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Abstract 

Robotic manipulators constitute multi DOF (Degree-Of-Freedom) mechanisms. 

Contrary to single DOF mechanisms that perform a single task, robotic manipulators are 

designed to perform a variety of tasks from simple pick and place operations to complex 

assembly tasks - all of which demand different specifications from the robot in terms of 

its stiffness and accuracy.   

For any given task there are several associated performance demands from the robot 

in terms of its stiffness, accuracy, speed, and workspace. These demands guide the 

synthesis of an optimal robot for a task. However, in performing any given task, a non-

redundant robot performs within its limitations, i.e., it constitutes a compromise in 

terms of its performance measures that are determined by its architecture and inverse 

kinematics rather than task demands.  

This work addresses this limitation of parallel robots. It considers the methods for 

improving parallel robots’ capabilities to suit their characteristics for a given task. The 

work introduces the term variable geometry parallel robots. These robots are capable of 

changing their geometry for improving their performance per a given task.  

Parallel robots feature various advantages over serial robots in terms of their 

accuracy, stiffness, structural rigidity, dynamic agility, and compactness. However, they 

suffer from several crucial shortcomings that preclude their use for many tasks where 

their advantages are required. Since the stiffness of these robots is a crucial performance 

index for various applications, e.g., assembly tasks and for indicating presence of 

singularities, this work chooses it as a driving criterion for the geometry change of 

variable geometry parallel robots. 

The work considers two modes for stiffness modification of variable geometry parallel 

robots by incorporating actuation and kinematic redundancies in their kinematic chains. 

These two modes are termed stiffness modulation and stiffness synthesis.  

In stiffness modulation, the work considers fully-parallel robots with actuation 

redundancies. Previously reported “higher-order singularities” in which the stiffness 

control problem is singular are investigated. The work connects the stiffness modulation 

singularities with derivatives of the inverse kinematics Jacobian and shows that to these 

derivatives there are 36 associated lines in space. Consequently, the applicability of line 
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geometry methods for analyzing these stiffness modulation singularities is shown. This 

geometric interpretation constitutes the first known line-based interpretation to these 

stiffness modulation singularities.  

In stiffness synthesis, the work investigates variable geometry parallel robots with 

kinematic redundancy in their branches. Contrary to other previous works on stiffness 

synthesis, the work focuses on stiffness synthesis using a limited set of free geometric 

parameters – as is the case for a physical robot. Using Gröbner basis computations it is 

shown how the solvability of these stiffness synthesis problems can be characterized and 

solved. The stiffness synthesis problems are transformed from a polynomial form to an 

associated eigenvalue problem using multiplication tables based on quotient ring 

algebra. The proposed method is implemented on a planar three DOF and double planar 

six DOF variable geometry robots. 

All the subjects addressed in this work constitute the knowledge base for the design 

and synthesis of variable geometry parallel robots with stiffness modification 

capabilities. 
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List of Symbols 

The following symbols are used throughout this work. The font setting differentiates 

variables, from matrices and vectors. Matrices are indicated by capitalized bold fonts 

while vectors are indicated by small bold fonts and variables by normal fonts. Also, 

polynomials are indicated by normal fonts setting and groups are indicated by capitalized 

font setting.   

q : vector of active joint values (generalized coordinates) 

x : a six-dimensional vector of the moving platform pose, i.e., position 

and orientation. 

τ : a vector of active joints’ forces/moments. 

fe : six-dimensional vector of the force and moment applied by the robot’s 

end effector on the environment. 

p
w R  : rotation matrix from coordinate system p to coordinate system w. 

J : Inverse kinematics Jacobian (for parallel robots).   

K : stiffness matrix of a robot. 

kd : stiffness coefficient of the active joints. 

Ka : active stiffness matrix. 

Kp : passive stiffness matrix. 

ŝ  :  a unit vector along the vector s. 

tr : trace of a matrix. 

Res(f, g) : resultant of polynomials f and g. 

H(x, t) :  homotopy function with parameter t. 

C : field of complex numbers. 

N : field of natural numbers. 

{(a, b)} : set of all pairs (a, b). 

K[x1, ..., xn]  :  ring of polynomials with coefficients over the field K and variables 

x1, ..., xn.  

I : Ideal. 

V : variety. 

R : Ring. 

<p1, …, pn> :  finitely generated ideal with generators p1, …, pn. 
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V(I) :  variety of ideal I 

I(V) :  ideal of variety V. 

mod : modulo. 

f ≡ g mod I : f is congruent to g modulo I.   

K[x1, ..., xn]/I : residue class ring (quotient ring) modulo ideal I. 

Mf : multiplication table associated with polynom f. 

> : term order. 

lt(f) : leading term of polynom f. 

lc(f) : leading coefficient of polynom f. 

lm(f) : leading monomial of polynom f. 

LCM(f, g) : least common multiple of f and g. 

Lex : lexicographic term order. 

DegLex : degree lexicographic term order. 

DegRevLex : degree reveres-lexicographic order. 

S(f, g) :  S-polynomial of f and g. 

G : Gröbner basis 

{a}\b : the set {a}, but excluding its element b. 

N(f, G) : normal form of f modulo G. 

[f] : equivalence class (coset) of polynom f modulo ideal I. 

hfg →  : h is the result of single step division of f by g. 

hfg +→  : h is the reduction of f modulo g. (normal form of f modulo g). 

hfG +→  : normal form (reduction) of f modulo the group G. 

B : monomial basis of the quotient ring. 

b : a vector of the elements in the monomial basis B. 

maxdeg(x) : maximal degree of variable x. 
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Chapter 1  

1.  Introduction 

1.1 Outline 

This chapter serves as a stand-alone introduction to this work. It includes a survey of 

relevant subjects and references to the contributions of this work, given as separate 

papers in chapter 3. Literature reviews and background on parallel robots, line 

geometry, redundant parallel robots, stiffness synthesis and modulation are included 

with a special focus on their relevance to the main topic of this work, namely, variable 

geometry parallel robots.   

The introduction begins with a background section on parallel robots including brief 

notes on their historical roots, architecture classification and characteristics. The use of 

line geometry is also reviewed in context of singularity analysis for explaining the 

motivation behind our works on stiffness modulation singularity analysis in chapter 3, 

[Simaan and Shoham, 2000-a, 2002-b].  

Section  1.3 addresses reconfigurable and variable geometry robots. The classification 

and terminology of re-configurable/modular robots are presented followed by a review of 

previous works on all types of reconfigurable robots. Then, the definition of the term 

variable geometry parallel robots in this work is presented with two illustrative 

examples.  Based on this definition, the motivation for developing variable geometry 

robots is explained and a collection of works relevant to the development of these robots 

is presented.  

Section  1.4 serves as a background on redundant parallel robots. The section begins 

with redundancy classification and ends with reviews and background on redundant 

parallel and serial robots as redundancy is inseparable from variable geometry parallel 

robots.  

Stiffness of parallel robots is the subject of section  1.5. The section gives the necessary 

background, definitions, and motivation for choosing stiffness as a criterion for geometry 

change prior to explaining the two problems of stiffness synthesis and stiffness 

modulation. The section ends with conclusions on the knowledge deficiencies in both 

these subjects that serve as goals of our investigations in [Simaan and Shoham, 2000-b, 
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2002-a] on stiffness modulation and later in [Simaan and Shoham, 2002-b, 2002-c] on 

stiffness synthesis using variable geometry robots.     

Section 3 is about stiffness. It is first explained why stiffness was chosen in this work 

as a criterion for driving the geometry change. Then an exact full definition of the 

stiffness mapping is presented with connection to the Jacobian matrix derivatives. This 

equation is then connected to the two modes, used in this work, for changing the 

stiffness. 

1.2 Parallel Robots  

1.2.1 Historical notes 

Parallel manipulation concept dates as old as 200 years old where the analysis of the 

rigidity of an articulated octahedron was performed by the mathematician Cauchy 

[Merlet, 2000]. Since then, these manipulators were neglected and the main research 

efforts were invested in serial manipulation. However, the last two decades featured 

steady growth in the number of works regarding parallel manipulators where these 

robots were (and still are) re-discovered as additional manipulator architectures with 

merits of their own. Dasgupta [Dasgupta and Mruthyunjaya, 2000] emphasized the 

increasing interest in the field of parallel manipulation and mentioned that in 1995 more 

than 50 papers appeared on this subject while, nowadays, hundreds appear.   

The first six-degrees of freedom parallel robot was built by Gough and Whitehall 

[1962] as a universal tire test machine. Three years later, the work of Stewart [Stewart, 

1965] presented an architecture similar to Gough’s, but for application as a flight 

simulator, figure 1. Subsequent to this work, all platform-type robots were called 

Stewart-Gough platforms. However, Kokkinis and Millies [1992], point out that much 

earlier than the works of Gough and Stewart (at 1942), Pollard [Pollard, 1942] was 

granted a U.S. patent for a three-degrees of freedom parallel manipulator suggested for 

spray painting of cars.  

1.2.2 Parallel robot characteristics and architecture classification  

Robotic architectures are usually categorized into two families, i.e., parallel and serial 

robots while robots with serial units connected with parallel units are usually termed 

Hybrid Robots, figure 2. Parallel robots are further divided into two groups being the 

fully parallel robots and the Non-fully parallel robots (also called CSIP (Composite Serial 

in Parallel) manipulators [Hunt, Samuel, and McAree, 1991]).  
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Figure 1. The original flight simulator concept presented by [Stewart, 1965]. 

We adopt the definition presented in [Chablat and Wenger, 1998] for a fully parallel 

manipulator: 

Definition Fully parallel manipulator: 

A fully parallel manipulator satisfies the following conditions:  

• The number of elementary kinematic chains equals the relative mobility 

(connectivity) between the base and the moving platform.  

• Every kinematic chain possesses only one active joint. 

• All the links in the kinematic chains are binary links, i.e. no segment of an 

elementary kinematic chain can be linked to more than two bodies. 

Fully parallel robots are all platform manipulators using the architecture of the 

Stewart-Gough platforms and characterized by single-valued solution for their inverse 

position analysis problem. Non-fully parallel robots are all parallel robots that do not 

conform to the definition given above. These robots are characterised by complex 

kinematic chains with serial arrangement that allows for multiple solutions for the 

inverse position analysis problem. For example, figure 3 presents all eight solutions of 

the USR robot presented in [Simaan, Glozman, and Shoham 1998; Simaan, 1999]. 
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Figure 2. Manipulator architecture calssification. 

Based on the solution multiplicity of the inverse kinematics problem this limiting 

definition can be summarized as follows. A fully parallel manipulator has one and only 

one solution to the inverse kinematics problem. Any parallel manipulator with multiple 

solutions for the inverse kinematics problem is a non-fully parallel manipulator. 

 

Figure 3. Eight solutions of the inverse kinematics problem of the composite serial-

in-parallel USR robot [Simaan, 1999]. 

Parallel robots feature many advantages over the more familiar serial robots in terms 

of payload-to-weight ratio, compactness, stiffness, accuracy, simplicity of their inverse 

kinematics problem, and dynamic agility [Hunt, 1983; Merlet, 1992; Dasgupta and 

Mruthyunjaya, 2000]. However, architecturally-inherent disadvantages of these robots 

render them adequate for certain applications only, in which, their advantages surmount 

their disadvantages. These disadvantages include small work volume, limited 

Serial robots Parallel robots 

Fully 
parallel CSIP Hybrid 
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orienational workspace, complicated direct kinematics solution, existence of statically 

unstable singularities inside and on the workspace boundary [Hunt, 1983]. For more 

detailed comparison see [Merlet, 1992; Ben-Horin, 1997; Simaan, 1999; Simaan and 

Shoham, 2000-a].  

As in serial manipulators, the fact that the performance indices, such as stiffness, are 

configuration-dependent hinders the straightforward design of parallel manipulators for 

given task requirements and complicates the comparison between two different 

architectures for a common task from stiffness point of view [Tahmasebi and Tsai, 1995]. 

To overcome these design problems and to obtain better compatibility of the robot with 

the task requirements through out all its workspace, this work suggests the use of a 

manipulator that changes its geometry according to the task requirements. 

1.2.3  Line Geometry and Singularity Analysis 

The following section briefly introduces the use of line geometry for singularity 

analysis in order to explain the motivation behind our investigation on stiffness 

modulation singularities and the derivatives of the inverse kinematics Jacobian 

presented in [Simaan and Shoham, 2000-b, 2002-a]. 

The inverse kinematics Jacobian of an n DOF (Degrees-Of-Freedom) parallel robot 

maps the robot’s gripper twist, x� , (a 6×1 vector representing the linear and angular 

velocities of the gripper) to the corresponding vector of generalized speeds, q� , (actuator 

speeds) according to Eq. (1): 

 xJq �� =  (1)  

By differentiating the geometric constraint equations [Gosselin and Angeles, 1990; Basu 

and Gohsal, 1997] or using static decomposition [Cleary and Uebel, 1994; Simaan, 

Glozman and Shoham, 1998], the Jacobian of parallel robots can be decomposed 

according to Eq. (2): 

 qBxA �� =  (2)   

In this decomposition matrices A and B represent the parallel and serial parts of the 

robot, respectively [Simaan, 1999]. Matrix A is called the IDK (Instantaneous Direct 

Kinematics) matrix and matrix B the IIK (Instantaneous Inverse Kinematics) matrix 

[Simaan and Shoham, 2001]. For six DOF fully-parallel robots matrix B is the identity 

matrix. The rows of A are vectors of Plücker line coordinates. Each line represents the 

action screw axis that is reciprocal to the twists of all joints, excluding the active joint of 

its corresponding kinematic chain, [Hunt, Samuel, McAree, 1991; Collins and Long, 

1995; Tsai, 1998].  
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Equation (2) defines the singular configurations of fully parallel robots. These singular 

configurations are characterized by rank deficiency of the IDK matrix A and/or of the IIK 

matrix B. If A is singular then there exits non-trivial solutions, 0≠x� , to Eq. (2) for the 

homogeneous case, i.e., when all actuators are locked ( 0=q� ). Such singularities are 

termed “parallel singularities” or “uncertainty configurations” in which the robot gains 

extra degrees of freedom in an either an infinitesimal or finite range of motion 

(transitory mobility [Hunt, 1978]). If B is singular then the robot is said to have “serial 

singularity” or “stationary singularity” in which the end-effector loses DOF as a result of 

DOF loss in one of its kinematic chains. For cases where the robot has less than six DOF 

(n<6) this analysis is simplistic and one should consider a matrix that governs the static 

equilibrium of the moving platform based on the constraint screws and the actuator 

screws [Simaan and Shoham, 2001].     

Theoretically, it is possible to formulate the singular configurations by formulating 

determinant of the Jacobian and finding all conditions leading to singularity (for example 

see Tahmasebi and Tsai, 1993). This approach is tedious and, in many cases, impossible 

to compute symbolically for 6 DOF robots (see Merlet, 1989 and references therein). 

Additionally, using this method, it is difficult to account for all singular configurations 

and obtain geometric understanding of these singularities.   

Since the rows of the IDK matrix, A, of parallel robots is composed of Plücker line 

coordinates it is possible to find all parallel singularities by using line geometry as in 

[Merlet, 1989] who first presented the use of line geometry for singularity analysis of 

Stewart/Gough platforms. This work was inspired by the work of Dandurand [1984] on 

rigidity analysis of spatial grids that gave a listing of all six line families (varieties) of 

rank 1 to rank 6. These varieties are reproduced in  Table 1 below and constitute the 

‘dictionary’ for linear independence/dependence of lines♣. The names for each variety in 

 Table 1 stem from their corresponding mappings on the Klein quadric [Pottman, 

Peternell and Ravani, 1999].  

The advantages in using Line geometry for singularity analysis stem from the fact 

that this method is an exhaustive method that leads to all parallel singularities. The use 

of this method is particularly suited for Stewart-Gough platforms since the lines are the 

axes of the prismatic actuators; however, for CISP (composite serial in parallel) non-fully 

parallel robots it is possible to use this method provided that an exhaustive synthetic 

                                                 
♣  Line geometry is not reviewed here for space limits. Readers can consult [Veblen and Young, 

1910; Graustein, 1930; Sommerville, 1934; Ben-Horin, 1997] or chapter 9 of [Simaan, 1999].   
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reasoning is carried out while taking into account the geometrical limitations on the 

motion of the lines and the existence of architectural flat pencils as was done in [Simaan 

and Shoham, 2001].   

Table 1 The six line varieties reproduced from [Dandurand, 1984]. 

 

All abovementioned advantages of singularity analysis using line geometry motivated 

our works in [Simaan and Shoham, 2000-b, 2002-a]. In these works (see section 3) a 

formulation of the derivatives of the Jacobian with a connection to line geometry is 

presented. The proof presented therein allows extending the use of line geometry for 

stiffness control singularity analysis.  

1.3 Reconfigurable and variable geometry robots 

This section reviews the relevant terminology and works on re-configurable robots. 

First, the terminology and literature review on reconfigurable robots is presented. Next, 

the definition of the term “variable geometry parallel robots” is presented with two 

examples explaining this definition. Then the need for variable geometry robots is 
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explained and a short literature review of the works relating to reconfigurable, 

redundant, and variable-geometry parallel robots is presented. These literature reviews 

(including the review on re-configurable robots) are included to help form a perspective 

regarding the similarities and differences between previous works and the approach of 

this work.  

1.3.1 Types of re-configurable/Modular robots – Terminology 

Re-configurable systems comprise of three types of systems, namely, simple modular, 

self re-configuring, and metamorphic systems. Simple modular systems are composed 

from simple units that can be connected and dismantled via external intervention to 

achieve a desired shape of the robot. Self re-configuring systems have modular units 

capable of moving autonomously on the other units in order to change the shape of the 

system. Metamorphic systems are self re-configuring systems with units having closed-

loop mechanisms as their basic units. These units can move along the edges of other 

neighboring units by changing the angles between their edges. The next section gives 

examples of previous works on these types of robots. 

1.3.2 Some relevant works on reconfigurable robots 

The works in this field divide into three categories corresponding to the three types of 

re-configurable systems.  

The works on simple-modular systems focus on the algorithms for defining the 

configuration of the robot and its direct kinematics [Chen and Yang, 1996; Yang and 

Chen, 2000]. Other works use these systems for obtaining re-configurable manufacturing 

systems [Koren, et. al., 1999]. The aim of these works is to define mathematical models 

for the reconfigurable system and optimal reconfiguration algorithms. Design aspects 

and control algorithms of modular serial manipulators with simple reconfiguration were 

investigated by Paredis, Brown, and Khosla [1996] and a complete control algorithm and 

reconfiguration based on genetic algorithms was presented in [Paredis, 1996] where an 

example of a four DOF serial reconfigurable robot is investigated.    

Self re-configuring robots were studied in various works that considered the required 

shape of the basic reconfiguring element (usually called molecule) in order to obtain 

compact spatial packing for generating a self-aggregating structure. Among these works, 

[Murata, et al., 1994] and [Tomita, et. al., 1999], considered a planar version of a self re-

configuring machine. Their system, described in figure 4, uses a symmetrical unit with 

three electromagnets that allow it to move in the plane by connecting to its neighboring 

units. These works also pointed out the advantages of such a system for self-repair and 
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building active bending elements (actuators). Hosokawa, [Hosokawa, et. al., 1999], 

considered a simpler version of robotic cells with the capability of moving in the vertical 

plane and conducted preliminary experiments with this system. 

 

Figure 4. Self reconfiguring machine (a) reconfiguration steps (form Murata et al. 

1994) (b) structure of basic modular unit (from Tomita et al., 1999). 

Spatial versions of re-configurable robots/structures with units capable of moving in 

3D were considered in [Kotay, et. al., 1998] and [Murata, et. al, 1998]. The first work, 

[Kotay, et. al., 1998], considered a molecule-based system. Each molecule included two 

“atoms” and a “bond” such that the atoms can move about their bond by rotation and 

connect to other neighboring atoms. The second work considered a more complex 

modular unit having the shape of a regular hexagon and built a model of the system. 

Both works emphasized the design problems stemming from the need for a molecule 

(modular basic unit) with self-contained actuators capable of lifting its own weight for 

performing the reconfiguration. These demands emphasize the need for utilizing parallel 

modular units for obtaining a re-configurable structure because of their architecturally-

inherent high payload-to-weight ratio. 

Metamorphic robotic systems with metamorphic hexagonal loops were studied in 

[Chirikian, 1994], figure 5. Later, [Chirikian and Pamecha, 1996] determined the bounds 

of the number of module motions for a required reconfiguration task and proposed a 

reconfiguration algorithm in [Pamecha and Chirikian, 1996]. All these works discussed a 

planar metamorphic structure.  

(1) (2)

(3) 

(a) (b) 
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Figure 5. Metamorphic robot by [Chirikjian & Pamecha, 1996] 

1.3.3 Variable geometry parallel robots in this work  

This section presents the term “variable geometry parallel robots” as defined in this 

work. Figure 6 presents a ranked classification of robotic manipulators according to their 

ability to fulfill as a wider set of tasks as possible. The simplest manipulator in this 

figure is the single DOF linkage (such as four-bar and six-bar mechanisms for motion, 

path, and function generation [Erdman and Sandor, 1991]). This kind of manipulators is 

synthesized (and optimized) to perform a single specific task. The intermediate type of 

manipulators is the fixed-geometry multi DOF robots composed from rigid links, motors, 

and joints and are usually dimensionally synthesized to fulfill certain requirements for 

work volume, dexterity, and weight-carrying ability. The variable geometry manipulator 

type is the most sophisticated manipulator architecture (in figure 6) that is composed of 

rigid links, variable geometry links and motors. Contrary to fixed-geometry robots these 

robots can change the geometry of their variable geometry links to better accommodate 

the requirements of a wider range of tasks. 
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Figure 6. Ranked classification of manipulator architectures. 

The following paragraph gives the definition of the term ‘variable geometry parallel 

robot’ as presented in this work. 

Definition Variable Geometry Parallel robot: 

A parallel robot fulfilling one of the following properties is considered a variable 

geometry parallel robot in this work:  

• It uses actuation redundancy to vary the locations/orientations of the Jacobian lines 

of its equivalent non-redundant variable geometry architecture or 

• It incorporates kinematic redundancy in its kinematic chains to obtain virtual 

variable geometry base/moving platform.  

This definition corresponds to two methods investigated in this work for stiffness-

driven geometry change. The first method is the use of antagonistic actuation to obtain 

stiffness modulation. The second method is the use of variable geometry base/moving 

platform for stiffness change (synthesis) ♠.  

To clarify this definition the following paragraphs present two examples 

corresponding to the two cases presented in the definition. 

                                                 
♠ See section  1.5 for a comprehensive explanation on these methods. 

variable-geometry 

parallel robot 
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serial robot 
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mechanism 
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Case 1: Variable geometry by actuation redundancy: 

Figure 7-a presents the RSPR robot presented in [Simaan, 1999, 2000-a]. This six 

DOF robot has three prismatic actuators supporting a moving platform. These prismatic 

actuators connect, at their upper extremities, to the moving platform via passive revolute 

joints and, at their lower extremities; they connect to rotating rigid links via passive 

spherical joints (ball and socket joints). The rigid links rotate in the base plane about the 

axes of their corresponding active revolute joints. Figure 7-b presents the static analysis 

of force transmission from the rotating rigid links to the moving platform via the tripod 

mechanism composed from the moving platform and the three prismatic actuators 

[Simaan, 1999]. The direction of the resultant force transmitted from each rotating rigid 

link to its corresponding spherical joint belongs to a flat pencil of i1ŝ  and i2ŝ , i=1,2,3,  

Figure 7-b. Unit vectors i1ŝ , i=1,2,3, are along the prismatic actuators axes while i2ŝ  are 

parallel to the upper revolute joints’ axes in the moving platform and, consequently, are 

perpendicular to i1ŝ .    

 

Figure 7. The RSPR parallel robot (a).  Force transmission in the tripod (b). 

Using simple static analysis [Simaan, 1999, 2000-a] or reciprocity conditions [Tsai, 

1998] it is possible to find the Jacobian of the RSPR robot. The IDK matrix of this robot 

is the Jacobian of the tripod. The rows of this matrix correspond to the Plücker 

coordinates of the lines i1ŝ  and i2ŝ , i=1,2,3, presented in figure 8-a.       

Suppose now that the three passive revolute joints of the tripod mechanism are 

actuated, thus, introducing actuation redundancy in the parallel mechanism. In this case 

the Jacobian, J, of the tripod mechanism apparently has the dimensions of 9×6, but as 

next will be shown, it corresponds to a 6×6 Jacobian of a variable geometry non-

redundant equivalent robot with similar geometric interpretation as in Fig. 6-a, except 
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that the lines i2ŝ  are not necessarily parallel to the upper revolute joints’ axes and are 

replaced by other lines i2
~s , i=1,2,3, as in figure 8-b. 

 

Figure 8. Geometrical interpretation of the rows of the tripod’s Jacobian matrix (a) 

with no actuation redundancy, (b) with actuation redundancy. 

To show this we resort to the equation governing the statics of the tripod, Eq. (3): 

 e
T fτJ =  (3) 

where J is the Jacobian matrix, the vector fe represents the wrench applied by the 

moving platform on the environment and τ represents the vector of force intensities 

transmitted through the spherical joints. In the non-redundant case, τ is given by Eq. (4) 

where the forces f1i and f2i, i=1,2,3, are the forces in the i1ŝ  and i2ŝ  directions, 

respectively. 

 [ ]T
232221131211 f,f,f,f,f,f≡τ  (4) 

In the redundant case, as in figure 9-a, τ is given by Eq. (5) where the forces f1i, f2i, f3i are 

the forces in the i1ŝ , i2ŝ , and i3ŝ  directions, respectively.  The direction i3ŝ  is the normal 

to the prismatic actuator and to the revolute joint of the i’th kinematic chain on the 

moving platform such that i2i1i3 ˆˆˆ sss ×−= , i=1,2,3.  

