935 2799934890 59.99999998 210.0000001  59.99999998  120.0000000)
126.5037826  216.5037827 240.0000000! 9027999346 180.2799936 240.0000000! 29.99999999  240.0000000  300.0000000!
126.5037826  216.5037827  59.99999998 90.27999346 180.2799936 59.99999998 29.99999999  240.0000000  120.0000000,
1265037826 36.50378270  240.0000000 9027999346 2799934890  240.0000000, 29.99999999  59.99999998  300.0000000!
126.5037826  36.50378270 59.99999998 9027999346 2799934890 59.99999998 29.99999999  59.99999998  120.0000000,
305.8383803  240.0000000 215.8383803 240.0000000 271.8929528 181.8929528 59.99999998 271.8929528 181.8929528
305.8383803 240.0000000 35.83838027, 240.0000000 271.8929528 1.892952769) 59.99999998 271.8929528 1.892952769
305.8383803  59.99999998 215.8383803 240.0000000 91.89295273 181.8929528 59.99999998 91.89295273 181.8929528
305.8383803  59.99999998  35.83838027 240.0000000 91.89295273  1.892952760! 59.99999998 91.89295273 1.892952769
125.8383802  240.0000000 215.8383803 240.0000000 183.0000317 273.0000316, 59.99999998  183.0000317 273.0000316
125.8383802  240.0000000 35.83838027 240.0000000 183.0000317 93.00003159) 59.99999998  183.0000317 93.00003159
125.8383802  59.99999998 215.8383803 240.0000000 3.000031618 273.0000316 59.99999998  3.000031618 273.0000316
125.8383802  59.99999998  35.83838027 240.0000000 3.000031618  93.00003159 59.99999998  3.000031618 93.00003159
All 8 real solutions for prismatic actuators’ angles T, T,, T; of the lower planar unit
§240.0000000  200.0000001  280.0000000g 5999999998 200.0000001 280.0000000g
§240.ooooooo 200.0000001 99.99999999ﬁ | 59.99999998 200.0000001 99.99999999%
§240.0000000 19.99999999 280.0000000H 59.99999998  19.99999999  280.0000000}
£240.0000000 19.99999999 99.99999999 59.99999998 19.99999999  99.99999999

Equation (B7) is the basis for the method of multiplicatiortation is kept to a minimum by using it only for eigenvalue
table eigenvalues in the following theorem (Cox, Little, andomputation. Also, unlike sequential elimination, the solution
O’Shea 1998). of each variable; is independent of the other variablgsand,
thus, it is unaffected by computation errorsxin Addition-

LHE?REM L Letl  Clxy, .. ‘d’l\;m].be a zero-dm;_ensmn;all ally, by using Grébner bases the solvability of the system of
aeal. I.‘etf < C[.xl’ o> ¥n] @NAM it corresponding mut- polynomial equations is determined and it is unaffected by
tiplication table inC[xy, ... , x,]/I. The eigenvalues of M

the term order used for the computation@®fwhich allows

are the correspon_ding \:]alut;asf)ff?r al ]Ehe ﬁoints (;]de(I)f. sing more efficient term orders such as total degree order
Theorem 1 defines the basic form for the method o muECox, Little, and O'Shea 1998).

tiplication table eigenvalues. Accordingly, in order to solve

polynomial system itC[x, ... , x, ] we have to compute all

multiplication tabledM ; wheref = x;,i =1,2,...m, and

find all their eigenvalues. Then by substituting in the polyncAppendix C

mial system it is possible to find all the solution vectors in

V(). Table C1 presents all 384 solutions to the problem of stiffness
This method has several advantages over standard sequgmthesis of the DP robot presented in the numerical exam-

tial elimination by resultants mentioned in Raghavan and Rofile of Section 6. The highlighted solutions correspond to the

(1995) and Neilsen and Roth (1999). The numerical compihitial data used to set up this example.
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Chapter 4

4. Conclusion

Chapter 3 presented a list of the publications made during this work. These
publications are divided equally in treating problems of stiffness modulation and
stiffness synthesis with a limited set of free parameters — two main subjects that were
the aim of this work, namely, synthesis of variable geometry parallel robots for stiffness
modification. These works follow the two modes presented in figure 16 of chapter 1. The

following section presents consice description of the contributions of each work.

4.1 Findings and contributions summary

The follwoing is the description of contributaions made in each work presented in

Chapter 3.

Contributions of Simaan and Shoham, 2000-b

This paper investigates the derivatives of parallel robots’ Jacobian. Contrary to
previous works on parallel manipulators’ rate kinematics, this paper investigates the
Jacobian derivatives with respect to moving platform’s position/orientation coordinates
and presents a novel interpretation to these derivatives relating them to line geometry.
The significance of this interpretation is shown for the stiffness directions of parallel
robots. A case-study of a non-redundant wire-driven manipulator is presented where the

singularity of one of the Jacobian planes is shown to affect its stiffness directions.

Contributions of Simaan and Shoham, 2001

This paper presents singularity analysis of a family of 14 composite serial in-parallel
six degrees-of-freedom robots having a common parallel sub-mechanism. Contrary to
previous works on singularity analysis that presented case-by-case singularity analysis,
the paper shows how it is possible to unify the analysis of parallel singularities for this
family of robots and presents a line geometry-based singularity analysis. Additionally,
although line geometry was previously used for the analysis of fully parallel robots, the

singularity analysis in this paper is unique in the fact that it is considers the

(162)



architectural constraints on the motion of the lines and uses these constraints in the
synthetic reasoning for finding all singularities of non-fully parallel robots.