 [ ]T
333231232221131211 f,f,f,f,f,f,f,f,f≡τ  (5) 

Writing the static equilibrium equations on the moving platform results in a 9×6 

Jacobian matrix, J, given by: 

 3,2,1iˆ)(ˆ)(ˆ
ˆˆˆ T

3i1iip
w

2i1iip
w

1iip
w

3i2i1i =







×−×−×

= ssppRssppRsppR
sss

J  (6) 

where p
w R  represents the rotation matrix from platform-attached coordinate system to 

world coordinate system, i1s  is the vector from the center of the spherical joint to the 

revolute joint of the i’th kinematic chain, and the vectors ipp , i=1,2,3, indicate the 
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positions of the revolute joints in platform-attached coordinate system. Note that each 

row of the Jacobian represents a set of Plücker line coordinates of the lines in figure 9-a. 

Since each homothetic pair of lines with directions i2ŝ  and i3ŝ  intersect at the center of 

their corresponding spherical joint, this pair can be replaced with the resultant line in 

the flat pencil having a direction i2
~s . Consequently, the Jacobian of the redundant case is 

equivalent to a non-redundant case with a different geometry, in which the upper 

revolute joints are parallel to the resultant lines of the flat pencils, figure 9-b. This 

explains why such a case of actuation redundancy is included in the definition of a 

variable geometry parallel robot.     

 

Figure 9. Geometrical interpretation of the rows of the tripod’s Jacobian matrix 

(a) with actuation redundancy (showing 9×6 Jacobian rows), (b) an equivalent 

non-redundant manipulator with a geometry change (rotation of revolute 

joint axes). 

Case 2: Variable geometry by kinematic redundancy: 

It is possible to obtain a variable geometry parallel robot by incorporating kinematic 

redundancy in its kinematic chains. Suppose that the tripod of the RSPR robot of figure 7 

has three additional actuators allowing rotating the axes of the three upper passive 

revolute joints in the plane of the moving platform. In this case it is possible to achieve a 

variable-geometry robot by changing the directions of the Jacobian lines, i2ŝ , in figure 8-

a. Once the desired geometry of the variable geometry robot is achieved the 

kinematically redundant actuators are locked. This example explains why kinematic 

redundancy in the kinematic chains is included in the second part of the definition of 

variable geometry parallel robots.  
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1.3.4 Why variable geometry parallel robots? 

Fixed-geometry parallel robots feature superior characteristics in terms of stiffness, 

payload-to-weight ratio, dynamic agility, and accuracy. However, fixed geometry robots 

suffer from the following shortcomings: 

• Any fixed-geometry robot has its performance indices, such as stiffness, 

configuration-dependent, i.e., once the gripper location and orientation are fixed, 

the inverse kinematics determines the locations/orientations of its Jacobian lines. 

This suggests that the performance indices are determined by the initial geometry 

and inverse kinematics of the robot with no possibility of changing these 

performance indices according to task requirements. 

•  Parallel robots suffer from serious workspace limitations due to the presence of 

singularities inside their work-volume. Overcoming these singularities by either 

eliminating them or moving their locations can considerably improve their effective 

workspace.  

Furthermore, in many applications of parallel robots they have to interact with their 

environment. Changing their stiffness/compliance according to task requirements is 

significant for improving their capabilities for assembly tasks. This is the reason behind 

focusing on stiffness in this work as a driving criterion for the geometry change.  

The main hypothesis of this work suggests that any fixed geometry robot, be it serial 

or parallel, constitutes a forced compromise to a limited variety of tasks in terms of its 

performance (dexterity, accuracy, stiffness, etc...). The key issue is that fixed geometry 

robots, although programmable for an array of tasks, they are limited by their 

mechanical structure [Paredis, 1996]. Hence, to overcome this compromise tailoring the 

robot to the tasks at hand is called-for by introducing variable geometry capabilities. 

Also, among other possibilities of geometry change such as modularity or reconfiguration 

by changing joint orders in kinematic chains, variable geometry parallel robots constitute 

the simplest mechanically-feasible solution. This is why this work focuses on variable 

geometry parallel robots. 

1.3.5 Relevant works on reconfigurable/variable geometry parallel robots 

The roots of the concept of variable geometry linkage date back to the previous three 

decades during which there has been extensive work on adjustable four-bar mechanisms 

for multiple-path generation (see [Zhou and Ting, 2002] and references therein). These 

works used a various array of methods ranging from graphical methods [Tao and 
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Krishnamoorthy, 1978], nonlinear least squares methods and continuation [Angeles, 

Alivizatos, and Akhras, 1988], and recently genetic algorithms [Zhou and Ting, 2002].  

Later, works dealing with variable geometry trusses were presented. Arun, Reinholtz, 

and Watson, [1992] presented a solution of the direct kinematics problem of the 

Octahedral variable geometry trusses based on continuation. Using similar octahedral 

variable geometry units, Hamlin and Sanderson [1995] suggested a modular hyper-

redundant system using a special design of a double spherical joint linkage. The work 

was later extended for building a variable geometry double octahedral manipulator and a 

six-legged walker [Lee and Sanderson, 1999].  

However, reconfigurable/variable-geometry parallel robots have not been fully 

investigated in the literature with only a mere number of works on this subject. Among 

these works are the work of Zhiming and Song (1998) that investigated the design 

aspects of modular Stewart-Gough platforms with workspace and joint limits 

considerations and the work of Zhiming and Zhenqun (1999) that presented a symbolic 

elimination algorithm for identifying the parameters of the joint locations on the base in 

a modular Stewart-Gough platform. The design and kinematic analysis of modular 

reconfigurable parallel robots was studied in [Yang et. al., 1999] where the direct 

kinematics and work volume determination was addressed.  

Additional relevant works include the works of Rao, [1995, 1997] where the topological 

effects on the performance indices of planar parallel robots were studied from stiffness 

point-of-view focusing on planar linkages. These works provided guidelines with 

qualitative/semi-quantitative measures of stiffness for comparison of topologies. 

Modeling of the effects of the location of the actuators on the singularities was studied in 

[Matone and Roth, 1999] and was verified on a simple five-bar mechanism. Notash 

[Notash, 1998] discussed the effects of the actuator locations on the singularities of three-

branch parallel manipulators using line geometry. All these works are valuable for 

design considerations of modular parallel robots where considerations regarding the 

placement of actuators, stiffness, and singularity avoidance are of prime importance.  

Works on dimensional synthesis using optimization include the work of Tremblay and 

Baron [1999] that used a genetic algorithm for optimizing the structure of a three DOF 

parallel translation Y-star robot, figure 10. The optimized parameters were the 

directions of the prismatic actuators based on workspace volume and dexterity 

considerations. Recently, Du Plessis and Snyman [2002] presented an algorithm for 

changing the geometry of a planar 3 DOF manufacturing robot. Their algorithm is based 

on minimizing an objective function defined by the overall maximal magnitude of the 
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actuator forces for a given desired path. These forces were updated by the inverse 

dynamics model of the robot. The optimization was constrained with given limits on the 

length of the actuators. 

 

Figure 10. The Y-star 3 DOF parallel robot. 

Since redundancy is an essential aspect of variable geometry robots, the following 

section gives a review of redundancy in parallel robots to form the necessary background 

for the following material on stiffness modulation in sections  1.5.2 and  1.5.3.  

1.4 Redundant parallel manipulators 

1.4.1 Redundancy classification 

This section presents the types of redundancy used in robotic manipulators. The 

merits and shortcomings of each redundancy type are explained and relevant examples 

from the literature are listed. The significance of redundancy to this work stems from the 

definition of variable geometry robots in the previous section and will be explained in 

sections  1.5.2 and  1.5.3 in the material pertaining to stiffness modulation. 

In the literature, redundancy is generally separated into four sub-types. The following 

paragraphs give the listing of the four types: 

1) Kinematic redundancy:  

In this type of redundancy the robot has more controlled degrees of freedom than the 

dimension of its motion space. For example, the planar robot in figure 11-a has four 

controlled motors, but its end effector connectivity with the ground link is 3. This type of 

redundancy is the natural type for serial type of robots.  

Prismatic actuator
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2) Actuation redundancy: 

Actuation redundancy is present when the number of active actuators is larger than 

the dimension of the end effector’s operational wrench system, i.e., there is a larger 

number of actuated joints than the minimal number required for sustaining a general 

external load. This type of redundancy is possible only in closed kinematic chains such as 

parallel robots. A closed kinematic chain with actuation redundancy is an over-

constrained one, with internal forces stemming from the actuation redundancy 

(Antagonistic actuation). Figure 11-b presents the simplest, one degree of freedom, closed 

kinematic chain with actuation redundancy. 

Actuation redundancy in parallel manipulators further divides into two categories 

presented in figure 11-c and figure 11-d and called Type-I and Type-II actuation 

redundancies, respectively [Kim, 1997]. Figure 11-c presents the version of the three 

degrees-of-freedom planar parallel manipulator of Hunt [1983] with one of its passive 

joints replaced by an active one (Type-I actuation redundancy). Figure 11-d presents 

Type-II actuation redundancy of the same robot, in which, an additional kinematic chain 

is added to support the moving platform. 

Non-fully-parallel robots with serial kinematic chains may have both actuation 

redundancy in the whole manipulator and kinematic redundancy in one or more of its 

kinematic chains.  

 

Figure 11. Serial robot with actuation redundancy (a). Closed kinematic chain with 

actuation redundancy (b). Type-I actuation redundancy (c). Type-II actuation 

redundancy (d). 

(a) (b) (c) (d) 

=Active joint =Passive joint
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3) Sensory redundancy  

Sensory redundancy is used in both serial and parallel robots. It represents the case 

where the information gathered from the existing encoders exceeds the number of inputs 

required for control purposes.  

4) Task Redundancy 

A robot is said to have task redundancy when it has more degrees of freedom 

(connectivity between its end-effector and the ground link) than the minimal number 

required by the task. This redundancy is possible in both serial and parallel robots. 

1.4.2 Redundancy in serial robots 

The background for analyzing redundant parallel robots stems from the results 

obtained from the study of redundant serial robots. Some of the results obtained for 

redundant serial robots can readily be applied for parallel robots, provided that the 

dualities between parallel and serial robots are correctly accounted for. These dualities 

between twists in serial manipulators and wrenches in parallel manipulators were 

discussed in [Waldron and Hunt, 1991; Duffy, 1996; Bruyninckx, 1999]. This explains 

why fully-parallel manipulators can have actuation redundancy only, while serial 

manipulators can have kinematic redundancies only. Non-fully parallel or (CSIP) 

Composite Serial-In-Parallel manipulators [Hunt, Samuel and McAree, 1991] can have 

both kinematic and actuation redundancies. Moreover, the background on redundant 

serial manipulators is essential for the analysis of variable geometry parallel robots with 

kinematic redundancy in their kinematic chains; hence, a brief review of works on 

redundant serial manipulators is presented below.  

The majority of the methods for controlling redundant serial manipulators rely on the 

use of the Pseudo-Inverse for solving a system of redundant linear equations [Whitney, 

1969; Whitney, 1972]. A system that has n freedom-variables, x, (unknowns) and m 

linear constraint equations, where n>m, has an (n-m) dimensional solution space. 

Redundancy resolution seeks the best solution that satisfies the given set of equations 

(primary task) together with additional sub-tasks. To solve this problem [Nakamura and 

Hanafusa, 1985] suggested a method that they called the ‘task-decomposition method’ or 

‘task-priority-based method’ [Yoshikawa, 1984; Yoshikawa, 1990]. The primary task is 

given in Eq. (7) and the i’th secondary task in Eq. (8). 

 Primary task: bAx = , A∈ℜmxn, x∈ℜn, b∈ℜm, n>m. (7) 

 Secondary i’th task: ii cxS = , Si∈ℜmxn, x∈ℜn, ci∈ℜm, n>m. (8) 
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Symbolizing the pseudo-inverse of a matrix by + superscript, the solution for the 

primary task is then given by:   

 ( ) 1yAAIbAx ++ −+=  (9) 

where the first and second term of Eq. (9) are respectively the particular and  

homogeneous solutions of Eq. (7). The particular solution exists if b∈Im(A), otherwise, 

the first term in Eq. (9) is the best approximate solution that minimizes the norm of the 

error in Eq. (7) [Lancaster and Tismenetsky, 1985]. The n-dimensional vector, y1, is a 

free vector that should be selected to satisfy the first secondary task. The solution of the 

primary task and the first secondary task leads to the solution for x and y1, such that 

x=x(y1) and y1=y1(y2). This vector, i.e. y2, is used to fulfill the second secondary task. 

This process terminates when we have used all the degrees of redundancies in fulfilling 

the secondary task. A more detailed explanation of this method can be found in 

[Yoshikawa, 1984; Yoshikawa, 1985; Nakamura, et. al., 1987] and simplified in 

[Yoshikawa, 1990].  

This method of task-decomposition was used for joint-limit avoidance [Liegeois, 1977], 

singularity avoidance [Yoshikawa, 1984], dexterity enhancement [Yoshikawa, 1984; 

Klein and Blaho, 1987], obstacle avoidance [Yoshikawa, 1984; Maciejewski and Klein, 

1985; Klein, 1985], and torque optimization [Hollerbach and Suh, 1987].  

The methods of the pseudo-inverse utilize the null-space of the Jacobian of the 

manipulator for finding an optimal solution with possibility for treating scalar-function 

subtasks that should be minimized or maximized. In this case, when the secondary task 

is given by a scalar function, the gradient method is used to optimize the solution 

[Liegeois, 1977; Merlet, 1996; Yoshikawa, 1990]. This means that the solution is locally 

optimal. Nakamura and Hanafusa [1987] proposed a method for finding a solution with 

global optimality. They treated the problem of obstacle avoidance by defining a secondary 

task, which is given by an integral of a potential function over a desired path of the end-

effector. This way they redefined the problem as a problem of satisfying the main task 

and maximizing the secondary task integral. To obtain a solution they defined the 

Hamiltonian of the system and solved first-order equations equivalent to Hamilton’s 

canonical equations.        

1.4.3 Redundancy in parallel robots 

Although most works on redundancy concentrate on serial robots, some of the general 

advantages of incorporating redundancy in parallel robots were pointed out in [Lee and 

Kim, 1994; Merlet, 1996] and later in [Dasgupta and Mruthyunjaya, 2000].  
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Works concentrating on redundancy of parallel manipulators inspected the 

contributions of redundancy in the following fields: singularity avoidance [Dasgupta and 

Mruthyunjaya, 1998; Notash and Podhorodeski, 1996], manipulability enhancement 

[O’brien and Wen, 1999], self calibration [Nahvi, et. al., 1994], Static performance [Kim, 

1997], Isotropy [Kokkinis and Millies, 1992], stiffness modulation [Cho, et. al., 1989; and 

others (see section  1.5.3)], and Direct kinematics [Nair and Maddocks, 1994]. All these 

works used actuation redundancy, but [Nahvi, et. al., 1994] used also sensory 

redundancy. 

Actuation redundancy in fully-parallel robots reduces the number of singular poses 

that the robot possesses in its workspace, but drastically decreases its workspace 

[Merlet, 1996] since it must be a type-II actuation redundancy, figure 11-d. It also allows 

overcoming the problems created by backlash in the system and, eventually, increases 

the accuracy of the robot. Stiffness modulation algorithms are based on this type of 

redundancy. Recently, actuation redundancy was used in an 8-wire redundant parallel 

manipulator [Maeda, et. al., 1999] to increase its force closure capabilities and; thus, 

increase its workspace. 

Sensory redundancy is important for reducing the size of the direct kinematics 

problem and can lead to a single solution of the direct kinematics [Nair and Maddocks, 

1994; Parenti-Castelli and Gregorio, 1998]. Recently, it was also used for forming an 

analytical singularity analysis method [Kim and Chung, 1999]. A combination of 

actuation and sensory redundancy grants the robot fail-safe characteristics.  

Task redundancy has not been addressed in many works dealing with parallel robots. 

In fact, a sole work in this field appeared in [Merlet, Preng, and Daney 2000]. In this 

work a six degrees-of-freedom Gough platform was used as a 5-axis machine tool. The 

robot’s one extra degree of freedom – rotation about the spindle axis – was used to 

achieve inclusion of a desired trajectory inside the workspace of the robot and for 

ensuring that the robot is singularity-free along the path. 

In addition to the aforementioned works, there are few works on redundant hybrid 

robots that have a structure of several parallel sub-units connected in series. These 

robots have the large workspace of serial robots, but feature high payload capacity. A 

kinematic study of these robotic structures was presented in [Zanganeh and Angeles, 

1995]. For example, figure 12 presents the LOGABEX 24 degrees-of-freedom serial-

parallel robot built for nuclear plant maintenance [Merlet, 2000]. This robot has four 6 

D.O.F platforms connected in series and it weighs 120 [Kg] and is capable of handling a 

payload of [75] Kg with its height ranging from 2 to 2.7 meters. Minyang, in [Minyang, 
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et. al., 1995], presented a 10 degrees-of-freedom robot with three 3 degrees of freedom 

parallel units connected in series and one slider unit. His robot weighs [75] Kg and is 

capable of handling 20 [Kg] payload in its workspace. These two examples show the 

advantages of the serial-parallel structures in terms of workspace and payload 

capabilities.    

The above mentioned works show that force redundancy in parallel manipulators was 

extensively studied. Augmenting kinematic and actuation redundancies in variable 

geometry robots has not been addressed yet in a comprehensive approach dealing with 

reconfiguration and geometry change issues. This work investigates both types of 

redundancies for variable geometry robots where the driving criterion for geometry 

change is the task-based stiffness.    

 

Figure 12. 24 degrees of freedom serial-parallel robot (From [Merlet,2000]) 

1.5 Stiffness  

This section focuses on stiffness analysis, modulation, and synthesis with relevance to 

redundant parallel robots and variable geometry robots. The section presents the 

definition of stiffness and explains why it is chosen as a criterion for geometry change of 

variable geometry robots. The problems of stiffness modulation and synthesis are 

explained and a review of literature is presented. These two problems (stiffness 

modulation and synthesis) form the basis for the use of the two redundancy modes of 

variable geometry robots introduced in section  1.5.4.     

1.5.1 Definition and motivation 

Definition Stiffness 
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Robot stiffness is the linear mapping relating the change in the wrench applied by its 

end-effector with the corresponding perturbation in its end-effector’s position/orientation; 

provided that the following assumptions hold: 

• The only source of compliance is the actuators of the robot, i.e., all rigid links are 

assumed infinitely stiff. 

• The stiffness model of the actuators is linear, i.e., for any small joint disturbance 

(be it linear or angular) the corresponding actuator force/moment changes linearly.    

This definition is given explicitly in Eq. (10) and illustrated in figure 13 where fe is the 

wrench applied by the end-effector on the environment and x is its 6×1 

position/orientation vector and K denotes the stiffness matrix,. 

 xKF ∆e =∆  (10) 

 

Figure 13. Stewart-Gough platform with end-effector position disturbance due to 

external load disturbance 

The statics of parallel manipulators was given in Eq. (3) by e
t fJ =τ  where J denotes 

the Jacobian, and τ denotes the vector of actuation forces/moments of the active joints. 

Using this notation, the elements of the stiffness matrix, K, of Eq. (10) are given by Eq. 

(11) [Kock and Schumacher, 1998]. 
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where i
TJ  refers to the ith row of the transposed Jacobian TJ . 

Unlike the definition in [Gosselin, 1990], the definition of Eq. (11) includes the 

stiffness effect introduced by ‘pre-load’ in non-redundant manipulators (due to bias forces 

such as the self-weight of the moving platform) or antagonistic actuation in redundant 
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robots [Yi and Freeman, 1993]. This effect is expressed by the term τJ
j

i
T

x∂
∂ , which is 

referred to in the literature as the ‘active stiffness’ or ‘antagonistic stiffness’ [Yi and 

Freeman, 1993]. The second term in Eq. (11) is referred to as the ‘passive stiffness’ of the 

manipulator [Yi, et. al., 1992; Kock and Schumacher, 1998]. Treating the actuators as 

springs with a diagonal stiffness matrix Kd in joint space results in: 
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Most of the works on stiffness synthesis treat the stiffness matrix, K, as a symmetric 

positive semi definite matrix defined by the quadratic form of Eq. (12); thus, neglecting 

the effect of the active stiffness elements in Eq. (11). This approximation is valid for 

manipulators with high joint stiffness values [Ciblak and Lipkin, 1999; Simaan and 

Shoham, 2000-b]. The matrix form of Eq. (12) is given by:    

 JKJK d
T

p =  (13)  

where Kp is a symmetric positive semi-definite matrix having the following structure: 
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Using the definitions of active and passive stiffness, the total stiffness of a parallel 

manipulator can be expressed as a sum of the active stiffness matrix, Ka, and the passive 

stiffness matrix, Kp, Eq. (15). 

 pa KKK +=  (15) 

Most works on stiffness consider the passive stiffness for non-redundant non-preloaded 

robots and concentrate on Kp to define stiffness-based performance indices. For example, 

the matrix p
T

p KK  is used to define an ellipsoid of deflections of the moving platform for a 

constant-norm of wrench acting on it. Equations (16) and (17) give the definition and the 

explicit form of the ellipsoid, respectively.  

 { }1,: e
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ee
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p ≤∆=∆∆=∆ − fffKxxx  (16) 
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p
T ≤∆∆ xKKx  (17) 

Equation (17) defines an ellipsoid since p
T

p KK  is positive-semi definite [Landesman and 

Hestenes, 1992]. This analysis takes a form similar to the definition of manipulability 

ellipsoid for redundant serial robots in [Yoshikawa, 1984] and non-redundant serial 

robots in [Yoshikawa, 1985]. 
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The eigenvectors and the eigenvalues of this matrix, i.e. p
T

p KK , are respectively the 

ellipsoid principal axes and their corresponding lengths♣. Asada, [Asada and Slotine, 

1986 - chapter 4], defined the ellipsoid of compliance, which is obtained by interchanging 

x∆ and ef∆ in Eq. (17). The principal axes of these ellipsoids are important for the 

characterization of the stiffness/compliance of manipulators since the degenerate cases of 

this ellipsoid define both the parallel and serial singularities of parallel robots and, in 

non-degenerate cases, the ellipsoid defines the stiffness isotropy of the robot. Stiffness 

also defines the effective accuracy of a given manipulator. This is why stiffness is 

considered as one of the most important performance indices of manipulators or robotic 

hands performing assembly tasks [Mason and Salisbury, 1985].  

Based on these considerations, this work focuses on variable geometry parallel robots 

for task-based stiffness change. This is achieved through stiffness synthesis or through 

stiffness modulation – two subjects reviewed in the following subsection.  

1.5.2 Stiffness synthesis and modulation – problem definitions 

In the literature there are two methods for changing stiffness, namely, stiffness 

modulation and stiffness synthesis. Both these terms are defined herein: 

Definition Stiffness synthesis 

Stiffness synthesis is the problem of finding the required springs (including spring 

types, rates, number, and directions of axes) for obtaining a desired stiffness for a 

spring suspension system. 

Definition  Stiffness modulation 

Stiffness modulation is the problem of modifying the stiffness of a robot by 

incorporating controllable active stiffness through the use of internal forces introduced 

by antagonistic actuation or by changing the stiffness rates in joint space. 

The following sub-section presents literature surveys in both these fields that serve 

both as a background and as identifiers of potential contributions in these fields. 

1.5.3 Stiffness synthesis and modulation – literature reviews 

Stiffness synthesis 

                                                 
♣ The eigenvectors of p

T
p KK  and pK  are the same since pK is symmetric. 
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Given a group of springs connecting a rigid body to the ground, the stiffness matrix of 

this system can easily be obtained using screw theory [Duffy, 1996; Tsai, 1999]. However, 

the reverse problem, i.e. stiffness synthesis, is much more complicated and it is still only 

partly solved with most of the major results being achieved only in the last few years.  

The background for stiffness synthesis stems from the previous works on RCC 

(Remote Center of Compliance) devices, [Whitney, 1982] and investigations on the 

properties of stiffness and compliance [Lipkin and Patterson, 1992-a, 1992-b; Patterson 

and Lipkin, 1993; Huang and Schimmmels, 1999]. Pattaerson and Lipkin (1990, 1993) 

classified robot compliance matrices based on their eigenscrews and twist compliant axes 

and discussed the relations among twist compliant axes and wrench compliant axes 

while Loncaric (1985) and Huang and Schimmels (1998-a) characterized the space of 

realizable stiffness matrices using only simple springs. 

The following list of questions on stiffness synthesis was addressed in the literature.   

• What is the space of realizable stiffness matrices when using simple springs only? 

[Loncaric, 1985; Huang and Schimmels, 1998-a]. 

• What is the minimal number of simple springs required for realizing a realizable 

stiffness matrix? (Minimal realization) [Huang and Schimmels, 1998-a, 1998-b, 

1999; Roberts, 1999]. 

• What are the limits on the numbers of linear springs and torsional springs for 

achieving a general rank-r stiffness matrix? [Ciblak and Lipkin, 1999]. 

• What are the dimensions of the solution to the stiffness space for a rank-r 

realizable stiffness matrix? [Ciblak and Lipkin, 1999]. 

• What are the connection points, the line coordinates of the axes of these springs, 

and the spring constants. 

The answers to these questions are depicted in the following paragraphs based on the 

works referenced in each question. These answers define the limits and capabilities of 

stiffness change by reconfigurable parallel robots. 

The space of realizable stiffness matrices, when using simple springs only, was shown 

to be 20 dimensional [Loncaric, 1985]. This is because the stiffness matrix (passive 

stiffness) is a symmetric matrix, and for a 6-dimensional matrix, there are 21 parameters 

on and above the main diagonal. This leaves 21 free parameters in the matrix. However, 

since we are dealing with stiffness matrices that are the sum of six rank-one matrices 

associated with simple springs, one of the 21 parameters is dependent since all the 

stiffness matrices of simple springs satisfy nullity of the trace of the above diagonal 3×3 

sub-matrix, B, in Eq. (14) [Loncaric, 1987]. This condition, which characterizes the 
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realizable stiffness matrices when using simple springs only, is given by the condition in 

Eq. (18), [Huang and Schimmels, 1998-a]. 

 ( ) ( ) 0tr2~tr == B∆K  







≡

0
0~
I

I
∆   (18) 

where I represents the 3×3 identity matrix and B the of-diagonal 3×3 sub-matrix of Eq. 

(14). This condition follows directly from the Grassmannian conditions on the Plücker 

ray coordinates of the axis of the simple screw springs, which is the condition for a given 

sextuplet for being a valid set of line coordinates of a line [Pottman, et. al., 1999; 

Graustein, 1930; Sommerville, 1934]. Equation (18) also gives the characteristic equation 

for the realizable stiffness matrices when using simple springs only. Any given stiffness 

matrix that does not fulfill this equation is not realizable with simple springs only, but it 

can be obtained by a combination of simple springs and screw springs [Huang and 

Schimmels, 1998-b]. The maximal required number of screw springs for the realization of 

a full rank stiffness matrix was shown to be 3 in [Huang and Schimmels, 1998-b].  

The minimal number of springs required for realizing a rank-r realizable stiffness 

matrix is r simple springs [Ciblak and Lipkin, 1999]. Ciblak and Lipkin suggest an 

algorithm that uses the eigenvectors of the stiffness matrix for obtaining the required 

springs. Huang and Schimmels [1998-a] used Cholesky decomposition [Lancaster and 

Tismenetsky, 1985] of the stiffness matrix into a product of an upper triangular matrix 

with its transpose. This algorithm leads to a realization with seven springs at-most, but 

can also lead to realizations with six springs. The Cholesky decomposition of K into a 

product of an upper triangular matrix with itself means that this method always leads to 

three springs that intersect at the origin of the world coordinate system. Roberts [1999] 

used a similar decomposition as Huang, but with additional steps for obtaining an 

orthonormal basis from the eigenvectors of K and obtained a minimal realization, which 

for a rank-6 realizable stiffness results in 6 springs. This algorithm shares much in 

common with the algorithm suggested in Ciblak and Lipkin [1999]. 

The number of springs and the possible combinations of linear and torsional springs 

for obtaining a rank-r matrix was discussed in [Ciblak and Lipkin, 1999]. Figure 14 

shows the allowable combinations of the number of line springs, nl, with the number of 

torsion springs, nτ, for a full rank (r=6) realizable stiffness matrix. The line 5nl+3nτ =20 

stems from the facts that one needs to specify 20 independent parameters for obtaining a 

realizable stiffness matrix, and that a line spring is characterized by 5 parameters (4 for 

its axis and 1 for its stiffness) while a torsion spring is characterized by 3 parameters. 
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The line nl+nτ=6 depicts the minimal realization requirement for a rank-6 stiffness 

matrix.  

The dimension of the solution space, ds, of the synthesis problem of a rank-r realizable 

stiffness matrix was shown to be given by Eq. (19), [Ciblak and Lipkin, 1999]. 

 ( ) ( )
2

2r1rds
−−

=  (19) 

this shows that the solution to the general problem of r=6 has a 10-dimensional solution 

space. This result is very important since it opens the question regarding the optimal 

realization when using additional performance indices.  

 

Figure 14. Allowable combinations of line and torsion springs for full-rank stiffness 

(r=6), [Ciblak and Lipkin, 1999]. 

Stiffness Modulation 

Stiffness modulation deals with changing the stiffness of the manipulator according to 

task specifications. Equations (11), (13) and (15), form the basis for stiffness modulation 

and suggest two alternatives for realizing it. The first way is by changing the stiffness in 

joint-space, i.e. Kd, in Eq. (13). The other, more sophisticated, possibility is to introduce 

active stiffness effects, which are represented by the first term in Eqs. (11) and (15). This 

can be accomplished by controlling the active joints’ forces/moments so that the active 

stiffness term in Eq. (15) is made large with respect to the passive stiffness.  

The first proposed algorithm, i.e. changing joint stiffness matrix, Kd, is described in 

[Salisbury, 1980] and in more detail in [Mason and Salisbury, 1985] in context of 

stiffness control of multi-fingered hands and expanded to include internal forces control 

that maintain the stability of the grasp. This algorithm assumes that the joint stiffnesses 

are a function of the control gains. This assumption leads to non-diagonal joint stiffness 
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matrix, Kd, which can couple the reaction of one joint with a deflection in the other and, 

thus, increase the ability of stiffness control [Mason and Salisbury, 1985]. This 

assumption is true when the actuators are back drivable – which is seldom true in 

parallel manipulators that use high-ratio gears and lead screw units as part of their 

actuation structure. The impedance control scheme presented in [Yoshikawa, 1990] 

entails the measurement of the reaction forces and the position of the end effector, which 

enlarges the control effort. Both methods do not solve the problem of singularity of the 

manipulator.  

The second method, i.e. introducing active stiffness to the system, necessitates 

introducing actuation redundancy to the manipulator’s architecture [Kim, et. al., 1997; 

Kim, 1997; Cho, et. al., 1989; Yi and Freeman, 1992; Kock and Schumacher, 1998; 

O’brien and Wen, 1999]. In this case, the actuation forces vector, τ, is divided into τp and 

τh, where τp denotes the actuation forces balancing the external load and τh denotes the 

internal actuation forces (antagonistic actuation forces). Antagonistic actuation forces, τh, 

do not affect the resultant force applied by the moving platform on its environment since 

they belong to the Kernel of the Jacobian matrix, Eq. (20).  

 hp τττ +=  ep
t fJ =τ  0J =h

tτ  (20) 

This method also allows overcoming certain singularities of the manipulator, but in 

order to be able to effectively change all the elements of the stiffness matrix we have to 

introduce high-order actuation redundancy [Yi, et. al., 1989]. This is because the number 

of elements that can be controlled depends on the dimension of the null-space of the 

Jacobian of the redundant robot. 

Yi, in [Yi, et. al., 1989], proposed an open-loop algorithm for stiffness modulation that 

includes the effects of dynamics, external forces, and self-weight compensation of the 

manipulator. This method saves the use of additional control loop for stiffness 

modulation, but it requires off-line path planning and computation of the antagonistic 

forces required for obtaining the goal stiffness. He also presented a simulation of a 

redundant version of the planar three-degrees of freedom manipulator, which was 

suggested by [Hunt, 1983] and later optimized by [Gosselin and Angeles, 1988-a], for 

application as a programmable RCC device. Figure 15 presents the redundant robot with 

four kinematic chains. He treated this robot as a group of serial robots manipulating a 

common object (the moving platform). Kim [Kim, et al., 1997] studied the same robot 

suggested by Hunt, but with actuation redundancy without adding kinematic chains, i.e., 

with three kinematic chains only and showed that this robot could be effectively used as 

an RCC device with programmable characteristics. Later, [Kim and Cho, 2000] showed 
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that the Spherical three degrees-of-freedom robot suggested by [Gosselin and Angeles, 

1988-b], can also be used as an RCC device when it is in its central configuration. [Kock 

and Schumacher, 1998], used the degenerate case of the same robot, in which the 

platform reduces to a point, as a redundant two degrees of freedom device for ultra-fast 

pick and place applications and used also the method of stiffness modulation. Yi, [Yi and 

freeman, 1992], used a redundant version of the spherical robot suggested by [Gosselin 

and Angeles, 1988-b] with four kinematic chains as a kinematic wrist with stiffness 

modulation capabilities. 

 

Figure 15. Planar 3 DOF robot as a programmable RCC device [Yi, et. al., 1989] 

The following sub-section presents some conclusions based on the literature reviews in 

these fields and identifies the contributions that this work is going to concentrate on for 

incorporating these stiffness modification capabilities in variable geometry parallel 

robots.   

1.5.4 Conclusion 

Stiffness synthesis and modulation – what is left to be done? 

Stiffness is one of the most important characteristics of parallel robots. Hence, 

tailoring the robots’ stiffness characteristics according to task demands significantly 

improves the performance of the robot for the given task. This is achieved in this work 

through stiffness synthesis and modulation by utilizing two modes in variable-geometry 

parallel robots.  

The literature review on stiffness synthesis shows that all works on stiffness synthesis 

are limited by the following assumptions: 

• All works assume that the stiffness coefficients of the springs are free synthesis 

parameters.   
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• No limitations on the connection points of the springs are considered. 

• All works base the synthesis on a mathematical decomposition of the stiffness 

matrix; thus yielding results with no geometrical or engineering insight.  

• All works do not consider a limited number of free parameters for changing the 

spring connection points. 

These assumptions render the previous works on stiffness synthesis applicable only 

for synthesis of a spring suspension system since it is not possible to construct a 

reasonable robot according to these assumptions. 

Previous works on stiffness modulation lack a methodology for stiffness modulation 

singularity analysis and a geometric interpretation to these singularities.  

The following paragraphs present the approach of this work for addressing the 

knowledge deficiencies in both stiffness synthesis and stiffness modulation through the 

use of variable geometry robots.  

The approach of this work 

Figure 16 summarizes the approach of this work on variable geometry robots for 

stiffness modification. It presents two modes of stiffness modification, namely, stiffness 

synthesis and stiffness modulation. These two modes stem directly from our definition of 

variable geometry robots in section  1.3.3 and rely on exploring the use of kinematic 

redundancy and actuation redundancy in parallel robots.   

   This work addresses the previously listed research needs and proposes a method for 

task-based stiffness synthesis for variable geometry parallel robots that are readily 

constructible [Simaan and Shoham, 2002-b and 2002-c]. Additionally, the work presents 

a novel geometric interpretation to stiffness modulation singularities, which allows 

analyzing them through methods of line geometry [Simaan and Shoham, 2000-b, 2002-a].  

The following chapter presents background material on Gröbner bases. This 

background is necessary for understanding the methodology for variable geometry robots 

presented in chapter 3. 
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Figure 16. Two modes of stiffness modification investigated in this work 
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Chapter 2  

2. Research Methods: Gröbner bases for kinematics 

2.1 Introduction 

This chapter presents a necessary background material on Algebraic Geometry and 

symbolic polynomial system solving by using Gröbner bases and the SM (Stetter-Möller) 

eigenvalues method, which constitutes a recent advancement in Algebraic Geometry and 

symbolic/numerical polynomial system solving. This method, namely, the SM (Stetter-

Möller) eigenvalues method, systematically transforms the solution of polynomial 

systems into corresponding eigenvalues problem based on the use of Gröbner bases and 

the structure of the residue class ring (quotient ring). The effectiveness of this method for 

solving problems in kinematics and variable geometry parallel robots is demonstrated in 

[Simaan and Shoham, 2002-b, 2002-c] in chapter 3.  

Since a comprehensive treatment of Gröbner bases is not the direct aim of this chapter 

and because this subject is much beyond the scope of a single chapter, this chapter is 

dedicated to presenting the necessary material for understanding the SM method 

without a detailed treatment of Gröbner bases and their vast array of uses (for example 

see [Buchberger and Winkler, 1998]). Readers interested in a comprehensive treatment 

of the subject should consult [Becker and Weispfenning, 1991; Adams and Loustaunau, 

1994; Cox, Little, and O’Shea, 1997 and 1998]. Also, for swift introductory tutorials on 

Gröbner bases, the papers by [Heck, 1997; Popper, 1997; Buchberger, 1998] are 

recommended.   

The chapter begins with a brief review of papers on polynomials systems, their 

relevance in kinematics, and a survey of their solution methods with a focus on the 

characteristics of each method. Then, section  2.3 dwells on linear equations and serves as 

a reminder of linear systems for presenting the motivation behind seeking a structured 

solution by using eigenvalues – as is done for linear systems. Section  2.4 presents some 

basic definitions from Abstract Algebra. Then, section  2.5 explains the division algorithm 

of polynomials as a preliminary to its succeeding section on Gröbner bases. Section  2.7 

presents some necessary material on residue class ring (quotient ring) and the relation 

between finite-dimensional algebra of cosets with polynomial system solving, which 



 

 

(38)  

 

constitutes the basis for the SM eigenvalues method. Section  2.8 presents the method of 

Stetter (SM method) for transforming polynomials systems into eigenvalues problems. 

Finally, the chapter closes with concluding remarks on the applicability of the method to 

stiffness synthesis of variable geometry parallel robots.   

2.2 Methods of polynomial system solving for kinematics 

This section focuses on the importance of polynomial systems in kinematics while 

reviewing several key-note papers and the array of known solution methods. 

Solving polynomial systems is the inevitable overhead of many problems is 

kinematics. For example, the inverse kinematics problem of serial robots is a polynomial 

system of equations in the joint variables [Tsai and Morgan, 1985] while, the direct 

kinematics problem of parallel robots is a polynomial system in the position/orientation 

variables of the moving platform [Merlet, 2000]. Even the position analysis of simple 

planar four-bar and six-bar mechanisms lead to polynomial systems with multiple 

solutions. In addition to position analysis, synthesis problems are often associated with 

polynomial problems in the design variables [Roth and Freudenstein, 1963-a; Dhingra, 

Cheng, Kholi, 1992; Innocenti, 1995]. For these reasons, many tutorial papers appeared 

on the subject in the robotics community, among which, [Wampler, Morgan, Sommese, 

1990; Roth, 1993; Raghavan and Roth, 1995; Nielsen and Roth 1999-a] present concise 

reviews of solution methods to polynomial systems.  

For kinematical analysis/synthesis problems, the problem of polynomial system 

solving is not limited to finding a solution to the system. Usually, the following questions 

are of prime interest: 

• How many solutions there are to the given problem? How many of them are at 

infinity? 

• What is the largest number of real solutions possible? 

• Is it possible to obtain a closed form solution?  

• Is it possible to determine the solvability or prove non-solvability of a given system? 

• What about conclusions regarding the geometric meaning of solutions? Is there any 

symmetry among the solutions?  

These questions are the core of kinematical investigations and, generally, the 

importance of each question dictates the preferable method to be used for the solution of 

a given problem.  

The methods for polynomials system solution range from purely symbolic to purely 

numerical methods. Purely numerical methods based on Newton-Raphson methods are 
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not presented here since they are not capable of answering the above listed questions 

adequately. In fact, these methods do not usually succeed if finding all solutions to the 

polynomial problems. The following is a short review of works reporting successful 

implementation of well-established methods for the solution of polynomial systems in 

kinematics.  

2.2.1 Symbolic methods  

Symbolic methods are based on elimination and Gröbner basis calculations. 

Elimination methods sub-divide into Dialytic elimination and Resultant-based methods 

using sequential elimination♣.  

Dialytic elimination 

 This method is based on the work of [Cayley, 1848]. The basic idea is to rewrite the 

equations with one variable hidden (suppressed) in the coefficients field and obtain a 

necessary condition on the coefficients for the existence of a solution. The method collects 

all the power products in the unsuppressed variables and considers them as a new set of 

‘linear’ unknowns. Then, by generating combinations of the equations, it is possible to 

produce enough equations as there are distinct power products of the unknown variables. 

Once this is done, the system is viewed as a homogeneous linear system; therefore, the 

condition for having nontrivial solutions to it is the vanishing of the determinant of the 

coefficients matrix (this matrix is usually called the resultant matrix). This condition 

yields a polynomial with the suppressed variable, which can be solved and the results 

can be back-substituted in the original system. Full details of the method can be found in 

[Roth, 1993; Raghavan and Roth, 1995; Tsai, 1999].  

This is the most used method for solving small polynomial systems. For example, 

[Raghavan and Roth, 1995] recommend considering the use of this method for small 

problems in kinematics as a first option because of its simplicity. The method was used 

by various researchers to solve the direct kinematics problems of special Stewart/Gough 

platforms [Yin and Liang, 1994; Wen and Liang, 1994]. All these works obtained 

solutions to the special problems, but failed to give a solution to the general 

Stewart/Gough direct kinematics problem devoid of extraneous roots. Recently, dialytic 
                                                 
♣ Although multi-variate resultants constitute another powerful and relevant symbolic method, 

they are not surveyed here due to the large amount of background needed for explaining this 

method. Readers interested in the subject can consult [Cox, Little, and O’Shea, 1998] and [Emiris 

and Mourrain, 1999].   
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elimination was used by [Innocenti, 2001; Lee and Shim, 2001] in the solution of the 

general Stewart/Gough platform where a 40th degree polynomial was obtained 

corresponding for the 40 possible solutions. Prior to these works, Raghavan and Roth 

[1990] used this method to solve the inverse kinematics problem of general serial robots.  

Dialytic elimination, although efficient for small problems, suffers from the following 

disadvantages: 

• The method is not well structured. The solution depends on a case-by-case basis 

and the skill of the person solving the problem in introducing new equations by 

combinations of the original ones. 

• It is very difficult to obtain a minimal number of equations without introducing 

extraneous roots [Roth, 1993].  

• The method produces large matrices for the resultant. The symbolic computation of 

this resultant is generally a heavy task, which is unsolvable for moderately large 

problems.  

Resultant methods 

These methods, like the dialytic elimination method rely on elimination by forming a 

necessary condition for two polynomials to have a common solution. The difference from 

dialytic elimination is the use of classical closed-form formulas for the resultant given by 

either the Sylvester resultant or Bezout’s resultant [Salmon, 1885; Bocher and Duval, 

1907]. For example, the classical formula for the Sylvester resultant for two polynomials 
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 (21) 

The vanishing of the resultant is a necessary condition that both f and g have a 

common factor, and thus; have simultaneous solutions. 

Resultants usually produce large matrices for small problems [Raghavan and Roth, 

1995] and generally suffer from extraneous roots. Also, as in dialytic sequential 



 

 

(41)  

 

elimination, the numerical errors introduced in the solution of one variable affect the 

solutions for the other variables♣.   

The works of [Chen and Song, 1992; Innocenti, 1995; Ben-Horin, 1994; Almadi, 

Dhingra, Kholi, 1999] used both the Bezout and Sylvester resultants for direct 

kinematics of special kinds of parallel robots and planar linkages, while [Husty, 1996] 

presented a solution to the general Stewart/Gough platform by using resultants and 

factoring out all extraneous roots. The works of [Kovacs and Hommel, 1993; Soylu and 

Akbulut, 1997] discussed the introduction of extraneous roots by the use of half-angle 

tangent substitution in trigonometric equations often encountered in kinematics.   

Another interesting closed-form formula for resultant of two quantics is Dixon’s 

formula. This formula was recently used by both [Nielsen and Roth, 1999-b] and 

[Wampler, 2001] for solving the position analysis of planar closed chain linkages. 

Wampler’s work avoids the use of the half-angle tangent transform, which was used by 

Nielsen and Roth, in order to maintain the degree of the polynomials and prevent the 

introduction of extraneous roots. 

Gröbner bases 

Since this method is the focus of this chapter we will limit ourselves in this section on 

listing the contributions in kinematics that used this method. Before doing so, we will 

focus the attention on the following advantages of the use of Gröbner bases: 

• It is possible to prove the solvability and non-solvability of a polynomial system by 

constructing its Gröbner basis.  

• Gröbner bases produce a tight bound to the number of solutions of a polynomial 

system. 

• It is possible to gain insight into the geometric structure of the problem by using 

Gröbner bases. For small problems it is even possible to obtain elimination-like 

results by using special term orderings.  

The main drawback of Gröbner bases is the complexity associated with their 

computation. Although the proof of convergence for the Gröbner basis computation 

exists, the number of symbolic operations is large and heavily depends on the term order 

used. Nevertheless, the advancements made in the algorithms for Gröbner basis 

computation and their availability in symbolic computation softwares make investigating 

the use of this method appealing.     

                                                 
♣  See the examples on pages 30-31 in [Cox, Little, O’Shea, 1998]. 
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Due to their complexity, the use of Gröbner bases for kinematics is still limited 

compared to resultants. However, one of the most important results in the direct 

kinematics of Stewart/Gough robots was obtained by Lazard [Lazard, 1993] through the 

use of Gröbner basis calculation for proving that the general Stewart/Gough manipulator 

has 40 solutions for its direct kinematics problem. Faugere and Lazard in [Faugere and 

Lazard, 1995] considered the combinatorial classes of parallel robots and characterized 

the number of solutions for each class. Recently, Dhingra and his collaborators, [Dhingra, 

Almadi, Kholi, 2000] used a hybrid method based on the use of Gröbner bases and 

Sylvester resultants for closed-form position analysis of mechanisms. Their method 

precedes the use of the Sylvester resultant by a step of Gröbner basis calculation. They 

showed that, by doing so, they obtain a rational method for constructing additional 

equations used for the construction of Sylvester’s matrix, in which, a minimal number of 

equations are produced and generally no extraneous roots are presented.  

2.2.2 Symbolic-numerical methods 

Symbolic-numerical methods usually start with symbolic computations to bound the 

number of solutions to the problem and, instead of obtaining a closed-form expression to 

the determinant of the resultant, they resort to numerical methods to find all solutions. 

The generalized eigenvalues problem in polynomial system solving 

One big drawback of resultant and dialytic symbolic methods is the final step of 

computing the determinant of the resultant symbolically. This final step is very 

expensive in memory and usually it is possible to perform only for small polynomial 

problems. To avoid the computation of the determinant it is possible to use the 

generalized eigenvalues procedure devised by [Golub and Van-Loan, 1983].  

The main idea behind this method is to transform the polynomial equations to form an 

associated generalized eigenvalues problem. If the resultant homogeneous equation,  

obtained by either dialytic elimination or classical resultant equation, is written in the 

form ( ) 0yR =x , where x is the suppressed variable and y is the vector of power products 

in the unsuppressed variables, then the formula of the corresponding generalized 

eigenvalues problem is obtained by following two steps. The first step is decomposing the 

resultant matrix R(x) into the form: 

 ( ) ∑ == n
0i

i
ixx AR  (22)  

where n is the maximal degree of x in R(x) and Ai is its corresponding matrix of 

coefficients. The second step is to formulate the generalized eigenvalues problem: 
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 BvAv x=  (23)   

In this formulation, A, B, and v are given by Eq. (24) [Nielsen and Roth, 1999-a]: 
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In this method, the eigenvalues are obtained as the values for the suppressed variable 

x and the eigenvectors give all the values for the unsuppressed variables in y.   

This method was successfully used for inverse kinematics of serial robots by 

[Ghazvini, 1993] and by [Wampler, 2001] for the general solution of position analysis 

problem of planar linkages. 

2.2.3 Numerical methods 

 Homotopy Continuation methods 

Although continuation methods are generally considered numerical methods, prior to 

implementing the steps of numerical continuation, they employ crucial symbolic 

manipulation steps for ensuring that the solver finds all solutions to a given polynomial 

problem.  

Given a polynomial system P(x), where x represents the vector of unknowns, the 

continuation method is based on the following steps: 

• The first step is obtaining a tight bound on the number of solutions to the problem, 

including solutions at infinity. This can be obtained by using Bezout bound after 

homogenizing the polynomial system. Multi-homogeneous Bezout numbers can help 

tightening the bound for the number of solutions even further [Wampler, Morgan, 

Sommese, 1990] and reduce the number of extraneous roots [Tsai, 1999]. After 

obtaining a homogeneous form of the polynomial system and introducing a number 

of new equations that equals the number of homogeneous variables, we call the 

resulting polynomial system the target system and symbolize it by F(x). 

• Once a bound for the number of solutions is obtained, a start system is formulated 

such that it is easy to solve, i.e., all its solutions are known and distinct, and the 

system must have at least the same number of solutions as the target system that 

we want to solve. This system is symbolized by G(x). 

• A homotopy function that is well parameterized with respect to a parameter t is 

formulated. For example, consider the commonly used homotopy in Eq. (25), where 
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c is a randomly selected complex number that ensures that H is well 

parameterized. 

 ( ) ( ) ( ) ( )xFtxGt1ct,H +−=x  (25) 

H(x, t) defines a parameterized path from the initial system to the target system. 

Solving H(x,0) gives the solutions of G, while solving H(x,1) gives all solutions of F. 

• Each solution of the initial system is used as an initial guess. Then, the homotopy 

parameter t is incremented and a new perturbed system H(x, ∆t) is solved. This 

process is called path tracking using predictor-corrector method. Path tracking is 

done for all paths of solution corresponding to all initial solutions of the start 

system. The process terminates when t is incremented to its final value t=1 and the 

resulting system is solved.  

The origins of the above-outlined method of polynomial continuation stem from the 

“bootstrap” method used by Roth and Freudenstein for synthesizing geared five-bar 

mechanisms for nine-point path generation [Roth and Freudenstein, 1963-a]. Conditions 

for the convergence to all solutions were also discussed in [Roth and Freudenstein, 1963-

b]. The continuation method was successfully used in numerous problems in kinematics, 

among which we list the pioneer work of  [Tsai and Morgan, 1985] for inverse kinematics 

solution of general serial robots and the work of [Wampler, Morgan, Sommese, 1990] for 

solving the spatial Brumester problem♣. The method was also used by Raghavan [1993] 

for investigating the maximal number of direct kinematics solutions of general 

Stewart/Gough platforms. In this work 960 homotopy paths were tracked yielding 80 

symmetric solutions, which showed that there are at most 40 solutions (although this 

does not present a mathematically well established proof as in the work of Lazard [1993] 

using Gröbner bases).  

The continuation method is fast and efficient, however, although it yields all solutions 

to a problem when the initial system and homotopy function are well defined, this 

method is still numeric. If we want to investigate a kinematic system and have some 

insight about symmetry among solutions this method does not allow gaining such insight 

due to its numerical nature. 

Interval Analysis methods 

                                                 
♣  Body guidance by a platform connected to the ground via seven rigid links and spherical 

joints.  
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Interval analysis methods are relatively new methods for solving polynomial 

equations with a guaranteed solution of all real solutions only (the method is insensitive 

to complex solutions). The method is based on interval arithmetic presented in [Moore, 

1979] and [Hansen, 1992]. The method was successfully implemented for the inverse 

kinematics problem of the Puma 560 by [Castellet and Thomas, 1998] and for direct 

kinematics of general Stewart/Gough robots by [Didrit, Petitot, Walter, 1999]. Merlet 

[2001] presented a general solver for nonlinear equations and demonstrated its use for 

trajectory verification of a Stewart/Gough platform robot. 

This method is purely numerical and uses algorithmic search-and-bound strategy. 

Although it yields all solutions to large polynomial systems, it does not allow some 

insight regarding the symmetry and shape of solutions. Therefore this method is 

considered best among all other methods provided that we are interested in only finding 

all real solutions to a polynomial problem without need of investigating the shape of the 

solutions and the symmetry relations among them. Unfortunately, this is seldom the 

case for kinematical case studies.  