This work is based on [Simaan, 1999], but serves as an example of how line geometry
can be used for singularity analysis. It relates to reconfigurable robots in the fact that it
considers the constraints on the motion of the Jacobian lines in order to characterize all
possible singularities. This kind of analysis is valuable for the design of variable
geometry or even reconfigurable robots. Determining key architectural characteristics,
such as architectural flat pencils defined in this work, is the basis for determining which

types of singularity are possible in each new reconfigurable architecture.

Contribution of Simaan and Shoham, 2002-a

This paper exploits the preliminary results obtained in [Simaan and Shoham, 2000]
on the geometric interpretation of the Jacobian derivatives of parallel manipulators’ and
extends them to stiffness control of redundant parallel manipulators. Previous works on
stiffness control (modulation) of parallel robots* noticed the presence of “higher-order
singularities” hindering the active stiffness control, but did not succeed in finding a
physical and geometric interpretation to them. The paper uses the methodology of
[Simaan and Shoham, 2001] for line-based singularity analysis to present a novel
interpretation for the singularities of the stiffness control (modulation) of parallel
redundant robots. These results are validated on a 3-dof planar redundant parallel robot
with six actuators for stiffness control singularity analysis. These results are of prime
interest to the stiffness control in variable-geometry parallel robots and relate to the

stiffness modulation mode of figure 16.

Contributions of Simaan and Shoham, 2002-b

This paper presents an alternative approach to stiffness modulation [Simaan and
Shoham, 2002-a], in which, kinematic rather than actuation redundancy in exploited for
stiffness synthesis. The type of parallel robots capable of performing this geometry
change is termed in this paper variable geometry parallel robots. The paper presents an
example of a planar three degrees-of-freedom variable geometry robot used for stiffness
synthesis. Contrary to previous works on stiffness synthesis, this paper presents a novel
approach in which only a limited number of geometric actuators are available for

stiffness synthesis - as is the case in a physically constructible variable geometry robot.

* See references in the paper
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The solution method is based on the use of Grobner bases and transformation of the
associated polynomial problem into corresponding eigenvalues problem — a method
explained in chapter 2. The results show that, for the specific case study, there are at
most 48 conjugate solutions in the complex plane and presents an example with 16 real

solutions.

Contributions of Simaan and Shoham, 2002-c

This paper extends the methodology of [Simaan and Shoham, 2002-b] for stiffness
synthesis of a novel variable geometry six degrees-of-freedom double-planar robot. The
paper presents a kinematic analysis of this novel robotic architecture with six redundant
geometric parameters available for stiffness synthesis.

The stiffness of the double-planar robot is formulated in terms of its two planar units;
thus, allowing the decomposition of the stiffness synthesis problem of the double planar
robot into two associated stiffness synthesis problems of its planar units. The method of
Grobner bases is used to solve the stiffness synthesis problem and a numerical example
1s shown to have 384 real solutions.

This work, together with [Simaan and Shoham, 2002-c], demonstrate the efficiency of
the method presented in chapter 2 for solving problems of stiffness synthesis of variable
geometry robots. The solutions are not only found, but also the symmetries among them
are discovered and a solution devoid of extraneous roots is obtained. Also the stiffness

characteristics of the novel double planar variable geometry parallel robot are discussed.

4.2 Closure

The term wvariable geometry parallel robot was presented in this work in a
twofold-novel approach. First virtual geometry change of the robot is considered by
incorporating actuation redundancy in its architecture. This mode is called the stiffness
modulation mode in this work. Then, a second mode is investigated, in which, physical
geometry change is achieved by incorporating kinematic redundancies in the kinematic
branches of the parallel robot.

Since stiffness plays a major role in determining the effective accuracy of a given robot
in performing assembly tasks, it was chosen as the driving criterion for the geometry
change of variable geometry parallel robots. By doing so, the work had to address
unsolved problems in stiffness modulation and stiffness synthesis before a variable

geometry parallel robot can be synthesized. These problems include stiffness modulation
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singularity analysis and stiffness synthesis with a limited set of variable geometry
parameters — a term first coined in this work.

The solution of these problems entailed incorporating knowledge ranging from line
geometry, redundancy resolution methods, and effective symbolic polynomial system
solving — all of which have been successfully implemented in addressing these problems.
The examples presented include a wire-driven parallel robot, and a double planar
variable geometry parallel robot. In the first example a numerical study of the stiffness
derivatives and the associated lines was presented as a preliminary case study for ideas
which, later in [Simaan and Shoham, 2002-a] were connected to the singularity analysis
of the stiffness modulation problem. In the second example, the stiffness synthesis
problem given a limited set of free geometric parameters was addressed. The suggested
solution method characterizes the space of solvable problems and discusses symmetries
among the solutions — a knowledge necessary for successfully choosing the correct set of
free variable geometry parameters when synthesizing a variable geometry parallel robot.

In viewing this work on variable geometry parallel robots as a whole, the variety of
subjects addressed in it serve one cause — forming a knowledge base for designing and
synthesizing variable geometry parallel robots. We hope that the work will serve as a

pointer for solving other problems of synthesis of variable geometry parallel robots.
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