Having surveyed all the aforementioned array of methods to solve polynomial systems 

in kinematics, we would like focus the attention on the properties of using Gröbner basis 

computations. This will be possible only after the necessary background on this subject is 

presented. The following sections present this background.    

2.3 Linear equations as a special case of  

polynomial systems: motivation  

Linear algebra studies the solution methods of linear equations based on transforming 

the initial system of equations into an equivalent set of equations that are easier to solve. 

This process is well known as the Gaussian elimination algorithm. Linear systems 

having a finite number of solutions can be transformed into an eigenvalues problem and 

solved efficiently. Let P represent the linear mapping from ℜn to ℜn given as a set of 

linear equations in the unknowns [x1…xn]: 
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This linear mapping has a matrix representation given by: 

 nnn ,, ×ℜ∈ℜ∈= AbxbAx  (27) 

Using Gaussian elimination, this system can be transformed into a system of linear 

equations with an upper triangular matrix U. The transformation is obtained by using 
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basic row-column manipulations that represent a different set of equations than the 

original ones, but are all linear combinations of the original equations: 

 nnn ,c,, ×ℜ∈ℜ∈= AxcUx  (28)  

Solving for the unknowns is achieved by solving the last equation, in which all other 

variables, except for xn, are eliminated, and then by using consecutive back-substitution.  

Moreover, If the system has a finite number of solutions then the matrix representation 

can be used to write a closed form equation for the solution given by: 

 1−= MDMA  ⇒ bMMDx 11 −−=  (29) 

where M represents a matrix having all the eigenvectors of A in its columns and D is a 

diagonal matrix with the corresponding eigenvalues on its diagonal.  

The reason that this review of linear algebra is presented here is to raise the following 

question:  

What is the connection between linear algebra and polynomial systems? Is there a way 

to obtain an algorithm for solving polynomial systems by using eigenvalues?   

This question was recently answered in a series of papers [Stetter, 1993, 1996; Möller, 

1993, 1998] and [Möller and Stetter, 1995]. The aim of this chapter is to present the 

material in a simplistic approach allowing non-mathematician engineers to understand 

it and appreciate its advantages over more familiar methods such as symbolic sequential 

elimination by resultants or numerical solution by homotopy continuation.  

Before answering the above-listed questions Gröbner bases have to be introduces, but, 

before doing so, the following section reviews some necessary basic definitions from 

abstract algebra and algebraic geometry.  

2.4 Preliminary definitions form Abstract Algebra 

This section presents some basic definitions, examples, and theorems that constitute 

the background for Gröbner bases and the method of eigenvalues, i.e., the SM method. 

Definition Group 

A group G is a set with a binary “⋅” operation (a,b)→a⋅b, a neutral multiplication 

element (called the unity element u), and fulfilling these two properties: 

• Multiplication “⋅” is associative ( ) ( ) Gc,b,acbacba ∈∀⋅⋅=⋅⋅ . 

• Every element, a∈G, has an inverse element, b∈G, such that b⋅a=u.   

Definition Ring 
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A ring R is a set with two associated binary operations (“+” and “.”) and a zero element 

such that: 

• R is Abelian with respect to addition, i.e., every pair of elements a,b∈R fulfill 

a+b=b+a. 

• Associativity of multiplication holds: ( ) ( ) Rc,b,acbacba ∈∀⋅⋅=⋅⋅ . 

• Distribitive laws hold ( )
( ) Rc,b,a

cabacba
cbcacba

∈∀




⋅+⋅=+⋅
⋅+⋅=⋅+ .  

Definition Commutative ring with unity 

A ring R having a neutral multiplication element (called the unity element u) and 

commutative multiplication a⋅b=b⋅a for all a,b∈R.  

Example 1 Polynomial ring 

Using these definitions, one can observe that if K represents any field♣, then the set of 

polynomials with variables x1, x2…xn and coefficients from this field is a commutative 

ring. This ring is designated by the symbol [ ]n1 x,,xK … .  

Definition Ideal 

An ideal I over a ring R is a non-empty subset of R fulfilling: 

• I is closed under addition: ( ) Ib,aIba ∈∀∈+ . 

• I is closed under inside-outside multiplication: ( ) Rr,IaIra ∈∈∀∈⋅ . 

Definition Finitely generated Ideal 

I is a finitely generated ideal if it is defined by a finite number of generators a1...an∈R 

such that every element b of I fulfills: 

{ }∑ ≤≤∀∈=>==< n
1 iiin1 ni1Rr|rabaaI …  

where the notation < a1...an> reads as “the finitely generated ideal of a1...an”.  

                                                 
♣ For our uses for kinematics, K represents the complex domain C.   
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Example 2 Polynomial ideal 

If we consider C[x,y] then I1 = <x+y, x-y> generates an ideal of C[x,y]. However, it is 

easy to see that the same ideal is generated by I2 = <x, y> since every polynomial in I1 

belongs to I2 and vise-versa. 

The example shows that a basis of an ideal is not unique, unless some special ideal 

basis is considered. This special basis is the reduced Gröbner basis that will be 

introduced in section  2.6. The existence of a finite basis for every polynomial ideal was 

proven by Hilbert and is called the Hilbert basis theorem: 

Theorem 1 Hilbert basis theorem 

Every polynomial ideal I ⊂ [ ]n1 x,,xK …  has a finite generating set.  

All rings fulfilling this theorem are called Notherian rings.  

Definition Variety of a finitely generated ideal.  

V(I) is defined as the solution set of the polynomial system associated with the ideal 

generators f1,…fn of I=<f1,…fn> ⊂ [ ]n1 x,,xK … .  

{ }0fff|K)I(V n21
n ===∈= …a  

Example 3  

Consider the ideal of  example 2, i.e., I1=<x+y, x-y>.  The solution to the system of 

equations associated with these generators is x=y  ∩ x=-y therefore {(0, 0)} is the variety 

of this ideal. Consider now two other members of I1 given by p1 = ( )yxx2 +  and p2 = 

( )yxxy −  and their ideal I2 = <p1, p2>. The variety V(I2) is {(0, y)} and it includes V(I1). 

Notice that by now we introduced the notation of a polynomial system, polynomial 

ideal and variety of a polynomial ideal. The crucial fact is that every polynomial system 

belongs to a finite ideal, to which, there is a corresponding variety. The big idea behind 

Gröbner bases is stated by the fact that a solution of a polynomial system is determined 

by its ideal, not by the specific representation of the polynomials, i.e., any manipulation 

made on the original system for solving the system by elimination produces a system of 

equations that belong to the original ideal. However, one should be careful since in doing 

so, one can not simply use the resulting system as a basis for the same ideal since this 

process can produce a larger set of solutions than the original variety of the original 

system.  These solutions are called extraneous solutions and are the main drawback of 
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using dialytic elimination. This was demonstrated in  example 3 and is also geometrically 

demonstrated in  example 4. 

Example 4  

  Figure 17-a shows two polynomials p1, p2 that represent a polynomial system in the 

unknowns [x, y]. Figure 17-(b) represents the contours obtained by the intersection of the 

manifolds of p1 and p2 with z=0. The intersection points between these two contours 

represent the points of the corresponding variety. The figure shows that there are four 

points in V(p1, p2).  Figure 17-(c) presents the two manifolds of two members, p3 and p4, of 

<p1, p2> and figure 17-(d) represents the contours for their intersection with z=0. The 

intersection points of these contours represent the variety of <p3, p4>. The figure shows 

that V(p1, p2) contains four points while V(p3, p4) has eight points – four of which are the 

original points of V(p1, p2).  

This example suggests that, as we defined a variety of an ideal V(I), there is a reverse 

direction, in which , the ideal of a variety I(V) is defined.  

Definition Ideal of a variety 

Given an affine variety { }nK|V ∈= aa  the symbol I(V) defines the ideal of all 

polynomials vanishing on all points of V.  

In  example 4 the ideal <p1, p2> defined a variety V(<p1, p2>) constituted of the four 

points in 2R  shown in figure 17-b. The polynomials ><∈ 2143 p,pp,p  vanish on the points 

of V(p1, p2) therefore they belong to I(V(<p1, p2>)). Moreover, I(V(<p1, p2>)) is a larger set 

than < p1, p2>, i.e., <p1, p2> ⊂ I(V(<p1, p2>)).  

The method for determining whether a given polynomial f belongs to an ideal 

I=< p1, …, pn> is checking whether f can be written as a polynomial combination of the 

generators p1, …, pn: [ ]n1i
n

1i ii x,,xKa|paf …∈= ∑ =
. This can be done through sequential 

division of f by the generators of I (also called reduction of f with respect to I). If the 

reminder after this sequence of divisions is zero, then f∈I, if not then one can not deduce 

that f∉I - as will be shown in  example 9. Before presenting this example, the definition of 

a division algorithm and term orders is presented in the following section.  
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Figure 17. Simply taking two members of the ideal  I=<p1, p2> does not maintain 

the size of V(I). Initial polynomial system (a). Four points of V(I) (b). Two 

polynomials of I (c). The corresponding variety for <p3, p4> (d). 

2.5 Division algorithm 

Definition Leading term, leading power product, and leading coefficient 

Let a polynomial f∈K[x1, ..., xn] be written as Ka|af i
n

1i i
i ∈= ∑ =

dx  where the symbol 

dx is represents the product ]d,...,d,d[,x n21
n

1j
d

j
j == ∏ = dxd . The products i

ia dx , i=1…n, 

are called the terms of f,  idx  are called the monomials (power products) of f, and ai are 

called the coefficients of f. The leading term lt(f), leading coefficient lc(f) and leading 

monomial lm(f), are the largest elements in their corresponding sets, according to a 

predefined admissible term order. 

 := P1  +  − 2 x2 2 y2 10

 := P2  −  − x2 y2 2

 := p3  + ( ) + x 1 P1 ( ) + x y y2 P2

 := p4  + ( ) + x2 y P1 ( ) + y x y3 P2

(d) 

(b) 

(c) 

(a) 
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Definition Total degree of a polynomial 

Let p be a polynomial in K[x1, ..., xn]. The total degree of p is the largest sum of powers 

associated with the corresponding monomials set.   

Example 5  

Consider the polynomial 52232 z5yx6yzbx5xy3p +++=  in K[x, y, z]. The non-ordered 

monomials set of p is given by { }52232 z,yx,yzx,xy  and the set of coefficients is  

{ }5,6,b5,3 . The total degree of p is 5.    

Definition Term order (monomial order) 

A term order > on K[x1, ..., xn] is any relation on the set of monomials in K[x1, ..., xn] 

that satisfies the following conditions: 

• > is a total ordering, i.e., p≥1 for all p∈K[x1, ..., xn]. 

• If p1>p2 then p3p1>p3p2 for all p1, p2, p3 ∈ K[x1, ..., xn].  

• Every set of monomials in K[x1, ..., xn]  has a unique smallest element under >.  

There are many admissible term orders that can be defined; however, it is worth 

mentioning three commonly used term orders: 

Definition Lexicographical term order (lex) 

A lexicographical term order orders the monomials according to the lexical order as in 

the dictionary. This order fulfills: 

• n21n21 e
n

e
2

e
1

d
n

d
2

d
1 xxxxxx "" >  if in the difference vector (d-e), between the ordered 

vectors of powers T
n21 ]d,d,d[ …=d  and T

n21 ]e,e,e[ …=e , the uppermost nonzero 

element is positive.   

Definition Reverse-lexicographical term order (revlex) 

A reverse lexicographical term order orders the monomials reversed to the lexical 

order in the dictionary. This order fulfills: 

• n21n21 e
n

e
2

e
1

d
n

d
2

d
1 xxxxxx "" >  if in the difference vector (d-e), between the ordered 

vectors of powers T
n21 ]d,d,d[ …=d  and T

n21 ]e,e,e[ …=e , the bottommost nonzero 

element is negative. 

Definition Total degree term order 

The largest monomial among a set of monomials, according to total degree order, is 

the one with the largest total degree. If two monomials have the same total degree then 
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they are ordered according to a second criterion. This criterion may be lexicographic or 

reverse lexicographic order. In the case of lexicographic order, the term order is called 

Degree-Lexicographic order (DegLex). In the case of reverse lexicographic order, the term 

order is called Degree-Reverse-Lexicographic order (DegRevLex). 

Example 6     

The monomials set { }52232 z,yx,yzx,xyL =  is ordered in the following ways according 

to the different term orders: 

• Lex [x>y>z]:  { }52223 zxyyxyzx >>>    

• DegLex [x>y>z]:  { }22253 xyyxzyzx >>>   

• DegRevLex [x>y>z]:  { }22253 xyyxzyzx >>>   

Although usually the leading term is different from one ordering to another, in this 

example it is given by lt(L)= yzx3 . 

Example 7  

Consider the three monomials 42zx , 222 zyx , and zxy4 . According to DegLex  
222 zyx > 42zx > zxy4  while according to DegRevLex zxy4 > 222 zyx > 42zx .  

Using one of the above-defined terms orders one can define a division algorithm of a 

polynomial by another or division by a given set of polynomials G=[g1, ..., gn].  

Consider the two polynomials f, g∈K[x1, ..., xn]. We say that g divides f if f can be 

written as hqgf +=  and indicate that by the symbol hfg → . To perform single-step 

division, first the two polynomials are re-arranged such that their monomials follow the 

rules of the term orders. The process of division is based on dividing the power products 

of f by lt(g). Let X be the largest power product that divides by lt(g), the reminder, h, of 

this single-step division is given by: ( )( )ggltXfh −= . This is demonstrated in the 

following example from [Adams and Loustaunau, 1994]. 

Example 8  

Consider f=6x2y-x+4y3-1 and g=2xy+y3,  table 2 below presents the division hfg →  for 

Lex(x>y) order and for DegLex(x>y):  
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Table 2 division of f by g from  example 8 for Lex and DegLex ordering  

  

If the process of single-step division is repeatable after the first division, one can 

continue and divide h by g until no power product of h is divisible by lt(g). This process is 

called the reduction of f modulo g and symbolized by hfg +→ . The output, h, of the 

reduction hfg +→  is also called the normal form of f with respect to g and indicated by 

( )g,fN . 

It is also possible to define the division of a polynomial f with respect to a set  

G={g1, ..., gn}.  In this process f is first divided by g1 then the result is divided by g2 and so 

on until this process repetition is not possible since the reminder has no term X divisible 

by lt(gi), i∈1…n, or it is zero. This process is symbolized by the symbol hfG +→  where it 

is understood that G is a set of polynomials and h is called the normal form of f with 

respect to G and symbolized by h= ( )G,fN . If f does is not divisible by any of the 

elements of G then it is said that f is reduced with respect to G.   

Example 9  

The following example divides f=x2y2-2y with by G=[g1, g2] where g1=xy2-x and  

g2=x2-2y according to Lex(x>y) order. The division is shown in  table 3 for the case where f 

is first divided by g1 and then the result is divided by g2 and the second case where f is 

first divided by g2.  

6x2y+4y3-x-1 y3+2xy 
4 

4y3+8xy 
6x2y-8xy-x-1 

lt(g)=y3 X=4y3 

6x2y-x+4y3 -1 2xy+y3
3x 

6x2y+3xy3 
-x-3xy3+4y3-1 

X=6x2y lt(g)=2xy 

Lex(x>y) DegLex(x>y) 

Note: 
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Table 3 Two reductions of f by G from  example 9.   

 

 Example 9 shows that f belongs to the ideal of <g1,g2> since f=xg1+g2. However, if we 

divide f by G by first dividing by g2 we have a different result that 0y2y2f 3
}g,g{ 12

≠−→+ . 

This happens since g1 and g2 do not have the lowest possible degrees for their leading 

terms among other possible generating sets for the same monomial ideal. Therefore, to 

determine whether a polynomial belongs to an ideal, it is not enough just to reduce it 

with respect to the ideal generating set, but we should find another generating set whose 

elements have the lowest possible degrees for their leading terms. This special basis is 

the Gröbner basis. 

 

2.6 Gröbner bases 

Definition Gröbner basis 

A Gröbner basis for an ideal I⊂K[x1, ..., xn] is a subset G={g1, …., gn}⊂I such that there 

is no polynomial, f∈I, f≠0, that is reduced with respect to any of its elements, i.e, lt(gi) 

divides lt(f) for all i∈[1, 2, …, n].       

This definition is equivalent to writing that the ideal of leading terms of every ideal I 

is the same as the ideal of leading terms of its Gröbner basis generators gi, i=1..n, i.e., 

<lt(g1), lt(g2), …,lt(gn)> =<lt(I)>.  

The definition of Gröbner basis does not say how to compute it. The basic algorithm 

for finding Gröbner bases was devised by Buchberger [1965] and is presented here, but 

first, the following definitions are needed. 

x2y2-2y g1=xy2-x 
x 

x2y2-x2 
x2-2y  

x2-2y g2= x2-2y 
1 

x2-2y 
0 

f=xg1+g2 ,i.e., 0f }g,g{ 21 +→  

x2y2-2y g2= x2-2y 
y2 

x2y2-2y3 
2y3-2y 

 y2y2f 3
}g,g{ 12

−→+  
lt(2y3-2y) does  

not divide lt(g1) 
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Definition Least Common Multiple (lcm) 

The least common multiple of lm(f), lm(g)∈K[x1, ..., xn] is defined as monomial h that 

is divisible by both f and g and any other common multiple of f and g. This least common 

multiple is indicated by LCM(lm(f), lm(g)). 

Let the leading monomials lm(f) and lm(g) be given by n21 d
n

d
2

d
1 xxx)f(lm "=  and 

n21 e
n

e
2

e
1 xxx)g(lm "=  then the least common multiple is given by 

n21 h
n

h
2

h
1 xxx))g(lm),f(lm(LCM "=  such that ni1)e,dmax(h iii ≤≤∀= .   

Example 10  

The least common multiple of x2y3z and x3yz2 is x3y3z2. 

Definition S-polynomial 

Let f,g∈K[x1, ..., xn], f, g≠0. The corresponding S-polynomial is defined by: 

 LCM(lm(f ),lm(g)) LCM(lm(f ),lm(g))S(f ,g) f g
lt(f ) lt(g)

= −      

This definition produces a polynomial that belongs to <f, g>, and, more importantly, 

accounts for problematic cases where a given polynomial i
n

1i in1 php,,pq ∑ =>=∈< … , 

]x,...,x[Kh n1i ∈ , has a low degree of its leading term because of possible cancellation 

occurrence among the leading terms of i
n

1i iph∑= . In this case it is possible that the 

cancellation results in a problematic case where q is not divisible by any of the leading 

terms of the ideal generators. This is what happened in  example 9.  Algorithm 1 presents 

a method for producing a Gröbner basis accounts for all these problematic cases. 

 Algorithm 1 produces a Gröbner basis G={g1, …, gs} for the ideal of F, for some s∈N, 

which is not unique since it usually has more generators than the minimal number. This 

happens because of the random arrangement of the polynomials in G during the 

initialization and because the order of selecting the polynomials pairs from G also 

depends on the initialization.  To obtain a unique Gröbner basis is necessary to obtain a 

reduced Gröbner basis that fulfills the following definition. 
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Algorithm 1. Buchberger’s algorithm for Gröbner basis construction 

Input: F = a finite subset of polynomials in K[x1, ..., xn] 

Output: G= a Gröbner basis such that <G>=<F> 

Initialization: G:=F   

 B:={{g1, g2} | g1, g2∈G, g1≠g2}= the set of all possible pairs in G 

Loop: 

 While B≠∅ do 

 Pick {g1, g2} from B 

 B:=B\{{ g1, g2}}  (B gets the value of previous B excluding {g1, g2}) 

 h:=S(g1, g2)  (compute the S-polynomial of g1 and g2) 

 Compute the normal form rhG +→    

 If r≠0 then 

 B:=B∪{{g,r} | g∈G} (add to G all constructible pairs with r) 

 G:=G∪{r} 

 End 

 End 

Output: Output=G   

Definition    Reduced Gröbner basis 

A Gröbner basis G=[g1, …, gs] is called a reduced Gröbner basis if it fulfills: 

• lc(gi)=1 for all i=1,2, …,s. 

• Every gi is reduced with respect to the set G\{gi} for all s...,,2,1i = , i.e.,  

0hg }g{\Gi i
≠→+  or, in another formulation, s...,,2,1i}g{\Gg ii =∀>∉< .    

Given a set of polynomials it is possible to determine whether it constitutes a (non-

reduced) Gröbner basis according to the following theorem. 

Theorem 2  

Let G={g1, …, gs} be a given set of polynomials in I⊂K[x1, ..., xn]. G is a Gröbner basis 

for I if and only if the normal form of all S-polynomials S(gi, gj), i≠j∈1,2, …, s,  is zero.     

The reduced Gröbner Basis has, in addition to its uniqueness property♣, a number of 

important characteristics given in the following theorem. 

                                                 
♣ See page 90 in [Cox, Little, O’Shea, 1997] for a proof of uniqueness 
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Theorem 3  

Let G be a reduced Gröbner basis of I⊂K[x1, ..., xn]. The following statements are 

fulfilled: 

• G is unique. 

• The normal form of f∈K[x1, ..., xn] is unique for a fixed term order.  

• The normal form of f∈K[x1, ..., xn] with respect to G is zero if and only if f∈I. 

These properties allow solving the problems of ideal membership (determining if a 

given polynomial belongs to an ideal), elimination, and solvability determination for a 

given polynomial system.  

The ideal membership problem is readily solved once a Gröbner basis, G, of a given 

ideal is computed. The polynomial subject to the membership test belongs to the ideal if 

and only if its normal form with respect to G is zero in accordance with the definition of 

the Gröbner basis.  

Polynomial system solving by elimination is the equivalent to the Gaussian 

elimination for systems of linear equations. Using lexicographic (lex) term order and 

computing the Gröbner basis for the system results always in a set of polynomials such 

that are the generators to all elimination ideals. 

Definition Elimination ideal 

The mth elimination ideal, Im, of a given ideal I=<p1, …, pn>⊂K[x1, ..., xn] is the ideal of 

K[xm+1, ..., xn] that consists of all polynomials in I that have only the variables xm+1, …, xn, 

i.e., ]x...,,x[KII n1mm +∩= .  

Theorem 4 Elimination theorem 

Let I∈K[x1, ..., xn] be an ideal and G its Gröbner basis with respect to lexicographic 

term order x1>x2>….>xn. For every set ]x,,x[KGG n1mm …+∩= ,  where nm0 <≤ , Gm is 

the Gröbner basis for the mth  elimination ideal.      

Example 11  

Consider the problem of finding the intersection between z=2x2-1, 4z2=2x2+3y2, and  

z=-2x2-3y+1, figure 18.  This problem is tantamount to solving the system in Eq. (30).  
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Figure 18. The geometric interpretation to the polynomial problem in  example 11 

Using the symbolic manipulation program Maple® to compute the corresponding 

Gröbner basis with lexicographic term order x>y>z results in 

]1zx2,y3z2,z83z3[G 22 −−++−−= . Note that g1 has only z as a parameter, g2 has y and 

z, and g3 has x and z, which allows for solving g1 for z, and substituting the solutions in 

g2 and g3 to solve for the solutions of x and y.      

 Example 11 is a trivial one and easy to solve using lexicographic term order, however, 

using this term order to compute the Gröbner basis is expensive in computation time 

[Boege, Gebauer, Kerdel, 1986; Faugere and Lazard, 1995; Cox, Little, O’Shea, 1998]. 

Total degree orderings are more efficient in time and memory consumption; therefore it 

is recommended to avoid the computation of Gröbner basis using lex order. If a 

lexicographic Gröbner basis is required, it is possible to obtain it from another Gröbner 

basis computed using DegLex or DegRevLex orders by using FGLM (Faugere, Gianni, 

Lazard, Mora) algorithm [Faugere, et. al., 1993; Cox, Little, O’Shea, 1998] for Gröbner 

basis conversion.     

Determination of solvability of a given system of polynomial equations can be easily 

determined once a Gröbner basis is obtained. We begin by the observation that if any 

constant is an element in a Gröbner basis, then the corresponding reduced Gröbner basis 

is {1} and, inevitably, the ideal of G is improper, i.e., I=K[x1, ..., xn]. Based on Hilbert’s 

weak zero point theorem (weak Nullstellensatz theorem♠) the variety V(I) is an empty 
                                                 
♠ Although this theorem is formulated for algebraically closed extension fields, we limit the 

discussion for the complex field C, which constitutes an algebraically closed field of R.   
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set if and only if I=C[x1, ..., xn] where C indicates the complex domain. Hence the 

following theorem is introduced.  

Theorem 5 Solvability criterion 

A polynomial system with an associated Gröbner basis for any term order is 

unsolvable on C if and only if its associated reduced Gröbner basis is {1}.  

Up to now, we introduced the concept of Gröbner bases and discussed some of their 

characteristics. The passage from Gröbner bases to the SM eigenvalues method goes 

through the use of quotient rings and their properties. This subject is introduced in the 

following section.   

2.7 Quotient rings and quotient ring algebra 

This section explains the relationship between the concept of quotient rings and 

Gröbner bases. The section presents clear methods for answering the following questions: 

• Is the system solvable? Can we deduce that from its Gröbner basis? 

• How many solutions there are to a polynomial system? 

• What is the relation between reminders of polynomials modulo G and the number 

of solutions? 

These questions are answered through inspecting the structure of quotient rings – a 

concept defined below.  

 Theorem 3 states an important characteristic of Gröbner bases, namely, the 

uniqueness of normal forms. The consequence of this property is a definition of a 

mapping φ from K[x1, ..., xn] to a ring of reminders called the quotient ring of K modulo 

the ideal I and indicated by K[x1, ..., xn]/I.  

Every polynomial f∉I has a unique normal form N(f,G) where G is the Gröbner basis 

for I. However the reverse correspondence is not unique, i.e., a normal form N(f,G) 

represents the reductions of all polynomials h∈K[x1, ..., xn] modulo I such that h=f+w 

where w∈I. This phenomenon defines residue classes also called equivalence classes or 

cosets that fulfill the following definition.     

Definition  Residue class (coset) (equivalence class) 

Let I be an ideal of the ring R. Every element a∈R has an associated residue class 

(also called a coset or equivalence class). The residue class of a modulo I is the set 

{ }Ib|baIa]a[ ∈+=+= . 
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Based on this definition, it is said that all polynomials in the coset of [f], where 

f∈K[x1, ..., xn], are congruent. Congruence relation between two polynomials is given in 

the following definition. 

Definition Congruence relation modulo an ideal 

Let p1 and p2 be polynomials in K[x1, ..., xn] and I⊂K[x1, ..., xn] is an ideal with a 

Gröbner basis G. The polynomial p2 is said to be congruent to p1 modulo I if and only if 

p1-p2∈I.  

A consequence of this definition is that N(p1,G)=N(p2,G), i.e., [p1]=[p2]. This means 

that all polynomials in a coset are congruent. 

In the same way we defined cosets and polynomial rings, it is possible to consider a 

wider mapping from K[x1, ..., xn] to the ring of all cosets of elements in K[x1, ..., xn]. This 

mapping defines a term called a quotient ring modulo an ideal I.    

Definition   Quotient ring R/I 

The totality of all cosets of all elements a∈R denoted by R/I is given by: 

{ } { }RaIaRa|]a[I/R ∈∀+=∈=  

and it is called the quotient ring♣ of R modulo I. 

The mapping defined by φ: K[x1, ..., xn]→K[x1, ..., xn]/I constitutes a surjective (onto) 

homomorphism, i.e., for every [f]∈K[x1, ..., xn]/I there exists f∈K[x1, ..., xn], and the 

following hold: 

• φ(f+g)=φ(f)+φ(g). 

• φ(fg)=φ(f)φ(g). 

• φ(1k)=φ(1q) where 1s is the unit element in K[x1, ..., xn] and 1q is the unit element in 

K[x1, ..., xn]\I.  

Additionally to the above mapping K[x1, ..., xn]/I has the structure of a vector space 

based on the one to one correspondence between reminders and cosets and the reminder 

arithmetic defined by the following rules for a,b∈K[x1, ..., xn] and c∈K.   

• N(ab,G)=N(N(a,G)N(b,G), G).  

• N(a+b,G)=N(a,G)+N(b,G).  

• N(ca,G)=cN(a,G). 

                                                 
♣ See pp. 221 of [Cox, Little, O’Shea, 1997] for a proof that K[x1, ..., xn]/I is a ring . 
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This reminder arithmetic defines a corresponding coset arithmetic in K[x1, ..., xn]/I.  Also 

K[x1, ..., xn]/I is a ring, therefore, since it is both a ring and a vector space K[x1, ..., xn]/I is 

called an algebra and denoted by A=K[x1, ..., xn]/I.  

Definition Zero-dimensional ideal 

Let I be an ideal I⊂K[x1, ..., xn]. I is said to be a zero-dimensional ideal if the number 

of points in V(I) is a finite.   

The statement that A=K[x1, ..., xn]/I is an algebra means that it has a finite basis♣ and 

that every reminder of any f∈K[x1, ..., xn] is a combination of the reminders 

corresponding to the cosets of the basis of A.  This can be formulated in the following 

theorem. 

Definition Ideal of leading monomials 

Let I be an ideal of K[x1, ..., xn] and a set L be the set of all leading monomials of its 

Gröbner basis G. The ideal of leading monomials is a finitely generated ideal with L as 

its basis.     

Theorem 6  

Let I⊂K[x1, ..., xn] be a zero-dimensional ideal and K[x1, ..., xn]/I its corresponding 

quotient ring and G its Gröbner basis. The quotient ring K[x1, ..., xn]/I is a finite vector 

space with a finite basis B={b1, …, bs} such that for every f∈K[x1, ..., xn] the following 

holds: 

• All bi, i=1…s, are independent, i.e, ii b)G,b(N = .    

• All bi do not belong to the ideal of leading monomials of I, i.e., >∉< )I(ltbi . 

• All reminders corresponding to cosets in K[x1, ..., xn]/I are combinations of the basis 

elements B such that: 

 ]x...,,x[KfBb,Kc|bc)G,f(N n1ii
s

1i ii ∈∀∈∈= ∑ = .  

writing  the same thing in congruence terms: 

 ]x...,,x[KfBb,Kc|Imodbcf n1ii
s

1i ii ∈∀∈∈≡ ∑ =  

The basis B is a called a monomial basis with bi called standard monomials for  

K[x1, ..., xn]/I. 

                                                 
♣  We limit the discussion here for zero dimensional ideals, therefore A is a finite algebra 
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 Theorem 6 presents a method for obtaining the monomial basis, B, for K[x1, ..., xn]/I. 

For a given polynomial system we can compute its corresponding Gröbner basis and find 

the ideal of leading terms. All monomials in B={b1, …, bs} are not in <lt(I)> so each 

variable xi, i=1…s, must have a degree lower than its maximal degree in <lt(I)>. This 

defines a  set of monomials, D, that contains B. Finding the elements of B from this set is 

done by finding all elements that are equal to their normal forms. 

Example 12  

The Gröbner basis for  example 11 was obtained for lex(x>y>z) term order as: 

]1zx2,y3z2,z83z3[G 22 −−++−−= . The set D is defined as all the monomials not in 

<lm(I)>=< z2, y, x2 >, Eq. (31).   

 )zdeg(maxd0),ydeg(maxd0),xdeg(maxd0|zyx{D 321
ddd 321 <≤<≤<≤=   (31) 

therefore D={1, z, x, xz }. It is obvious that the monomial basis B always contains the 

element 1♣ so we have to compute only the normal forms of z, x, and xz to determine B. 

The resulting monomial basis is B=D={1, z, x, xz } . 

The number of elements in B is always equal or bigger than the number of solutions to 

the problem where equality holds for radical ideals. We will see in  example 13 that for 

this problem there are exactly four points as the number of elements in B.  

Note also that all variables x, y, and z appear in the ideal of leading monomials. If one 

of these variables does not appear in the ideal of leading monomials, then there is no 

corresponding elimination ideal for that variable, thus the problem has an infinite 

number of solutions.  

The example also shows that the number of elements in <lm(I)> and in B is finite for a 

problem with a zero-dimensional ideal.  

All of the above observations satisfy the following finiteness theorem: 

Theorem 7  

Let I be an ideal and V(I) be its affine variety in nC . For any fixed term order in 

C[x1, ..., xn] the following statements are equivalent: 

• I is zero dimensional, i.e., V(I) is a finite set. 

• Each variable xi, i=1, …, n, appears alone for some degree mi as an element of 

<lm(I)>. 

• The monomial basis for C[x1, ..., xn]/I is finite dimensional. 

                                                 
♣ Otherwise the ideal is improper.  
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• The quotient ring K[x1, ..., xn]/I is finite dimensional. 

 Theorem 7 gives a powerful tool for determining the finiteness of an ideal. Simply by 

computing the Gröbner basis and extracting the generating set for it’s ideal of leading 

terms, one can look for all variables in this ideal. If any of the variables does not appear 

alone in a monomial in <lm(I)>, then the problem has an infinite number of solutions. 

The following theorem allows gives an upper bound for the number of solutions of a 

polynomial system. 

Theorem 8  

Let P represent a polynomial system in C[x1, ..., xn] and G represent its Gröbner basis 

for some fixed term order. Let B be the monomial basis of the quotient ring C[x1, ..., xn]/I. 

The following must hold:     

• The number of points in V(I) is smaller or equal to the number of elements in B. 

Equality holds if I is a radical ideal, i.e. if If m ∈  for any integer m≥1 then f∈I. 

These theorems answer the questions raised at the beginning of this section. Also, 

until now we saw that a mapping exists from K[x1, ..., xn] to K[x1, ..., xn]/I. However, 

looking at the endomorphism K[x1, ..., xn]/I→K[x1, ..., xn]/I is the key for understanding 

the relation between eigenvalues and polynomial system solving. The following is the 

description of the SM eigenvalues method.  

2.8 The eigenvalues method for polynomial system solving 

(SM method) 

  The definition of a coset of a polynomial f∈K[x1, ..., xn] associates f with the coset of 

all polynomials in K[x1, ..., xn] having the same normal form with respect to an ideal I. 

We saw that the normal form of every polynomials f is always a combination of the 

monomial basis B={b1, …, bs}  such that: 

      ]x...,,x[KfBb,Kc|Imodbcf n1ii
s

1i ii ∈∀∈∈≡ ∑ =  (32) 

Consider now another polynomial h∈K[x1, ..., xn] and define the following mapping of 

cosets: 

 Ψ : K[x1, ..., xn]/I → K[x1, ..., xn]/I , [ ]( ) [ ]fh:f ⋅=Ψ  (33) 

This mapping constitutes an endomorphism and has a matrix representation. Recall the 

monomial basis B for K[x1, ..., xn]/I and define for each polynomial f∈K[x1, ..., xn] a 

multiplication table as given in the following definition. 
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Definition Multiplication table 

Let I be an ideal over K[x1, ..., xn], G its Gröbner basis, and [ ] T
s1 b , ,b …=b  be a vector 

of monomial basis elements of its quotient ring K[x1, ..., xn]/I. Every polynomial 

f∈K[x1, ..., xn] has an associated multiplication table fM  such that: 

 Imodf f bMb ≡  (34) 

From the above definition it is possible to write the normal form N(fbi, G) as a 

combination of the basis elements B: 

 ( ) i
s

1i ii bcG,bfN ∑ ==  (35) 

Equation (35) defines the ith column of Mf as the vector of coefficients [ ] T
s1 c , ,c …=c . 

The key point behind the method of Stetter is Eq. (34), which implies the following: 

 If f ∈− bMb  (36) 

Therefore, for all the points a of V(I), all polynomials in I vanish; hence we can write: 

 )I(Vf f ∈∀=− a0bMb  (37) 

and this defines the eigenvalues problem: 

 ( ) 0bIM =− ff  (38) 

Equation (38) is the basis for the following theorem. 

Theorem 9  

Let I⊂K[x1, ..., xn] be a zero-dimensional ideal. Let f∈C[x1, ..., xn] and Mf its 

corresponding multiplication table in K[x1, ..., xn]/I. The following hold: 

• The eigenvalues of Mf  are the values of f on all points of V(I). 

• If f=xi, then the minimal polynomial of Mf is a unique monic generator of the 

elimination ideal I∩C[xi]. 

 Theorem 9 defines the primitive form for the method of Stetter. According to this 

method if one wants to solve a polynomial system in C[x1, ..., xn] one has to compute all 

multiplication tables Mf where f=xi, i=1,2,…n, and find all their eigenvalues.  Then by 

substituting in the polynomial system it is possible to find all solution vectors in V(I). 

This process is carried out in the following example for solving the polynomial problem in 

 example 12.  

Example 13  

The monomial basis of  example 12 was obtained as B=={1, z, x, xz }. Computing the 

multiplication tables Mx, My, and Mz results in: 
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The corresponding minimal polynomials for these matrices are: 

 42
x xx

16
19

4
1p +−=  2

y yy
4
1

6
1p ++−=  2

z zz
8
3

8
3p +−−=   (40) 

The solutions to these minimal polynomials are: 

Solutions for x:  

 
, , ,−  − 

1
8 35 1

8 3  + 
1
8 35 1

8 3 −  + 
1
8 35 1

8 3  − 
1
8 35 1

8 3
 

(41)
 

Solutions for y: 

 
,−  + 

1
8

1
24

105 −  − 
1
8

1
24

105
 

(42)
 

Solutions for z: 

 , + 
3

16
1

16 105  − 
3

16
1

16 105  (43) 

These solutions give the distinct eigenvalues of Mx, My, and Mz.  

The corresponding four solutions of the system are given by  table 4: 

Table 4  All four solutions of  example 13  













-.9560163239 -.5519562821 .8279344231
.9560163239 -.5519562821 .8279344231
-.5230036219 .3019562821 -.4529344231
.5230036219 .3019562821 -.4529344231  

 

The above example, although simple, shows the advantages of the eigenvalues method 

over standard sequential elimination by resultants mentioned in [Roth, 1993; Raghavan 

and Roth 1995; Nielsen and Roth 1999-a]. These advantages are listed here: 

• In this method the numerical computation is kept to a minimum by using it only for 

eigenvalues computation. Note that in  example 13 the multiplication tables were 

obtained exactly in rational numbers.  

•  Unlike sequential elimination, the solution of each variable xi is independent of the 

other variables xj and, thus, it is unaffected by computation errors in xj. 
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•  By using Gröbner bases the solvability of the system of polynomial equations is 

readily determined.  

• The method allows using more efficient term orders than the lexicographic term 

order (such as total degree order).  

• By constructing the monomial basis usually a tight bound for the number of 

solutions is obtained based on  theorem 8.  

Although the method of eigenvalues has all these advantages it suffers from one main 

disadvantage: 

• The method is prone to producing ill-conditioned multiplication tables if 

lexicographic order is used. Using DegRevLex order usually eliminates this 

problem and speeds up the computation of the Gröbner basis [Stetter, 1993]. 

 Example 13 is a simple one, therefore we used in it the direct approach of determining 

the minimal polynomials. For large problems, this is a very heavy computational burden 

and computing the eigenvalues by numerically stable methods (such as the commonly 

known QR decomposition [Golub and Van Loan, 1983] is a better alternative.  

It is possible to reduce the required number of multiplication tables for computing the 

solutions of a polynomial system in C[x1, ..., xn] to one multiplication table. This can be 

done by defining a polynomial i
n

1i ixaf ∑ ==  and computing its multiplication table Mf 

where { ai } represent a random set of numbers. The polynomial f has to have distinct 

values over the points of V(I) for this method to succeed. Also it is necessary to transform 

the ideal into a radical ideal. Once this is done then the solution points in V(I) are given 

by the right eigenvectors of Mf by normalizing each element in the eigenvectors by a set 

of corresponding elements. Full details of this method are described in [Cox, Little, 

O’Shea, 1998]. This method is not described here since it was not used in our works in 

[Simaan and Shoam, 2002-b and 2002-c] for these reasons: 

• The shortened method requires the computation of a radical ideal, which is a heavy 

task by itself. 

• The shortened method has numerical problems due to normalizations of the 

eigenvectors. 

• The solution algorithm of this method differentiates between roots with single 

multiplicity and roots with multiplicities bigger than one. This presents a difficulty 

in standardizing the code for general problems.    

The above listed advantages and disadvantages of the eigenvalues problem led us to 

choose a combination of the simplified eigenvalues method (the non-shortened method) 

with resultants. This allows reducing the number of multiplication tables required and 
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does not introduce all the disadvantages of the shortened method, see [Simaan and 

Shoham, 2002-b and 2002-c].  

2.9 Conclusion 

In this chapter we introduced the method of multiplication table eigenvalues (SM 

method) for solving polynomial systems. In our works [Simaan and Shoham, 2002-b and 

2002-c] we were interested in answering the following questions regarding the problem of 

stiffness synthesis with a limited set of variable geometry parameters. 

• Given a set of variable geometry parameters, can we characterize the space of 

solvable stiffness synthesis problems? Can we prove that certain problems are not 

solvable using the given set? 

• Once solvability is determined for a given stiffness synthesis problem, can we 

determine the number of solutions? 

• What about symmetries among all solutions? 

All these questions and the size of the polynomial problems associated with the 

stiffness synthesis of the Double planar robot in [Simaan and Shoham, 2002-c] guided 

our decision to select the method of multiplication table eigenvalues for the problem in a 

modification of its simple form, which allows reducing the number of multiplication 

tables to be computed and incorporating the use of resultants without introducing 

extraneous roots.   
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Chapter 3  

3. Findings and Publications  

This chapter presents all publications relevant to this work. The publications are 

included in the format of their publication and each one has its own list of references. 

These contributions describe the advancements of the work in the study of stiffness 

synthesis, stiffness modulation, line-based singularity analysis, and its application to 

stiffness modulation. All these works present our collective view of the subjects 

concerning the design and synthesis of redundant parallel robots and variable geometry 

paprallel robots. 

 

The following is the listing of the publications. They are included in this chapter in the 

order of their chronological publication.  

 

• Simaan, N., and Shoham, M., 2000-b, "Remarks on Hidden Lines in Parallel 

Robots," the 7th International Symposium on Advances in Robot Kinematics (ARK 

2000), Piran-Portoroz, Slovenia, June 26-30♣.  

• Simaan, N., and Shoham, M., 2001, "Singularity Analysis of a Class of Composite 

Serial In-Parallel Robots," IEEE transactions on Robotics and Automation, Vol. 17, 

No. 3, pp. 301-311. 

• Simaan, N., and Shoham M., 2002-a. “Geometric Interpretation of the Derivatives 

of Parallel Robot's Jacobian Matrix with Application to Stiffness Control" accepted 

for publication in ASME Journal of Mechanical Design. 

• Simaan, N., and Shoham M., 2002-b. “Stiffness Synthesis of a Variable Geometry 

Planar Robot,” Advances in Robot Kinematics: Theory and Applications, Lenarčič J. 

and Thomas F. (eds.), Kluwer Academic Publishers, pp. 463-472. 

• Simaan, N., and Shoham M., 2002-c. “Stiffness Synthesis of a Variable Geometry 

Six degrees- of-freedom Parallel Robot,” submitted to Int. J. of Robotics Research. 

                                                 
♣ Conference presentation 
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Abstract 

This paper investigates the properties of the derivatives of the Jacobian matrices of fully-

parallel manipulators with respect to the moving platform’s position/orientation coordinates 

from a geometrical point of view. A special formulation of the Jacobian matrix that simplifies 

the sought derivatives and their geometric interpretation is presented. Similar to the Jacobian 

matrix, its derivatives are proven to represent also a group of lines and the geometrical 

interrelations between these two groups of lines are presented. Finally, the contribution of this 

derivative and its explanation as a group of lines for active stiffness control is presented in a 

case study of a 7-wire robot. 

 

1. Introduction 

Line geometry has been applied by several researchers to the kinematics and statics of 

parallel manipulators (Merlet, 1989; Colling and Long, 1995; Ben Horin, 1997; Simaan, 

1999; Pottman, Peternell, and Ravani, 1999). Line geometry is used because the rows of the 

Jacobian matrix in a linearly actuated fully-parallel manipulator are the Plücker line 

coordinates of the axes of its extensible links (Hunt, Samuel, and McAree, 1991). Hence, 

linear dependence of these lines determines the conditions for instability and singularity of a 

parallel manipulator as Dandurand has shown in the context of stability of spatial grids 

(Dandurand, 1984).  

The present paper analyses the derivatives of the Jacobian matrix with respect to the six 

position variables of the moving platform and seeks their geometrical interpretation. The 

derivative of the Jacobian matrix is important in rigidity analysis (Yi, Freeman, and Tesar 

1989; Kock and Schumacher, 1998), dynamic manipulability analysis (Yoshikawa, 1990), and 

force-controlled compliant motions (Dutré, Bruyninckx, and Schutter, 1997).  
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In contrast to the numerous investigations devoted to the formulation of parallel 

manipulators’ Jacobian matrix e.g., (Cleary and Uebel, 1994; Simaan, Glozman, and Shoham, 

1998; Tsai, 1998), there are only a few studies addressing the formulation of its derivative.  

Dutré, et al., (1997) addressed this problem and obtained a closed form analytic expression of 

the inverse Jacobian matrix derivative with respect to time and with respect to the joint active 

variables. Merlet and Gosselin (1991) formulated the time derivative of the Jacobian of a fully 

manipulator for use in acceleration analysis.  

The present work investigates the geometric interpretation of the derivatives of the direct 

Jacobian matrix with respect to the position/orientation variables of the moving platform, and 

evaluates its contribution to the manipulator’s rigidity. 

Duffy, in (Duffy, 1996) presented the infinitesimal motion and stiffness analysis of a 

planar parallel manipulator and obtained a stiffness matrix of the manipulator with a 

preloaded spring model. He showed that the part of the stiffness matrix that corresponds to the 

preload effect is a product of two matrices having line-coordinates in their columns. To the 

best of the authors’ knowledge, there are no prior studies that formulate the derivative of a 

parallel manipulator’s Jacobian matrix as a separate group of lines – a fact that can be further 

used for rigidity and compliant motion analysis. 

2.0 Jacobian matrix formulation 

Consider a general Stewart-Gough type parallel manipulator 

subject to a wrench Fenv = [fenv
t
 , menv

t]t applied by the 

environment, Fig. 1. Let x&  denote the end effector twist and q&  

the corresponding active joints’ rates.   The commonly used 

expression of the Jacobian matrix is: 

 xJq && = ,  (1) 

which is the inverse of that of serial manipulators’ qJx && = .  

In this paper we use Eq. (1) to map the end effector twist, x& , 

to active joint rates, q& . The Jacobian matrix is also used to relate the required active joints’ 

forces for a desired external wrench Fe = [fe
t , me

t]t to be exerted on the environment  

(Fe = -Fenv). 

 e
t FJ =τ   (2) 

Using the loop closure method (Ma and Angeles, 1992), or the static equilibrium method 

(Cleary and Uebel, 1994; Simaan, Glozman, and Shoham, 1998; Simaan, 1999), along with 

Eqs. (1) and (2), respectively, yields the commonly used formulation of the Jacobian matrix. 

fenv , menv 

Figure 1: Typical Stewart-
Gough 
Manipulator 

P 

W 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×

×
=

66p
w

6

11p
w

1

ˆˆ

ˆˆ

luRl

luRl
J MM  (3) 

where il̂  denotes a unit vector of the ith active prismatic joint pointing from its spherical joint 

at the base to its spherical joint at the moving platform. We denote the platform-attached and 

the base-attached coordinate systems by the letters P and W, respectively (Fig. 1). 

Accordingly, p
w R  is the rotation matrix transforming vectors from P to W, and ui is the 

position vector of the ith spherical joint in P. 

In order to interpret the Jacobian matrix as lines, the following basic definitions of line 

geometry are reviewed. A given sextuplet of numbers [lvx, lvy, lvz, lmx, lmy, lmz] represents a 

line in space only when it belongs to a five-dimensional quadratic manifold called the 

Grassmannian  (Merlet, 1989; Pellegrini, 1997), the Plücker hypersurface (Graustein 1930, 

Sommerville, 1934) or Klein quadric (Pottman, Peternell, and Ravani, 1999; Pellegrini, 1997) 

or in other words it fulfils Eq. (4). 

 lvx lmx + lvy lmy + lvz lmz = 0 (4) 

Observing Eq. (3), it is clear that the rows of the Jacobian are the Plücker ray coordinates of 

lines along the prismatic actuators. This physical interpretation is correct in a coordinate 

system having its origin located at the center of the moving platform. In this representation 

each row of the Jacobian matrix is a function of wRpui and the direction numbers of il̂ , which 

are both functions of the moving platform position. 

 

3. Interpretation of the Jacobian matrix’s lines in the 

stationary versus the moving platform coordinate 

system 

Consider another representation of the Jacobian matrix in 

the form: 

 b
t

b FJ =τ  (5)  

where Fb=[fb
t, mb

t]t represents the wrench exerted by the 

base rather than the moving platform on the environment 

ii l̂τ

ii l̂τ−

fb=fenv 
mb=menv+ p×fenv 

fenv , menv 

p 

2: Static equilibrium 
on base and moving 
platform 

bi 
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(see Fig 2). By using simple statics equations and representing Fb by Fe one obtains: 

 eBFA =τ  (6) 

where: ⎥
⎦

⎤
⎢
⎣

⎡

××
=

66

6

11

1
ˆ

ˆ
ˆ

ˆ

lb
l

lb
lA

L

L
 [ ] ⎥

⎦

⎤
⎢
⎣

⎡
×

=
Ιp
0Ι

B  (7) 

I – 3×3 unit matrix 

bi – position vector of the spherical joint of the ith prismatic actuator at the base in W 

coordinate system. 

[p×] – skew-symmetric matrix representing vector multiplication.  

 [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=×

0pp
p0p

pp0

xy

xz

yz

p  (8) 

Eqs. (5) and (7) yield: ABJ 1t −=  (9)  

Where 1−B  is given by: [ ] ⎥
⎦

⎤
⎢
⎣

⎡
×−

=−

Ιp
0Ι

B 1  (10)  

Contrary to ip
w uR , which is a varying vector in W, the vector bi is constant in W. This 

simplifies the expression of the derivative of Jt. It should be mentioned that the change 

suggested above is not a change of coordinate system from tool to world coordinate system, 

which clearly does not affect the derivation, but it is a change of the point about which the 

moments of the lines are calculated. In this formulation, the lines of A are fixed in W and 

therefore their derivative is easily shown to be lines as will be shown later. 

The physical interpretation of 

multiplying a Plücker line’s coordinates 

by the matrix 1−B  is a translation the line 

while maintaining its direction. Figure 3 

shows a 6–6 Stewart-Gough platform 

manipulator with the lines of the Jacobian 

in W. Another important feature of 1−B  is 

that its determinant is equal to 1, which 

means that the above multiplication does 

not add to the singularities of J.  

-0.15
-0.1

-0.05
0

0.05
0.1

0.15

-0.1

0

0.1
0

0.05

0.1

0.15

0.2

X

Y

Xw 

Yw 

Figure 3: Lines of the Jacobian in W
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4.0 Formulation of the derivative of the Jacobian matrix 

The derivatives of Jt
 with respect to the moving platform’s position variables is obtained 

from Eq. (10) as: 
x
ABA

x
B

x
J

d
d

d
d

d
d 1

1t
−

−

+=  (11) 

The matrices 
x

J
d

d t
, 

x
B
d

d 1−
 , 

x
A

d
d  are three-dimensional 6×6×6 matrices for non-redundant six 

degrees-of-freedom manipulators. The ith plane of these matrices is their derivative with 

respect to the ith position/orientation coordinate, xi, of the moving platform.  

The multiplication in Eq. (11) is performed plane by plane, i.e., for obtaining the derivative 

of Jt with respect to the ith position/orientation variable one should multiply the ith plane of 

x
B
d

d 1−
 with A and multiply B-1 with the ith plane of 

x
A

d
d . 

   The derivative of 1−B  is simple and yields a matrix whose structure is similar to 1−B  so 

the first expression on the right hand side of Eq. (11) yields a matrix whose columns are the 

translated lines of A under the transformation 
x

B
d

d 1−
. If the derivative 

x
A

d
d  yields a matrix 

whose columns are also lines and the translated lines 
x
AB

d
d1−  intersect the lines of A

x
B
d

d 1−
, 

then the derivative of J is also a matrix with lines as its columns. This is true since any linear 

combination of two given intersecting lines spans a flat pencil of lines (Graustein, 1930).   

 

4.1 derivative of the matrix A  

The matrix A in Eq. (8) is composed of the lines along the robot’s prismatic joints. Each 

unit vector along these lines is characterized by its direction cosines αi, βi, and γi:

 [ ] t
iiii )γcos(),βcos(),αcos(ˆ =l   (12) 

The matrix 
x
A

d
d  is a three-dimensional 6×6×6 matrix with the ith plane being the derivative 

of A with respect to the ith position/orientation coordinate of the moving platform, 
ix

A
∂
∂ .  

Since A has the lines li as its columns, we are interested in finding the derivatives of these 

lines.  
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Using Eq. (7) while keeping in mind that the vectors bi are constant one can write:  

 ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=
∂
∂

i

n

i

1

i xxx
llA

L    (13)     

where 
i

j

j

j

i

j

j

j

i

j

j

j

i

j
x
γ

γx
β

βx
α

αx ∂

∂

∂

∂
+

∂

∂

∂

∂
+

∂

∂

∂

∂
=

∂

∂ llll
  (14) 

Define matrices γβα ,, JJJ  such that:   

 
n

m
x
αJ

n,m ∂
∂

=α ,        
n

m
x
βJ

n,m ∂
∂

=β ,         
n

m
γ x

J
n,m ∂

∂
=

γ  (15) 

In order to write Eq. (14) in a matrix form, we define three matrices 
αd

dA , 
βd

dA , and 
γd

dA :  

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=
∂
∂

n

n

1

1
ααα
llA

L  ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=
∂
∂

n

n

1

1
βββ
llA

L  ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=
∂
∂

n

n

1

1
γγγ
llA

L  (16) 

We also define ididid ,, γβα JJJ  as three diagonal matrices having on their main diagonals the 

ith columns of Jα, Jβ, and Jγ respectively.   

Using these definitions one can write Eq. (13) in matrix form as: 

 
iii ddd

ix γβα γβα
JAJAJAA

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂  (17) 

The derivatives of the lines with respect to their variables (keeping in mind that bi is constant) 

are: 

 [ ] [ ][ ]00)sin(,00)sin( iii
i

i αα
α

−×−=
∂
∂ bl  (18) 

 [ ] [ ][ ]0)sin(0,0)sin(0 iii
i

i ββ
β

−×−=
∂
∂ bl  (19) 

 [ ] [ ][ ])sin(00,)sin(00 iii
i

i γγ
γ

−×−=
∂
∂ bl  (20) 

It can be seen that Eqs. (18-20) are also lines that intersect the lines of the matrix A at points 

bi. Since only two independent variables are required to define the direction of a line in 3D 

the following constraint equation exists: 

 1)cos()cos()cos( 2
i

2
i

2
i =++ γβα  (21) 

Differentiating Eq. (21) with respect to xi and solving for 
i

i
x∂
∂γ  yields: 
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i

i

i

i

i

i
xsc

sc
xsc

sc
x

ii

ii

ii

ii

∂
∂−

+
∂
∂−

=
∂
∂ βαγ

γγ

ββ

γγ

αα  (22) 

Where the abbreviations sα and cα stand for sin(α) and cos(α) respectively.  

Substituting Eq. (22) in (14) yields: 

 
j

i

i

ii

i

i

j

i

i

i

i

i

j

i

x

c
sc
s
0

c
sc
s
0

x

c
sc
0
s

c
sc
0
s

x

ii

ii

ii

ii

∂
∂

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−×

−

+
∂
∂

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

×

−

=
∂
∂ βα

γ

ββ

β

γ

ββ

β

γ

αα

α

γ

αα

α

bb

l  (23) 

The first and the second brackets in Eq. (23) are 
i

i
α∂
∂l and 

i

i
β∂
∂l , respectively. Both these 

brackets represent lines according to Eq. (4) and it is easy to see that both are perpendicular to 

li. The expressions 
j

i
x∂
∂α  and 

j

i
x∂
∂β  are scalars. Consequently, the columns of 

ix∂
∂A  in Eq. (13) 

are lines that pass through the spherical joints in the points bi and belong to the flat pencils of 

i

i
α∂
∂l  and 

i

i
β∂
∂l . 

Summarizing this section, we conclude that the lines of the derivative of A are 

perpendicular to the lines of A and intersect them in the points bi, i.e., in the spherical joints at 

the base platform. We use this fact next to show that the derivative of the Jacobian matrix is 

also a group of lines.  

 

4.2 Deriving Jα, Jβ, and Jγ  

Equations (17) and (15) give the expression for the 

derivative of A as a function of three Jacobian matrices 

Jα, Jβ, and Jγ. This section derives the expressions of these 

Jacobians. Figure 4 depicts a fully-parallel robot with six 

independent closed loops. Each loop is governed by the 

loop equation:  iiiip
w ˆq lbuRp +=+  (24) 

li 

wRpui 

ti 

bi 

p 

Figure 4: Kinematic closed loops 
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Taking the time derivative of Eq. (24) yields:  

 iiii
pw

ip
w ˆqˆq llωuRp &&& +=×−  (25) 

where qi represents the length of the ith prismatic joint, p the position of the moving platform 

in W, and wωp
 the angular velocity of the moving platform in W. Rewriting the right-hand side 

of Eq. (25) in terms of the vector of linear/angular velocities of the moving platform, 

( ) ttpwt
⎥⎦
⎤

⎢⎣
⎡= ωpx && , yields: ( )[ ][ ] xMxuRIωuRp &&& iip

wpw
ip

w , ≡×−=×−  (26)  

Expression i
ˆ

i
lq&  in Eq. (25) is expressed in terms of x&  by using the velocity relation xJq && =  

with reference to the ith row of J as Ji, and using Eq. (12) for il̂ :  

 xNx
J
J
J

lq &&& i

63ii

ii

ii

i

)cos(
)cos(
)cos(

ˆ
i

≡
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

×γ
β
α

 (27) 

Substituting back into Eq. (25) yields: [ ] xNM &

&

&

&

ii

ii

ii

ii

i

)sin(
)sin(
)sin(

q −=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

γγ
ββ
αα

 (28) 

Solving Eq. (28) for its unknowns iα& , iβ& , and iγ&  yields: 

[ ] xNM && ⎥
⎦

⎤
⎢
⎣

⎡
−

α
−

=α 1ii
ii

i )sin(q
1 ,   [ ] xNM && ⎥

⎦

⎤
⎢
⎣

⎡
−

β
−

=β 2ii
ii

i )sin(q
1 ,   [ ] xNM && ⎥

⎦

⎤
⎢
⎣

⎡
−

−
= 3ii

ii
i )sin(q

1
γ

γ  (29) 

Where [Mi-Ni]j is the jth row of [Mi-Ni], j = 1, 2, 3. Equation (30) gives the ith rows of Jα , Jβ, 

and Jγ as: 

[ ] [ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

α
−

=α 1ii
ii

i )sin(q
1 NMJ ,  [ ] [ ] ⎥

⎦

⎤
⎢
⎣

⎡
−

β
−

=β 2ii
ii

i )sin(q
1 NMJ ,  [ ] [ ] ⎥

⎦

⎤
⎢
⎣

⎡
−

−
= 3ii

ii
iγ )sin(q

1 NMJ
γ

 (30) 

This completes the formulation of the necessary terms in Eq. (17) and, thus, the derivative of 

A is fully defined and proven to be a matrix whose columns are lines. These lines are 

perpendicular to the lines of A and intersect them at the spherical joints at the base, bi. What 

remains is to show that the sum of the terms in Eq. (11) gives a set of lines. 
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4.3 Intersection of the lines of A
x

B

i

1

d
d −

 and the lines of 
i

1
d
d
x
AB−  

Observing Eq. (11), one concludes that the last three planes of 
dx
dJ , i.e. 

kx∂
∂J  k=4,5,6, are 

the translated lines of 
x
A

d
d  under the transformation B-1.  

This can be written as  
i

1

i

t

x
AB

x
J

∂
∂

=
∂
∂ −                         i=4,5,6. (31) 

It remains to prove that the 
ix∂

∂J  for i = 1, 2, 3 represent lines. In order to prove this, we must 

prove that the lines of A
x

B

i

1

∂
∂ −

intersect the lines of 
i

1
x
AB

∂
∂− . 

The following proof relies on the condition of intersection between two given lines, l = [l1, 

l2, l3, l4, l5, l6]t and m = [m1, m2, m3, m4, m5, m6]t. This condition is given in Eq. (33) and has 

the interpretation of the moment of a force acting along line l about line m (Hunt, 1978).  

 l1m4 + l2m5 + l3m6 + l4m1 + l5m2 + l6m1 = 0 (32) 

This is proven symbolically using Maple® (a symbolic manipulation program) and also 

verified numerically with a numerical and a graphical simulation using Matlab®. 

The ith column of A and the ith row of J are given by Eq. (33). The ith rows of Jα, Jβ, and Jγ 

are given by Eq. (34) in the appendix. 

4.3.1 Formulation of A
x

B
d

d 1−
 

The derivatives of B-1 are simple and can be written as: 

 [ ]( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂
×∂=

∂
∂ −

0p
00B

ii

1

xx
 (35) 

The last three derivatives of [p×] with respect to the orientation angles of the moving platform 

are three null matrices.  

Ji =

Ai = 
(33)
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Let T1 be the three dimensional matrix A
x

B
d

d 1−
 and T1k be the kth plane of this matrix, k 

= 1, ..., 6. The first three planes of T1 are given by: 

The last three planes of A
x

B
d

d 1−
, i.e. T14 T15 and T16, are 6×6 null matrices. The 

superscript, i, indicates that Eq. (36) gives the expressions for the ith column of A
x

B
d

d 1−
, i = 

1, ..., 6. The special form of T11, T12, and T13 shows that the lines of A
x

B
d

d 1−
are lines at 

infinity since the first three Plücker coordinates are zero (Hunt, 1978). 

  

4.3.2 Formulating the expressions of 
i

1

d
d
x
AB−  

According to Eqs. (17) and (10) we obtain the following expressions for the ith column of 

i

1
x
AB

∂
∂− . Let T2 be the three dimensional matrix 

x
AB

d
d1− . We refer to the kth plane of this 

matrix, 
k

1
x
AB

∂
∂− , by the abbreviation T2k where k = 1, ..., 6. The expressions of T21 through 

T26 are given in the appendix.  

By substituting the expressions of the ith columns of T1k and T2k, k, i = 1, ..., 6 in Eq. 

(32) one can see that Eq. (32) is fulfilled. This means that the lines of T1 and the lines of T2 

intersect each other. This completes the proof that the derivatives of Jt with respect to position 

variables are groups of lines. In total, we obtained 36 lines divided to six line-sextuplets with 

each line-sextuplet representing the derivative of Jt with respect to one position/orientation 

variable of the moving platform. 

(36) 

[ ] t
ii

i )cos()cos(0000 βγ −=T11  

[ ] t
ii

i )cos(0)cos(000 αγ−=T12  

[ ] t
ii

i 0)cos()cos(000 αβ −=T13
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 4.4 Simulation results 

Numerical and graphical 

simulations are given below 

in order to visualize the 

results. Figure 5 shows the 

lines of the Jacobian matrix 

with arrows indicating the 

direction of the internal forces 

of the linear actuators. The 

dotted lines in Fig. 5 are the 

lines of the derivative of Jt 

with respect to the x 

coordinate of the moving 

platform.  

Numerical example: 

The following are numerical results of a simulation of the Stewart-Gough 6–6 platform with a 

moving platform and a base platform having radii of 0.05 and 0.09 m, respectively. The 

moving platform is positioned at p = [-0.1   -0.02   0.16]t and rotated 30 degrees about the axis 

[1, 1, 1] relative to the Cartesian coordinate system in Fig. 5.  The inverse Jacobian matrix and 

it derivatives with respect to x, and θy, are given as example:  

-0.5742   -0.6348   -0.2662   -0.1886   -0.6702   -0.5792 
 -0.3223   -0.2715   -0.0610   -0.3012    0.0799    0.3001 
  0.7526    0.7234    0.9620    0.9347    0.7379    0.7579 
  0.0154    0.0322    0.0245   -0.0441   -0.0349    0.0109 
 -0.0269    0.0070    0.0317    0.0196    0.0107   -0.0270 
  0.0002    0.0309    0.0088   -0.0026   -0.0328    0.0190 

=tJ

3.3431    2.4014    4.9488    5.8132    2.7368    3.4710 
-0.9232   -0.6932   -0.0866   -0.3424    0.2661    0.9080 
 2.1555    1.8473    1.3640    1.0626    2.4570    2.2932 
0.0440    0.0823    0.0348   -0.0501   -0.1161    0.0330 
-0.1226    0.0976    0.1547   -0.0075   -0.0213   -0.1594 
-0.1208   -0.0703   -0.1163    0.2719    0.1316    0.0131 

( )
=

∂
∂

x

tJ

-  0.1226    0.0976    0.1547   -0.0075   -0.0213   -0.1594 
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Figure 5: The lines of the Jacobian and the lines of its 
derivative with respect to x coordinate.  
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It is easy to see, using Eqs. (4) and (32), that the columns of Jt
 and its derivatives intersect 

each other and that the columns of the derivatives of Jt are a group of lines.  

Next, the derivative matrix and its lines are connected directly to the stiffness of the robot 

and are shown to influence the stiffness directions of the robot. 

  

5 Stiffness control of redundant robots and the derivative of the Jacobian 

Stiffness analysis of parallel manipulators plays a key role in determining the degree of 

adequacy of a given robot for performing a specific task that involves interaction with the 

environment. This section relates the Jacobian derivative with the active stiffness and the 

problem of stiffness modulation. The interpretation of this derivative as lines is shown to be 

helpful for determining the extent of stiffness modulation capabilities. 

 

5.1 Active stiffness and the derivative of the Jacobian 

 The stiffness mapping relates the change of the wrench that the robot applies on its 

environment with the twist deflection of the moving platform. Denoting the i’th row of Jt by 

i
tJ , one can write the elements of the stiffness matrix, K, as in Eq. (37). 
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t

j

i
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j

i
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j

i
ij xxxx

f
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∂
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+
∂
∂

=
∂

∂
=

∂
∂

=
τJτJτJ  (37) 

Unlike the definition in (Gosselin, 1990), this definition includes the stiffness effect of 

introduced ‘preload’ (bias forces stemming from weight effects for example) in non-

redundant manipulators or antagonistic actuation in redundant robots. This effect is expressed 

by the term τJ

j

i
t

x∂
∂ , which is referred to as the ‘active stiffness’ or ‘antagonistic stiffness’ (Yi 

and Freeman, 1993). The second term in Eq. (37) is referred to as the ‘passive stiffness’ of the 

manipulator (Yi, et. al., 1992; Kock and Schumacher, 1998). Treating the actuators as springs 

with a diagonal stiffness matrix Kd in joint space results in: 

 j
di

t

m j

m

m
i

t

j
i

t

x
q

qx
JKJτJτJ =

∂
∂

∂
∂

=
∂
∂ ∑  (38) 

Stiffness modulation is possible when actuation redundancy is introduced to the system, 

thus, allowing the use of antagonistic actuation (Cho, et. al., 1989; Yi and Freeman, 1992; 

kock and Schumacher, 1998; O’brien and Wen, 1999). In this case, the actuation forces are 

divided into τp and τh, where τp denotes the actuation forces balancing the external load and τh 

denotes the internal actuation forces (antagonistic actuation forces). Antagonistic actuation 
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forces do not affect the net force applied by the moving platform on its environment since 

they belong to the null space of the Jacobian matrix, Eq. (39).  

 hp τ+τ=τ  ep
t FJ =τ  0J =τh

t  (39) 

Equation (38) can be rewritten in a matrix form as in Eq. (39), where the matrix, 
x

t

∂
∂J , is a 

three-dimensional matrix, as in Eq. (11), with the dimensions of 6×n×6 for n actuators (n>6). 

The multiplication in Eq. (39) should be performed according to Eq. (37), i.e., in order to 

obtain the active stiffness element, K1ij, one should take the scalar product of the i’th row of 

the j’th plane in the three-dimensional matrix, 
x

t

∂
∂J , with τ.   

 K2K1JKJJK d +≡+τ
∂
∂

= t
t

x
 τ

∂
∂

≡
x

tJK1  JKJK2 d
t≡  (40)  

 

5.2 stiffness directions and the derivative of the Jacobian 

Equation (37) can be written in a matrix form as: 

 6
6

5
5

4
4

3
3

2
2

1
1 xxxxxx ΔΔΔΔΔΔΔΔ KKKKKKxKFe +++++==  (41)  

where Ki denotes the i’th column of the stiffness matrix, K, ΔFe the change in the reaction of 

the moving platform on its environment for a positional perturbation Δx. 

Equation (41) shows that Ki
, the i’th column of K, is the stiffness in the xi direction since it 

determines the net change in the moving platform’s reaction, ΔFe, for a perturbation in the xi 

direction. Larger norms of this column cause higher reaction force from the robot.  Since Ki is 

determined by the product of the i’th plane of 
x

t

∂
∂J  with τ, then the linear dependence of the 

lines of this plane causes its singularity. If the actuation vector, τ, is in the direction of the 

axis associated with the larger singular value of this plane, then the norm of Ki is maximized 

and the robot is stiffer in this direction.       

Next, the importance of the active stiffness, K1, relative to the passive stiffness matrix, K2 

is evaluated.  

6 Simulation of a wire-driven robot for active stiffness evaluation 

To evaluate the effect of active stiffness we performed a static simulation of the wire-

driven robot shown in Fig. 6 as a case study. This robot has seven wires and resembles the 

Falcon robot presented by Kawamura (Kawamura, et. al., 1995). The central rod is 
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manipulated in space by pulleys that change 

the lengths of the wires. The robot has the 

minimal number of wires for stable force 

closure (Kawamura, et. al., 1996); hence, we 

can only introduce internal forces to the wires 

in order to maintain stable manipulation. The 

problem of finding the necessary internal 

forces for maintaining force closure was solved using the method from grasp theory presented 

in (Mason and Salisbury, 1986), but adapted to maintain pulling forces instead of pushing 

forces.  

For the simulation, we used the following dimensions and materials: The square-shaped 

base frame has a base of 2.8 meters long and the central rod is 2 meters long. The cables are 

made from Nylon 66 with 30% Glass-fiber 

reinforcement and have a 1 [mm2] cross-

sectional area. These cables have high 

yield strength of Sy=172 [Mpa] and a 

Tensile Modulus, E, of 9.5 [Gpa] with low 

elongation at break of about 3% (Marks’, 

1996).      

The Internal forces for maintaining 

stable force-closure were kept to the 

minimum for minimal energy consumption 

by the system. The load applied by the 

robot on its environment is [50, 50, 50 N, 

2.5, 2.5, 2.5 Nm] and the end effector was 

moved on a constant z plane of z=-0.5 [m] 

with a constant orientation of 10 degrees 

rotation about the [1, 1, 0] axis. The 

simulation uses the formulation of the 

Jacobian matrix and its derivative as in 

section 4. The stiffness matrix in joint 

space, Kd, was computed with the linear 

model of wire stiffness according to 

e 7: Condition number of the 
Jacobian and the maximal tension 
ratio in the cables 

Max tension force in the cables 
 in percents of the maximal allowable force 

Jacobian condition number 

Central rod

End Effector

Wire 
Base Frame

Figure 6: Falcon-like wire-driven robot as a 
case-study 
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i
iid L

EAK =  i=1..7 where Li is the length of the i’th cable found from the inverse kinematics 

solution. Figure 7, 8, and 9 depict the results for the simulation. The triangular workspace 

agrees with the triangular shape in (Kawamura, et. al., 1995). The workspace is limited by the 

maximal force limit set for 80% of the wire yield strength. The results in Fig. 7 show that the 

Jacobian matrix is not singular within the workspace.  The six figures of the condition 

numbers of the Jacobian-derivative planes, Fig. 8, shows that planes 4, 5, 6, associated with 

the derivatives with respect to the orientation variables, have singular points (high condition 

numbers) in the workspace.  

Figure 9 shows the ratio of the norms 
i2

i2

K2

K1
 for i=1..6. The maximal value of this ratio is 

about 5% for the sixth plane, which means that the effect of active stiffness can be non-

negilable especially when the plane associated with the i’th column is singular. The active 

stiffness is prominent when the internal forces are bigger and the possibility of introducing 

redundancy into the system allows changing τ in order to maximize the effect of active 

stiffness. However, one should remember that there is a limit on the magnitude of τ stemming 

from strength limits of the wires.   
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Figure 8: Condition numbers of the Jacobian derivatives with respect to the moving 
platform’s position/orientation variables. 
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Figure 9:  Norm-ratio of the six columns of K1 and K2 in percents. 
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Conclusions 

It is well known that the Jacobian matrix of robot manipulators is composed of Plücker 

coordinates of lines. In particular, in a linearly actuated fully-parallel manipulator the lines are 

aligned with the extensible links. This paper derived analytically the expression of the 

derivatives of the Jacobian matrix of a six-degrees-of-freedom fully-parallel manipulator. 

These derivatives were taken with respect to the moving platform’s position/orientation 

variables rather than time or active joints’ variables. We proved that these derivatives are also 

composed of lines. In total, we obtained 36 lines constituted from six line-sextuplets with 

each line-sextuplet representing the derivative of Jt with respect to one position/orientation 

variable of the moving platform. The authors believe that interpreting geometrically the 

Jacobian matrix derivative as being also lines and their relation with the original Jacobian 

matrix lines, will facilitate the geometrical interpretation of rigidity, stability and dynamics 

that requires expression of the derivative of the Jacobian matrix. The importance of the 

Jacobian derivative for active stiffness control was shown with a case study of a wire-driven 

parallel robot. The simulation results show that the singularity of one of the planes of the 

Jacobian matrix affects the stiffness directions of the Robot. Further work is being done to 

investigate the extent of the effect of the derivative of the Jacobian on the rigidity of 

redundant robots having low rigidity constants. 

Appendix 

The following equations give the explicit expression of the ith column of T2k, k,i=1, ..., 6.  
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[ ] =iαJ

[ ] =iβJ

[ ] =iγJ

(34) 

The Jacobians ith rows of the Jacobians αJ , βJ , and γJ are given by Eq. (34): 
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Singularity Analysis of a Class of Composite Serial
In-Parallel Robots

Nabil Simaan and Moshe Shoham, Member, IEEE

Abstract—This paper presents the singularity analysis of a
family of 14 composite serial in-parallel six degree-of-freedom
robots, having a common parallel submechanism. The singular
configurations of this class of robots are obtained by applying line
geometry methods to a single, augmented Jacobian matrix whose
rows are Plücker coordinates of the lines governing the submecha-
nism motion. It is shown that this family of robots possesses three
general parallel singularities that are attributed to the general
complex singularity. The results were verified experimentally
on a prototype of a composite serial in-parallel robot that was
synthesized and constructed for use in medical applications.

Index Terms—Composite serial in-parallel robots, geometric
approach, line geometry, parallel robots, RSPR robot, singularity
analysis.

I. INTRODUCTION

NUMEROUS researchers, e.g., [1]–[9], have investigated
singularity conditions of parallel robots since complete

knowledge of the singular regions within their workspace is es-
sential for design and control purposes. Singularity analysis is
based on the instantaneous kinematics of the manipulator, which
is described by

(1)

where for degrees-of-freedom (DOF) manipulator,and
are an and an matrices referred to in this paper as
the instantaneous direct and inverse kinematics (IDK, IIK) ma-
trices, respectively. These matrices were used by Gosselin and
Angeles [2] for singularity analysis and were respectively called
the direct kinematics and inverse kinematics matrices in [10], or
direct kinematics and inverse kinematics Jacobians in [11].is
the moving platform twist, and is the active joints’ speeds.
For fully parallel robots, the IIK matrix, , is a diagonal one
[4]. Hence, the common definition for the Jacobian matrix of
parallel robots takes the form and the IIK problem
is defined by .

Based on rank-deficiency of the matricesand , Gosselin
and Angeles [2] divided the singular configurations into three
cases: the first, when only is singular; the second when only

is singular; and the third when both and are singular.
In this paper, we adopt the terminology in [10] and refer to the
singular configurations associated with singularities of the in-
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stantaneous direct kinematics matrixand the instantaneous
inverse kinematics matrix asparallel andserial singularities,
respectively.

Hunt et al. [3] discussed the singular configurations in se-
rial, parallel, and composite serial and in-parallel robots, by
using motion and action screws. They showed that a work-piece
grasped by a serial kinematic chain robot can only lose DOF (or
gain constraint) and a work-piece grasped by fully in-parallel
manipulator can only gain DOF (or lose constraint). A com-
posite serial in-parallel manipulator can either lose or gain DOF.

In a singular configuration, the relation between the input
variables’ velocities (active joints’ speeds) and the output vari-
ables’ velocities (linear/angular velocities of the end effector) is
not fully defined. For serial robots with six DOF, a configuration
is singular when the instantaneous input–output map is
singular. For parallel robots with , there exists a
matrix that governs the static equilibrium of the moving
platform. This matrix relates the internal forces/moments,,
acting on the moving platform with the wrench applied by
the moving platform on its environment

(2)

The internal forces acting on the moving platform are
divided into two groups. The first group represents the active
joints’ intensities . The second group
represents the intensities of the passive forces. These passive
forces stem from the kinematic constraints imposed by the joint
dyads of the links connected to the moving platform. The first

columns of are the action screws associated with the ac-
tive joints. The remaining columns are the action screws
associated with the constraints of the passive joints.

Singularity of uncertainty configuration occurs when the
column space of has a dimension less than six. If has
a rank of , then the manipulator cannot resist external
wrenches that belong to a -dimensional space and the
manipulator is in uncertainty configuration [3], [8].

The derivation of the Jacobian matrix from is immediate
by writing the expression for the work rate of the forces/mo-
ments acting on the moving platform. The work done by the con-
straints is zero. This leads to the result that the firstcolumns of

are the rows of the Jacobian matrix. This result empha-
sizes the importance of the matrix for complete singularity
analysis. For robots with , the Jacobian matrix by itself is
not sufficient to determine all conditions for singularity.

Since the IDK matrix is composed of line coordinates, the
analysis of parallel singularities is reduced to determining the
geometric conditions for linear dependence between these lines,
[1], [13].

Dandurand [14] addressed the problem of rigidity conditions
of compound spatial grids by using line geometry. Since the Ja-

1042-296X/01$10.00 © 2001 IEEE
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TABLE I
A FAMILY OF 14 COMPOSITESERIAL IN-PARALLEL ROBOTS

cobian matrix of fully-parallel Stewart–Gough robots consists
of Plücker line coordinates of the lines along the prismatic ac-
tuators, [2], the singularity analysis of these robots is based on
finding geometrical conditions for linear dependence between
these lines. Following Dandurand’s observations, a group of re-
searchers, [1], [7], [15], [16] investigated the parallel singulari-
ties of parallel robots using line geometry. Notash [8] used line
geometry to investigate redundant three-branch platform robots
and their preferable actuation distribution in order to eliminate
singularities. Hao and McCarthy [13] discussed the conditions
of joint arrangements that ensure line-based singularities in plat-
form robots. They showed that in order to have line-based sin-
gularities, the kinematic chains should not transmit torque to the
moving platform. Even though the family of robots investigated
in the present work does not fulfill this condition, nevertheless a
special Jacobian formulation allows maintaining the line-based
expression of the Jacobian matrix of the common parallel sub-
mechanism (defined in Section III) of this class of robots.

Unlike fully parallel robots that have a diagonal nonsingular
IIK matrix, (for a nonzero length of the linear actuators), com-
posite serial in-parallel robots require both matricesand to
be examined for singularity. Singularity of matrixindicates a
loss of DOF and singularity of matrix indicates gain in DOF
[2].

The structure of a family of composite serial in-parallel robots
is presented next (Sections II and III) and its parallel singulari-
ties are derived based on line geometry (Sections V and VI).

II. A FAMILY OF COMPOSITESERIAL IN-PARALLEL ROBOTS

A class of 14 composite serial in-parallel robots is listed in
Table I. Each robot is represented by a code depicting the struc-
ture of its kinematic chains from the base platform to the moving
platform. The letter R stands for a revolute joint, S for spherical,
P for prismatic, U for universal (Hooke’s), C for cylindrical, and
H for helical joint.

All the robots of this family have three similar kinematic
chains connected to a moving platform by revolute joints. The
last links in the kinematic chains, , are passive
binary spherical-revolute (S-R) dyads. Table I depicts all the
14 possible combinations of joints constituting connectivity that
equals six between the base and the moving platform. Although
some investigations use special distribution of actuators [17] and
passive sliders [18]–[20] to simplify the direct kinematics solu-
tion or to minimize singularities via redundancy [8], we limit
our discussion to symmetrical nonredundant robots with three
identical kinematic chains and symmetrical distribution of ac-
tuators.

III. L INE-BASED FORMULATION OF THE JACOBIAN

The formulation of the Jacobian matrix based on static
analysis is described next. The same formulation can also be

Fig. 1. Force transmission in the tripod mechanism.

achieved by writing loop-closure equations and taking their
derivative with respect to time.

All the robots in Table I have the same system of constraint
wrenches acting on the moving platform. This stems from the
fact that all these robots have a common tripod mechanism com-
posed of a moving platform and three passive S-R joint dyads
(Fig. 1).

Nomenclature
Index referring to ’th kinematic chain, .
’th link of the tripod mechanism.

Moving platform’s center point.
Unit vector along the’th revolute joint.
Unit vector along link (Fig. 1).
Unit vector parallel to and passing through the
’th spherical joint center.

Magnitude of force acting on , along .
, Force vectors along links and along , respec-

tively.
Six-dimensional external wrench applied by the
moving platform on its environment. ,
where and are the resultant external force/mo-
ment, respectively.
Rotation matrix from platform-attached coordinate
system, P, to world coordinate system, W.
A vector from to a point on (written in plat-
form-attached coordinate system).

Link is connected to the moving platform by a passive
revolute joint and to link by a passive spherical joint. Con-
sequently, it is capable of exerting on the platform a static force
in a direction spanned by the flat pencil of and , and a mo-
ment in the direction of (Fig. 1). Link can exert on
link , through the center of the spherical joint, a static force in
a direction defined by the flat pencil of and . Therefore,
we decompose the force transmitted from linkto into two
components—one of magnitude and in the direction of
and the second of magnitude and in the direction of .

Equations (3) and (4) result from static equilibrium of forces
and moments about the center point

(3)

(4)
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Rewriting (3) and (4) in a matrix form yields

(5)
For parallel robots, the expression connecting the associated

active joints’ intensities with is given by .
Equating this expression with (5) yields the Jacobian of the
tripod mechanism .

(6)

The forces at the spherical joints are given by

(7)

The rows of the Jacobian matrix of the tripodare the Plücker
line coordinates of the lines along the links and the lines
(Fig. 1). These vectors can be found by the inverse kinematics
of the tripod. Actually, the exact values of and are not
needed since, as will be seen in Section VI, the singularity anal-
ysis is purely based on line geometry. In this analysis, the aim
is to find the types of parallel singularities rather than the actual
joint values in these singular configurations.

The group of robots in Table I shares the same tripod mecha-
nism. The complete Jacobian matrix of this group is easily ob-
tained by taking into account the force equilibrium at the spher-
ical joints. By treating the remainder of the kinematic chains as
serial chains, it is possible to obtain a relation between the forces

and and the active joints’ forces. The relation between
the actuators’ force intensities and the forces at the spherical
joints is given by

(8)

where denotes the Jacobian matrix of the serial chains.
Substituting the expression for the forces at the spherical

joints, one obtains

(9)

hence, the Jacobian of the complete manipulator is
(10)

Comparing (10) with (where and are the IIK
and IDK matrices, respectively) shows that the IDK matrix,,
and the IIK matrix, , are the Jacobian matrix of the tripod
and the Jacobian matrix of the serial chains, respectively.
Every manipulator of this class of manipulators has the same

matrix, but a different matrix. For example, the Jacobian
matrices of the RSPR and the USR robots (Table I) were formu-
lated in [24] using this method.

Based on the observation that(the IDK matrix) is associ-
ated with the tripod mechanism, we will refer to it as the parallel
submechanism since it leads toparallel singularitiescharacter-
ized by the addition of DOF to the moving platform (loss of
constraint).

The formulation of presents a matrix composed of lines
of the parallel submechanism rather than screws of the whole
robot as is derived, for example, in [21]. The result obtained in
[22] presents a formulation of the Jacobian matrix of the PPSR
(Table I) manipulator in [23] based on the use of reciprocal
screws. The results of the derivation presented here accede with

Fig. 2. RSPR robot.

those of [22], but due to formulation of the matrixit is pos-
sible to apply line geometry to analyze the parallel singularities.

IV. THE RSPR ROBOT

The RSPR robot and another robot of this family, theUSR
robot, were suggested by the authors as possible solutions for
a medical robotic assistant for laparoscopic and knee surgery
[24]–[28] (bold letters indicate the active joints). These robots
were compared in terms of their workspace, dimensions, and
required actuator forces, and the RSPR manipulator was chosen
and constructed [41]. The prototype of the RSPR manipulator
is shown in Fig. 2.

This manipulator consists of three identical kinematic chains
connecting the base and the moving platform. Each chain con-
tains a lower link rotating around a pivot perpendicular to the
base platform and offset-placed from the center of the base. At
the other end of the lower link, a prismatic actuator is attached
by a spherical joint. The upper end of the prismatic actuator
is connected to the moving platform by a revolute joint. The
axes of the revolute joints constitute an equilateral triangle in
the plane of the moving platform (Fig. 2).

This robot is distinguished by the location of the lower links
revolute axes being placed offset from the center of the base
platform as compared to the RRPS robot in [29].

V. SINGULARITY ANALYSIS METHODOLOGY

Based on the Jacobian matrix formulation of Section III, the
singularity analysis for every robot in Table I is divided into two
phases. The first phase deals with parallel singularities stem-
ming from rank deficiency of the IDK matrix, (referred to
as in Section III). The second phase deals with serial singu-
larities of the IIK matrix, . In this paper, we present only the
analysis of the parallel singularities, which is common to the 14
robots of Table I. In [27], the serial singularities of the RSPR
and the USR robots were derived based on the determinants of
their IIK matrices [24].

Since the IDK matrix of a typical manipulator of this class
is composed of the Plücker line coordinates of the parallel sub-
mechanism, we analyze its singularities using line geometry
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Fig. 3. Inverted tripod with variable moving platform laterals as an equivalent
linkage to the TSSM [35].

technique. Readers interested in a background on line geom-
etry should refer to [30]–[33], [12], and [34], where the last
two books present the subject with its relevance to kinematics
of mechanisms.

An inversion of the tripod of Fig. 1 was used in [35] and [36]
as an equivalent mechanism of the Stewart–Gough 3-3 and 3-6
robots for solution of the direct kinematics and singularities [36]
(Fig. 3). This suggests that the parallel singularities of the tripod
mechanism are categorically the same as the Stewart–Gough 3-6
and 3-3 robots since, in both cases, the basic problem from line-
geometry point of view is finding the possible linear dependen-
cies between the lines of threearchitectural flat pencils(defined
in next section) maneuvering in space. However, the equiva-
lence is not direct since in Fig. 3 the equivalent mechanism of
the triangular symmetric simplified manipulator (TSSM) [35]
is an inversion of the tripod of Fig. 1 with variable laterals of
its triangular platform. Thus, direct geometric interpretation of
the singularities of the tripod of Fig. 1 is not possible by con-
structing its equivalent TSSM and analyzing it for singularity.
The analysis given here shows how, by using geometric assump-
tions stemming from the architecture, one finds the direct geo-
metric interpretation of the singularities with application to the
working space of the moving platform. Indeed, our results ac-
cede with [1], [36], and [37], but we show that the interpretations
of Fichter’s [38] and Hunt’s [39] singularities are different in
our case, which has a direct impact on the motion capabilities
of the moving platform.

Next, the analysis of parallel singularities begins from the
general complex and works out all the cases up to flat pencil
singularities. This way we economize the analysis since we ig-
nore the special cases as, for example, flat pencil singularities
that are special cases of bundle singularities.

VI. SINGULARITY ANALYSIS OF THE PARALLEL

SUBMECHANISM

Fig. 4 presents a geometric interpretation of the Jaco-
bian matrix of the parallel submechanism (tripod) of the
class of robots shown in Table I. We will use the symbols

to refer to row number in the tripod’s
Jacobian matrix , which are also the Plücker coordinates of
lines , , , , , and of Fig. 4. We employ line geometry
to find all the configurations in which the rows of, i.e., lines

, , , , , and are linearly dependent.
First the relevant nomenclature for this section and a list of

useful geometric relations, upon which all the following geo-
metrical proofs are based, is presented.

Fig. 4. Geometry of~J and its associated linesl . . . l .

Nomenclature
The following symbols facilitate the formulation of the ge-

ometrical proofs in this section. All the symbols are explained
herein and shown in Fig. 4.

Center points of the revolute joints on the moving
platform. .
Vectors of the revolute joints’ axes through.
Center points of the spherical joints, .
Normal to the moving platform plane through.
Plane defined by and point , .
Plane defined by points , .
Plane defined by points , . This plane is
hereafter referred to as the tripod base plane.
Flat pencil generated by lines and .

, .
Flat pencil generated by linesand that belongs
to category of flat pencils . .

, Plane and center point of flat pencil .

Line defined by points and .
Group of the lines of , .
Group of lines of excluding lines and ,

Lines and planes are regarded as sets of points. Therefore, the
symbols and have the same interpretation as for groups of
points. Accordingly, the expression indicates the intersec-
tion of two lines, and , in a common point, or the intersection
of two planes, and , along a common intersection line, or a
line piercing a plane . The expression indicates that a
point, , is on the line/plane, ; or that a line, , lies in the plane

.
Geometric Relations:The tripod mechanism of Fig. 4 fea-

tures the following architectural geometric relations:

Points are not collinear.

Corollaries: The following corollaries, Cr1 Cr3, result
from geometric relations A1 A5. Each corollary is followed
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Fig. 5. Flat pencil groups.

by brackets enclosing a list of geometric relations used to prove
it.

Categories of Flat Pencils:We use flat pencils as a basic
tool in deriving the singular configurations of the structure. It
is therefore useful to enumerate all possible flat pencils.

A group of lines in space can form up to flat
pencils. In our case, where , all possible 15 flat pencils of
the tripod are grouped into four groups T, R, S, and F (Fig. 5),
where each two-digit number represents a flat pencil formed
by lines and . Due to the similarity of the kinematic chains
of the tripod, it is sufficient to analyze the singularity of only
one member in each group.

We distinguish betweenarchitectural flat pencilsand tem-
porary flat pencilswith temporary flat pencils being configu-
ration-dependent, i.e., forming under certain conditions on the
configuration variables and architectural flat pencil being con-
figuration independent. Note that only category F includes ar-
chitectural flat pencils.

Next, we adopt the code of Dandurand [14] to indicate the
different line varieties. For each rank line variety,
we test all the cases in which more thanlines belong to this
line group. This is tantamount to finding all the cases in which

. For example, the term “bundle singularities,”
includes all the cases in which more than three lines, out of the
six lines of , belong to one bundle. This includes singularities
with rank .

A. Linear Complex Singularities

A group of six lines degenerates from the space variety to
the linear complex variety in two ways. If all the six lines of
the group belong to a general spatial linear pentagon, then sin-
gularity of the general complex occurs [30]. If all the six lines
intersect one common line, then a singularity of the special com-
plex occurs.

1) Six Lines in a General Complex (5A):Define lines , ,
and as the intersection lines of the flat pencils , ,
with the base plane B0, respectively (Fig. 6).

Next, we prove that all six lines of belong to
one general complex if and only if lines , , and intersect
in one point (copunctal). The proof is based on the following

Fig. 6. The lines of� and linesl , l , andl .

theorem [32].A general linear complex has a pencil of lines in
every plane and a pencil of lines through every point in space.

This theorem means that, for a given general complex, every
plane in space is associated with a flat pencil that belongs to
it. Accordingly, the tripod base plane, B0, is associated with a
flat pencil of lines of the general complex. Any line in B0 that
does not belong to this flat pencil does not belong to the general
complex and vise versa; any line belonging to this flat pencil
belongs to the general complex.

There are six line quintuplets in . Each one
includes two architectural flat pencils. We consider the general
complex of lines generated by the two architectural flat pen-
cils and and either line or line as a representative
case to all other cases.

The following proof shows that all the six lines of
belong to one general complex, if and

only if lines , , and intersect in one point (copunctal).
Proof:

1) Lines , , and fulfill , , .
2) , , and linearly depend on the flat pencils generated

by the line pairs , , .
3) Lines and fulfill , and ,

.
4) and define in B0 a flat pencil of lines, , of .
5) , and based on the above theorem, if and

only if .
6) If line and , then and vise-versa; if

and then The condition for this
singularity is

Singular configuration

Note that this is Fichter’s [38] singularity (5a), but in our
case with the inversion of the equivalent mechanism, rotating
the moving platform 90 about the vertical axis will not result
in singular configuration.

2) Six Lines in a Special Linear Complex (5B):Since in-
cludes three permanent flat pencils of type F, all its lines inter-
sect a common line if this line is the line of intersection of planes

, , and or if points , , and are collinear.
Since planes , , and do not have a common in-
tersection line the only possible singular configuration occurs
when points , , and are collinear (Fig. 7).

Singular configuration

This singularity is categorically the same (5b) as Hunt’s [39]
singularity, but co-planarity of one of the links with the moving
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Fig. 7. S2 singularity.

platform does not cause it as is the case with the Stewart–Gough
3-3 and 3-6 robots. Therefore, robots with such tripod may have
better tilting capabilities than the Stewart–Gough 3-3 and 3-6
robots.

We will henceforth exclude the possibility for collinearity of
, , and since we already proved that this leads to a sin-

gular configuration.

B. Linear Congruence Singularities

This section presents the singularities of five lines in one
linear congruence.

1) Elliptic Congruence (4A):Four skew lines in space form
three distinct reguli and a fifth line linearly depends on them if it
belongs to one of these reguli. Elliptic congruence singularities
are not possible in our case since there are no four lines in the
same regulus (see the proof in Section VI-C-1).

2) Hyperbolic Congruence (4B):Four lines concurrent with
two other skew lines, and , form a hyperbolic congruence.
Any fifth line concurrent with and linearly depends on
these four lines.

There are six line quintuplets in with two
architectural flat pencils of type F in each quintuplet. Thus, line

is defined by the centers of these flat pencils and lineis the
line of intersection between the two planes of these architectural
flat pencils. Next, we prove that lines or intersect lines
and only when the S1 and S2 singularities are formed.

There are two distinct categories of line quintuplets, G1 and
G2. They are defined as

The quintuplets and are used
as category representing ones for G1 and G2, respectively. We
first exclude the possibility that since this clearly leads
to singular configuration S2.

Proof:

1) , .
2) , ; therefore .
3) Lines and pass through .
4) Let be the piercing point of with B0.
5) Lines and intersect only if they lie in B0.
6) Lines and intersect both lines and only if they

pass through point and lie in the base plane B0.
7) In such a case, lines and are, respectively, defined by

points and and and . Line is defined by point
and . This shows that lines , , and intersect in

one point, , in B0. Fig. 8(a) shows the case when line

Fig. 8. (a) Special cases of S1 singularity:l = l . (b) Special cases of S1
singularity:l = l .

is and Fig. 8(b) shows the case . Both these
cases are special cases of S1.

3) Parabolic Congruence (4C):This case unifies all flat
pencil singularities related with one or more flat pencils of the
parabolic congruence, therefore, it does not add new singular
configurations to the ones that will be discussed in flat pencil
singularities.

4) Degenerate Congruence (4D):The lines dependent on
four generators of a degenerate congruence are the lines of a
plane (3D) and the lines that share the piercing point of the
fourth congruence line with the congruence plane. Since co-pla-
narity of four lines will be investigated in Section VI-C-4 (3D),
we inspect only the case in which two lines pierce the plane de-
fined by the other three lines in a common point. However, if
the considered line triplet is coplanar only when four or more
lines of are coplanar, then degenerate congruence singularity
is marked.

has 20 line triplets. Table II lists all these line triplets and
presents six groups of them, U1 U6. We consider all the
cases in which these line triples are coplanar and two other lines
intersect their plane in a common point.

Case 1: U1 Line Triples:This category includes only one
line triplet, . Next, we prove that this line triplet is
coplanar only when the moving platform lies in the tripod base
plane and that in this case, , and belong to one flat pencil
(Fig. 9).

Proof:

1) Points and define line , and P0, .
2) Points define B0.
3) , .
4) Since then lines , , and lie in B0 and

intersect in the piercing point of with B0. Hence, lines
, , and belong to one flat pencil (Fig. 9).

This singularity is named singular configuration S3.
Singular configuration

We will henceforth exclude the possibility that the moving
platform lies in the tripod base plane since we already showed
that this configuration is singular.

Case 2: U2 Line Triplets:Let be a category-repre-
senting triplet. We assume that lines are coplanar, thus,
lines and define the flat pencil . There are two cases to
be considered, in which, the line pairs and , respec-
tively, intersect in a single point. Lines , , and pierce

in points , , and , respectively. Accordingly, inter-
section of two lines out of , , and with in one point
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TABLE II
ALL 20 LINE-TRIPLESDIVIDED INTO SIX GROUPS

Fig. 9. Singularity of type S3.

is possible only if two spherical joints coincide, i.e., ,
; . This configuration is a special case of S2

(Fig. 7).
Case 3: U3 Line Triples:All the line triplets in this category

include one flat pencil of type F. Let be a category-rep-
resenting line triplet. We assume that the lines of this triplet are
coplanar and we examine the other lines. This examination leads
to a special case of S1 singularity (Fig. 10). In this configuration
lines , , and intersect in one common point in B0.

Proof:

1) Lines and are the intersection lines of and
with P0, respectively.

2) when lines are coplanar.
3) Since lines and are distinct and coplanar, they

define the platform plane P0.
4) For to be fulfilled then both lines and

must belong to both and . Thus, this is
achieved only when .

5) Since and . Thus, the four
lines , , , are coplanar (see Fig. 10).

In this configuration lines , , and intersect in one common
point in B0 resulting in a special case of S1.

Case 4: U4 Line Triples:Let line triplet be a cat-
egory representing one. Using similar arguments as in the pre-
vious case, this line triplet is coplanar only if all its lines lie in
the moving platform plane, P0, i.e., . In this
case line lies in P0 since it is defined by point and

. This is the singular configuration of Fig. 10.
Case 5: U5 Line Triples:This case leads to singular config-

uration S3. Next, we assume that the lines in the category rep-
resenting line triplet are coplanar and we show that
this occurs only if the (S3 singularity in Fig. 9).

Proof:

1) [corollary Cr2] therefore .
2) Point satisfies: , .
3) .

Fig. 10. Special case of S1.

4) Point lies on , i.e., , and .
5) Points and satisfy: , ; hence

and .
6) since , , and belong to .
Case 6: U6 Line Triples:Lines are coplanar if the

moving platform and the tripod base plane are parallel one to
another. Excluding the case , two lines from the group

intersect the tripod base plane in a common point only
if two of the spherical joints coincide. This leads to a special case
of singular configuration S2 in Fig. 7.

Proof:

1) Lines , , pierce the base plane in points, , and
, respectively.

2) [corollary Cr2]. In a singular
configuration two lines out of , , pierce the base
plane in a common point. Therefore, in such singular con-
figuration .

C. Planes Singularities

This section presents the analysis of singularities that belong
to a rank-three system. We inspect all the cases, in which, four
lines belong to the planes variety.

1) Regulus Singularities (3A):The group of lines includes
three architectural flat pencils , , and Consequently,
the maximal number of skew lines inis three. We recall that
all lines in the same regulus are skew and intersect all the lines
in the conjugate regulus [30]. Therefore, if lines, , form
a regulus, then lines , , and cannot belong to this regulus
because line intersects , intersects , and intersects .
Consequently, no group of more than three lines can belong to
the same regulus and singularity of type (3A) is not possible.

2) Union Singularities (3B):The lines that depend on the
generators of a union are all the lines that depend on any of its
two flat pencils. Therefore, this case does not add singularities
to the ones that stem from flat pencil singularities.

3) Bundle Singularities (3C):A bundle that is singular in-
cludes more than three lines intersecting in a common point.
In order to find all singular bundles in, all the possible line
quadruplets are registered and divided into four line quadruplet
groups.

Table III lists all the 15 line quadruplets. A singular bundle
forms if all the lines of one of these line quadruplets are
copunctal. This table presents four different quadruplet groups,
namely, groups Q1, Q2, Q3, and Q4.

Case 1: Singularities of Q1 Line Quadruplets:This case
leads to special cases of S1 singularity in which the six lines of

or the four lines belong to one bundle (Fig. 11(a)
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TABLE III
15-LINE QUADRUPLETS IN FOUR DIFFERENTCATEGORIES

and (b), respectively). We choose as a category
representing line quadruplet.

Proof:

1) Point fulfills , i.e., .
2) In a singular configuration, lines, , , and intersect

in one common point.
3) Since and the only possible common

point of intersection for lines , , , and is .
4) , , , and ; therefore,

the intersection is possible only along the normal
, i.e., .

5) and in a singular configuration ; there-
fore, , namely, is the piercing point of
with the tripod base plane B0.

6) In a singular configuration . There-
fore, there are two possibilities: is located above the
moving platform and is located beneath the moving
platform.

7) If is beneath the moving platform it means that
; therefore, this is a special case of S1 singularity

[Fig. 11(a).]

If is above the moving platform then and
, therefore, , . This singularity is a special

case of S1, Fig. 11(b).
Case 2: Singularities of Q2 Line Quadruplets:Let

be a category representing line quadruplet. This
line quadruplet forms a singular bundle if a pair of spherical
joints coincides.

Proof: , . The only possible
intersection point for the four distinct lines is . Hence,
this is the same special case of S2 singularity in Fig. 7.

Case 3: Singularities of Q3 Lines Quadruplets:Let
be a category-representing quadruplet. Next, we

assume that this line quadruplet intersects in one point and
we show that singularity of this category is a special case of
singular configuration S2.

Proof:

1) Point fulfills , ; therefore, in a
singular configuration lines , , , and intersect in
point .

2) , ; thus, the intersection points of these
lines is located along .

3) In a singular configuration line intersects in point
. Hence, .

4) , i.e., is the piercing point of with the
tripod base plane. Therefore and this is
the same special case of S2 shown in Fig. 7.

Fig. 11. Special cases of S1 singularity.

Fig. 12. Special cases of S1 singularity.

Case 4: Singularities of Q4 Lines Quadruplets:Let
be a category-representing quadruplet. This case

leads to two special cases of S1 singularity (Fig. 12).
Proof:

1) ; therefore, in a singular configuration, is
the common intersection point of all lines in the quadru-
plet.

2) , [corollary Cr2]; thus, .
3) and in singular a configuration ;

therefore, .
Points , , and define . Since all these points be-
long to B0, we conclude that in a singular configuration

, i.e., the tripod base plane and the moving platform are par-
allel. Fig. 12 presents the two special cases of singular configu-
rations S1.

4) Plane Singularities (3D):Singularities of type 3D are
characterized by having more than three coplanar lines in the
group . We inspect all the line quadru-
plets to determine the singularities that stem from this case.
There are four line quadruplet groups as shown in Table III;
therefore, we consider the cases, in which, the lines of each cat-
egory-representing quadruplet are coplanar.

Case 1: Q1 Coplanar Line Quadruplet:All line quadruplets
in this group include lines , , and . We proved in Sec-
tion VI-B-IV Case 1 that lines are coplanar only if

leading to S3 singularity.
Case 2: Q2 Coplanar Line Quadruplet:Let be a

category representing line quadruplet. In Section VI-B-IV, Case
3, we proved that the lines of this quadruplet are coplanar only
when lines and lie in P0 leading to the special case of S1
singularity in Fig. 10.

Case 3: Q3 Coplanar Line Quadruplet:Choose
as a category-representing quadruplet. All quadruplets of this
category are coplanar only if .

Proof:

1) In a singular configuration, the coplanar lines and
define a plane such that .
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2) Point fulfills , . Point is the
piercing point of with , . Accord-
ingly, the condition to fulfill is .

3) Point fulfills , therefore when
. This configuration is S3 singularity (Fig. 9).

Case 4: Q4 Coplanar Line Quadruplet:Let be
a category-representing line quadruplet. Based on the proof in
Case 3, all the lines of this quadruplet are coplanar if .

D. Flat Pencil Singularities (2B)

In the following sections, a category representing flat pencil
defined by lines and is tested with each line
in the complementary group . The geometric relations that
render flat-pencil are considered.

Case 1: Line : Let
be a category representing flat pencil. Based on the sym-

metry of the tripod, there are three distinct cases: ,
, and . The case is equivalent to case
due to symmetry considerations.

Case 1.1 : This case was investigated in Sec-
tion VI-B-4, Case 1.
Case 1.2 (equivalent to ): Section VI-B-4,
Case 3, shows that if , and are coplanar then the
singular configuration in Fig. 10 forms.
Case 1.3 : This case is a special case of Sec-
tion VI-C-3, Case 1 limited for an equilateral-triangular
moving platform. Using similar arguments, it is possible
to see that this leads to the singularity of Fig. 11 with lines

and that belong to one flat pencil. Note that an equi-
lateral triangular moving platform fulfills , and

.
Case 2: Line

: Let be a category representing flat pencil. Based on
the symmetry of the tripod, we consider only two cases:
(equivalent to ) and (equivalent to ).

Case 2.1 (equivalent to ): This case is
identical to Case 1.2 .
Case 2.2 (equivalent to ): In Sec-
tion VI-B-4, Case 4, we proved that if lines, , and

are coplanar then the singular configuration in Fig. 10
forms.

Case 3: Line
: Let be a category representing flat pencil. There are

three distinct cases to be considered: (analogous to
), , and .

Case 3.1 (equivalent to ): Same as Case
2.2.
Case 3.2 : In Section VI-B-4, Case 5, we proved
that if lines , , and are coplanar then S3 singularity
forms.
Case 3.3 : This case leads to a special case of S1
singularity (Fig. 13).
Proof:

1) (corollary Cr2) therefore .
2) In a singular configuration and .
3) , and ; therefore ,

, and plane B0 fulfills

Fig. 13. Special cases of S1 singularity.

TABLE IV
SUBCASES OFCASE 4 AND THEIR EQUIVALENT CASES

. The special cases of singular configuration S1 are
illustrated in Fig. 13.

Case 4
: Let be a category representing flat

pencil. This case leads to four cases that we have already dealt
with, Table IV.

E. Point Singularities (1A)

Given the perpendicularity relation in Cr4, a line of
does not coincide with a line of . Lines

, , and belong to three distinct planes P1, P2, and P3, and
they pass through three distinct points, , and . Conse-
quently, no line couple from these lines can be simultaneously
concurrent with the intersection line of the three planes P1,
P2, and P3. This precludes the coincidence of a line-pair of

.
Lines , , move such that each one is perpendicular to

planes P1, P2, P3, respectively. Since these planes are distinct,
any two lines of this group cannot coincide regardless of the
configuration of the robot.

Based on the above arguments, we conclude that the point
singularity of the tripod of Fig. 4 is not possible because the
lines of are architecturally distinct (regardless of the robot
configuration).

This completes the analysis of the parallel singularities that
characterize the family of composite serial in-parallel robots of
Table I. To complete the singularity analysis for each robot in
this table, one should find the serial singularities stemming from
singularities of the IIK matrix of each robot. The serial singu-
larities of the RSPR and the USR robots were analyzed in [27]
based on their IIK matrices [24].

The results of the analysis of the parallel singularities indicate
that there are three general parallel singularities, S1, S2, and S3,
all of which are connected to the general complex singularity.
Parallel singularities of lower rank were identified as special
cases of S1, S2, and S3.

VII. CONCLUSION

This paper presented the analysis of the parallel singulari-
ties of a class of 14 composite serial in-parallel robots having
a common tripod mechanism. A unified Jacobian formulation
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of this class of robots was achieved by formulating a line-based
Jacobian matrix of the tripod mechanism (called here as the
common parallel submechanism), which is an inversion of the
equivalent mechanism of the Stewart–Gough 3-3 and 3-6 robots.
This line-based formulation provides a convenient method for
analyzing the parallel singularities of this class of robots uti-
lizing line geometry.

The analysis revealed three general cases (that are in fact spe-
cial cases of the general complex singularity) of parallel singu-
larities that are common to this family of robots. All other sin-
gular configurations were shown to be special cases of the gen-
eral complex.

Even though this family of robots suffers also from Hunt’s
[1], [39], [40] and Fichter’s [38] singularities, which are typical
of 3-3 and 3-6 Stewart–Gough platforms; nevertheless, they
have different interpretation in its working capabilities. It
has been shown that rotation of the moving platform by 90
about the Z axis which leads to Fichter’s singularity in the
Stewart–Gough 3-6 and 3-3 platforms, or aligning one of the
links with the moving platform plane which leads to Hunt’s
singularity, does not correspond to parallel singularity of the
robots of this family.

This geometrically-based analysis of parallel singularities,
complemented by serial singularity analysis and a comparison
between the USR and the RSPR robots [27], was an important
factor in the design and construction of a compact and a light-
weight RSPR robot for medical applications.
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Geometric Interpretation of the
Derivatives of Parallel Robots’
Jacobian Matrix With Application
to Stiffness Control
This paper presents a closed-form formulation and geometrical interpretation of the
rivatives of the Jacobian matrix of fully parallel robots with respect to the moving p
forms’ position/orientation variables. Similar to the Jacobian matrix, these derivatives
proven to be also groups of lines that together with the lines of the instantaneous d
kinematics matrix govern the singularities of the active stiffness control. This geom
interpretation is utilized in an example of a planar 3 degrees-of-freedom redundant r
to determine its active stiffness control singularity.
@DOI: 10.1115/1.1539514#
-
a

f

e

s

H

o

r

a
l

t
,
n
e

ar
in a

tor

e

s
g

the

-

e

1 Introduction
Line geometry has been applied by several researchers to

kinematics and statics of parallel manipulators@1–7#. Line geom-
etry is used because the rows of the Jacobian matrix in a line
actuated fully-parallel manipulator are the Plu¨cker line coordi-
nates of the axes of its extensible links@8#. Hence, linear depen
dency of these lines determines the conditions for instability
singularity of a parallel manipulator as Dandurand@9# has shown
in the context of stability of spatial grids.

In contrast to the numerous investigations devoted to the
mulation of parallel manipulators’ Jacobian matrix e.g.,@10–13#,
there are only a few studies addressing the formulation of
derivative. Dutre´, et al.,@14# addressed this problem and obtain
a closed form analytic expression for the derivative of the inve
Jacobian matrix with respect to time and with respect to the ac
joint variables. Merlet and Gosselin@15# formulated the time de-
rivative of the Jacobian of a fully parallel manipulator for use
acceleration analysis.

Duffy @16# presented the infinitesimal motion and stiffne
analysis of a planar parallel manipulator and obtained a stiffn
matrix of the manipulator with a preloaded spring model.
showed that the part of the stiffness matrix that corresponds to
preload effect is a product of two matrices having line-coordina
as their columns.

This paper is organized as the following: the first part, secti
2 and 3, formulates the derivatives of the Jacobian matrix w
respect to the moving platform position/orientation variables a
associates a geometric interpretation to these derivatives as g
of lines. These derivatives play a major role in stiffness analy
and control~modulation! @17,18#, dynamic manipulability analysis
@19#, and force-controlled compliant motions@14#. The second
part, section 4 emphasizes the contribution of these derivative
manipulator’s rigidity and active stiffness control and relates e
one of these Jacobian derivatives with a direction of the contro
stiffness. Section 5 relates singularities of the Jacobian derivat
with singularities of the stiffness control scheme and singulari
of the derivatives of the instantaneous direct kinematics matrixA,
presented in the next section. Section 6 shows that the stiff
modulation singularities can be obtained by line-based interpr
tion of the Jacobian derivatives and the instantaneous direct k

*Starting from December 2002 Mr. Simaan is with Johns Hopkins CISST.
Contributed by the Mechanics and Robotics Committee for publication in

JOURNAL OF MECHANICAL DESIGN. Manuscript received December 2000; revis
February 2002. Associate Editor: S. K. Agrawal.
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matics matrix. Finally, an example of this singularity for a plan
3 degrees-of- freedom redundant parallel robot is presented
stiffness modulation singular position.

2 Jacobian Formulation
Consider a general Stewart-Gough type parallel manipula

subject to a wrenchFenv5@ fenv
T ,menv

T #T applied by the en-
vironment, Fig. 1. Let the position/orientation vector of th
moving platform relative to world coordinate system beX
5@x,y,z,ux ,uy ,uz#

T, wherex, y, z are the Cartesian coordinate
andux , uy , anduz are three orientation variables of the movin
platform, and letẋ denote the end effector twist andq̇ the corre-
sponding active joints’ rates.

For parallel manipulators, the commonly used expression of
Jacobian matrix is:

q̇5Jẋ, S Ji j 5
]qi

]xj
D (1)

which is the inverse of that of serial manipulators’:ẋ5Jq̇, (Ji j
5]xi /]qj ).

In this paper we use the Jacobian,J, in Eq. ~1! to map the end
effector twist,ẋ, to active joint rates,q̇. This Jacobian matrix is
also used to relate the required active joints’ forces,t, for a de-
sired external wrenchFe5@ fe

T ,me
T#T to be exerted on the environ

ment (Fe52Fenv).

JTt5Fe (2)

the
d

Fig. 1 Typical Stewart-Gough manipulator
003 by ASME MARCH 2003, Vol. 125 Õ 33
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Using the loop closure method@19#, or the static equilibrium
method@4,9,10#, along with Eqs.~1! and ~2!, respectively, yields
the commonly used formulation of the Jacobian matrix.

J5F l̂1
T ~wRpu13 l̂1!T

] ] ]

l̂6
T ~wRpu63 l̂6!T

G (3)

where l̂ i denotes a unit vector along thei th active prismatic joint
pointing from its joint at the base to its joint at the moving pla
form. The platform-attached and the base-attached coordinate
tems are referred to by the lettersP and W, respectively, Fig. 1.
Accordingly,wRp is the rotation matrix fromP to W, andui is the
constant position vector of thei th joint in P, Fig. 1.

In order to interpret the Jacobian matrix as lines, the follow
basic definitions of line geometry are reviewed. A given sextup
of numbers@ l vx ,l vy ,l vz ,l mx ,l my ,l mz#

T represents a line in spac
only when it belongs to a five-dimensional quadratic manifo
called the Grassmannian@1,20#, the Plücker hypersurface@21,22#
or Klein quadric@6,20# or, in other words, it fulfils Eq.~4!.

1vx1mx11vy1my11vz1mz50 (4)

Observing Eq.~3!, it is clear that the rows of the Jacobian a
the Plücker ray coordinates of lines along the prismatic actuato
This geometrical interpretation is correct in a coordinate sys
having its origin attached to the moving platform. In this rep
sentation each row of the Jacobian matrix is a function ofwRpui

and the direction numbers ofl̂ i , which are both functions of the
moving platform position.

2.1 The Lines of the Jacobian Matrix in World Coordinate
System. Consider another representation of the Jacobian ma
in the form:

Jb
Tt5Fb (5)

whereFb5@ fb
T ,mb

T#T represents the wrench exerted by the ba
rather than the moving platform on the environment, Fig. 2.
using simple statics equations and representingFb by Fe one ob-
tains:

At5BFe (6)

where:

A5F l̂1 ¯ l̂6

b13 l̂1 ¯ b63 l̂6
G B5F I 0

@p3# I G (7)

I2333 unit matrix
bi2position vector of the spherical joint of thei th prismatic ac-
tuator at the base inW coordinate system.
@p3#2skew-symmetric matrix representing vector multiplicatio

Fig. 2 Static equilibrium on base and moving platform
34 Õ Vol. 125, MARCH 2003
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@p3#5F 0 2pz py

pz 0 2px

2py px 0
G (8)

Equations~5! and ~6! yield:

JT5B21A (9)

WhereB21 is given by:

B215F I 0

@2p3# I G (10)

Contrary towRpui , which is a varying vector inW, the vector
bi is constant inW. This simplifies the expression of the derivativ
of JT. In this formulation, the lines ofA pass through fixed points
bi , in W and therefore their derivatives are easily shown to
lines as will be shown later.

The physical interpretation of multiplying a Plu¨cker line’s co-
ordinates by the matrixB21 is a translation the line while main
taining its direction. Figure 3 shows a 6-6 Stewart-Gough p
form manipulator with the lines of the Jacobian inW indicated by
thin arrows. Another important feature ofB21 is that its determi-
nant is equal to 1, which means that the above multiplication,
~9!, does not add to the singularities ofJ.

3 Formulation of the Derivative of the Jacobian
Matrix

The derivatives ofJt with respect to the moving platform’s
position variables is obtained from Eq.~9! as:

dJT

dx
5

dB21

dx
A1B21

dA

dx
(11)

The matricesdJT/dx, dB21/dx, dA/dx are three-dimensiona
63636 matrices for non-redundant six degrees-of-freedom m
nipulators. Thei th plane of these matrices is their derivative wi
respect to thei th position/orientation coordinate,xi , of the mov-
ing platform.

The multiplication in Eq.~11! is performed plane by plane, i.e
the derivative ofJt with respect to thei th position/orientation
variable is obtained by multiplying thei th planes ofdB21/dx and
dA/dx with A andB21, respectively.

The derivative ofB21 is simple and yields a matrix whos
structure is similar toB21 so the first expression on the right han
side of Eq.~11! yields a matrix whose columns are the translat
lines of A under the transformationdB21/dx. If the derivative
dA/dx yields a matrix whose columns are also lines and the tra
lated linesB21dA/dx intersect the lines ofdB21/dxA, then the

Fig. 3 Lines of the Jacobian in W „world coordinate system …
Transactions of the ASME
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derivative ofJT is also a matrix with lines as its columns. This
true since any linear combination of two given intersecting lin
spans a flat pencil of lines@21#.

3.1 Derivative of the Matrix A. The matrixA in Eq. ~7! is
composed of the lines along the robot’s prismatic joints. Each
vector along these lines is characterized by its direction cos
a i , b i , andg i , Eq. ~12!.

l̂ i5@cos~a i !, cos~b i !, cos~g i !#
T (12)

The matrixdA/dx is a three-dimensional 63636 matrix with the
i th plane,]A/]xi , being the derivative ofA with respect to thei th
position/orientation coordinate,xi , of the moving platform. Since
A has the linesl i as its columns, we are interested in finding t
derivatives of these lines.

Using Eq. ~7! while keeping in mind that the vectorsbi are
constant one can write:

]A

]xi
5F ] l l

]xi
•••

] ln
]xi

G (13)

where

] l j

]xi
5

] l i
]a j

]a j

]xi
1

] l i
]b j

]b j

]xi
1

] l j

]g j

]g j

]xi
(14)

In order to write Eq.~14! in a matrix form, we define three
matricesdA/da, dA/db, anddA/dg.

]A

]a
5F ] l1

]a1
¯

] ln
]an

G ]A

]b
5F ] l1

]b1
¯

] ln
]bn

G ]A

]g
5F ] l1

]g1
¯

] ln
]gn

G
(15)

We also defineJda i
, Jdb i

, Jdg i
as three diagonal matrices havin

on their main diagonals thei th columns ofJa , Jb , andJg respec-
tively, whereJa , Jb , andJg are given by:

Jam,n
5

]am

]xn
, Jbm,n

5
]bm

]xn
, Jgm,n

5
]gm

]xn
(16)

Using these definitions one can write Eq.~13! in matrix form as:

]A

]xi
5

]A

]a
Jda i

1
]A

]b
Jdb i

1
]A

]g
Jdg i

(17)

The derivatives of the lines with respect to their variables~keep-
ing in mind thatbi are constant! are:

] l i
]a i

5@ lva
T lma

T #T lva5@2sin~a i !,0,0#T

lma5@bi3~2sin~a i !,0,0!#T (18)

] l i
]b i

5@ lvb
T lmb

T #T lvb5@0,2sin~b i !,0#T

lmb5@bi3~0,2sin~b i !,0!#T (19)

] l i
]g i

5@ lvg
T lmg

T #T lvg5@0,0,2sin~g i !#
T

lmy5@bi3~0,0,2sin~g i !!#T (20)

It can be seen that Eqs.~18!–~20! are also lines that intersect th
lines of the matrixA at pointsbi .
For each linel̂ i , the direction cosines are related by Eq.~21!:

cos~a i !
21cos~b i !

21cos~g i !
251 (21)

Differentiating Eq.~21! with respect toxi and solving for]g i /]xi
yields:

]g i

]xi
5

2ca i
sa i

cg i
sg i

]a i

]xi
1

2cb i
sb i

cg i
sg i

]b i

]xi
(22)
Journal of Mechanical Design
s
es

nit
nes

e

g

e

Where the abbreviationssa and ca stand for sina and cosa
respectively.
Substituting Eq.~22! in ~14! and eliminating]g i /]xj yields:

] l i
]xj

5
]a i

]xj
@pi

T ~bi3pi !
T#T1

]b i

]xj
@r i

T ~bi3r i !
T#T

(23)

pi5F2sa i ,0,
ca i

sa i

cg i

GT

r i5F0,2sb i
,
cb i

sb i

cg i

GT

The first and the second brackets in the expression of] l i /]xj in
Eq. ~23! are the 631 column vectors] l i /]a i and ] l i /]b i , re-
spectively. Both these brackets represent lines according to Eq~4!
and it is easy to see that both lines are perpendicular tol i . The
expressions]a i /]xj and ]b i /]xj are scalars. Consequently, th
columns of]A/]xi in Eq. ~13! are lines that pass through th
spherical joints in the pointsbi and belong to the flat pencils o
] l i /]a i and] l i /]b i . This interpretation will prove to be helpfu
in section 6 where geometric interpretation to the stiffness mo
lation singularities is sought.

Summarizing this section, we conclude that the lines of
derivative ofA are perpendicular to the lines ofA and intersect
them in the pointsbi , i.e., in the spherical joints at the bas
platform. This fact is used to show that the derivative of the Ja
bian matrix, Eq.~11!, is also a group of lines.

3.2 Explicit Expressions ofJa , Jb , and Jg. The explicit
expressions ofJa , Jb , andJg which constitute the derivative o
A, Eqs. ~17! and ~16!, are developed below. Figure 4 depicts
fully-parallel robot with six independent closed loops. Each lo
is governed by the loop equation:

p1wRpui5bi1qi l̂ i (24)

where qi represents the length of thei th prismatic joint,p the
position of the moving platform inW. Taking the time derivative
of Eq. ~24! yields:

ṗ2wRpui3
wvp5q̇i l̂ i1qi l̇̂ i (25)

where wvp the angular velocity of the moving platform inW.
Rewriting the right-hand side of Eq.~25! in terms of the vector
of linear/angular velocities of the moving platform,ẋ
5@ ṗT (wvp)T#T, yields:

ṗ2wRpui3
wvp5@ I ,@2~wRpui !3## ẋ[M i ẋ (26)

Expressionq̇i l̂ i in Eq. ~25! is expressed in terms ofẋ by using the
velocity relationq̇5Jẋ with reference to thei th row of J asJi ,
and using Eq.~12! for l̂ i :

q̇i l̂ i5F cos~a i !Ji

cos~b i !Ji

cos~g i !Ji

G ẋ[Ni ẋ NiPR336 (27)

Substituting back into Eq.~25! yields:

qiF2sin~a i !ȧ i

2sin~b i !ḃ i

2sin~g i !ġ i

G5@M i2Ni # ẋ M i ,NiPR336 (28)

Fig. 4 Kinematic closed loops
MARCH 2003, Vol. 125 Õ 35
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Solving Eq.~28! for its unknownsȧ i , ḃ i , andġ i yields:

ȧ i5F 21

qi sin~a i !
@M i2Ni #1G

ẋ

, ḃ i5F 21

qi sin~b i !
@M i2Ni #2G ẋ,

ġ i5F 21

qi sin~g i !
@M i2Ni #3G ẋ (29)

Where@M i2Ni # j is the j th row of @M i2Ni #, j 51, 2, 3.
Equation~30! gives thei th rows ofJa , Jb , andJg as:

@Ja# i5F -1

qi sin~a i !
@M i2Ni #1G , @Jb# i5F 21

qi sin~b i !
@M i2Ni #2G ,

@Jg# i5F 21

qi sin~g i !
@M i2Ni #3G (30)

This completes the formulation of the necessary terms in Eq.~17!
and, thus, the derivative ofA is fully defined and proven to be
matrix whose columns are lines. These lines are perpendicula
the lines ofA and interest them at the spherical joints at the ba
bi . What remains is to show that the sum of the terms in Eq.~11!
gives a set of lines.

3.3 Intersection of the Lines ofdBÀ1ÕdxiA and the Lines
of BÀ1dAÕdxi . Recalling the definition ofX and matrixB ~sec-
tion 2! and observing Eq.~11!, one concludes that the last thre
planes ofdJ/dx, i.e.,]J/]xk (k54,5,6) are the translated lines o
]A/]xk (k54,5,6) under the transformationB21.
This can be written as:

]JT

]xi
5B21

]A

]xi
i 54,5,6. (31)

It remains to prove that the derivatives with respect to the Ca
sian coordinates,]J/]xi for i 51, 2, 3, represent lines. In order t
prove this, one must prove that the lines of]B21/]xiA intersect
the lines ofB21]A/]xi .

The following proof relies on the condition of intersectio
between two given lines, l5@ l 1 ,l 2 ,l 3 ,l 4 ,l 5 ,l 6#T and m
5@m1 ,m2 ,m3 ,m4 ,m5 ,m6#T. This condition is given in Eq.~32!
and has the interpretation of the moment of a force acting al
line l about linem @23#.

l 1m41 l 2m51 l 3m61 l 4m11 l 5m21 l 6m150 (32)

This is proven symbolically using Maple®~a symbolic manipu-
lation program! and also verified numerically with a numeric
and a graphical simulation using Matlab®.

The i th column ofA and i th row of J are given by Eq.~33!.
The i th rows ofJa , Jb , andJg are given in Appendix-A1.

Ji5@ca i
,cb i

,cg i
,pzcb i

2pycg i
1bi y

cg i
2bi z

cb i
,2pzca i

1pxcg i

1bi z
ca i

2bi x
cg i

,pyca i
2pxcb i

1bi x
cb i

2bi y
ca i

#
(33)

A i5@ca i
,cb i

,cg i
,bi y

cg i
2bi z

cb i
,bi z

ca i
2bi x

cg i
,bi x

cb i
2bi y

ca i
#

In the following sub-sections we formulate the derivativ
dB21/dx A and B21]A/]xi . The resulting expressions are us
in Eq. ~32! to complete the proof that the derivatives of the Ja
bian are lines.
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3.3.1 Formulation of dB21/dx A. The derivatives ofB21

are simple and can be written as:

]B21

]xi
5F 0 0

]~@p3# !

]xi
0G (34)

The last three derivatives of@p3# with respect to the orientation
angles of the moving platform are three null matrices.

Let T1 be the three dimensional matrixdB21/dx A andT1k j

be the j th column of itskth plane,j, k51, . . . ,6. Thefirst three
planes ofT1 are given by:

H T11i5@0 0 0 0 cos~g i ! 2cos~b i !#
T

T12i5@0 0 0 2cos~g i ! 0 cos~a i !#
T

T13i5@0 0 0 cos~b i ! 2cos~a i ! 0#T
J (35)

The last three planes ofdB21/dxA, i.e.,T14 T15 andT16, are
636 null matrices. The special form~the first three Plu¨cker co-
ordinates are zero! of T11, T12, andT13 shows that the lines of
dB21/dxA are lines at infinity@23#.

3.3.2 Formulating the Expressions ofB21]A/]xi . Accord-
ing to Eqs.~17! and~10! we obtain the following expressions fo
the i th column ofB21]A/]xi . Let T2 be the three dimensiona
matrix B21dA/dx. We refer to thekth plane of this matrix,
B21]A/]xk , by the abbreviationT2k wherek51 . . . 6. The ex-
pressions ofT21 throughT26 are given in the Appendix-A2.

By substituting the expressions of thei th columns ofT1k and
T2k, k, i 51 . . . 6 in Eq.~32! one can see that Eq.~32! is fulfilled.
This means that the lines ofT1 and the lines ofT2 intersect each
other. This completes the proof that the derivatives ofJT with
respect to position variables are groups of lines. In total, we
tained 36 lines divided to six line-sextuplets with each lin
sextuplet representing the derivative ofJT with respect to one
position/orientation variable of the moving platform.

3.4 Simulation Results. Numerical and graphical simula
tions are given below in order to visualize the results. Figure
shows the lines of the Jacobian matrix with arrows indicating
direction of the internal forces of the linear actuators. The das
lines in Fig. 5 are the lines of the derivative ofJT with respect to
the x coordinate of the moving platform.

Fig. 5 The lines of the Jacobian and the lines of its derivative
with respect to x coordinate
Transactions of the ASME
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Numerical Example:
The following are numerical results of a simulation of the Stewart-Gough 6-6 platform with a moving platform and a base p
having radii of 0.05 and 0.09 m, respectively. The moving platform is positioned atp5@20.1,20.02, 0.06#T and rotated 30 degree
about the axis@1, 1, 1# relative to the Cartesian coordinate system in Fig. 5. Equations~36! give the transpose of the Jacobian matrix a
its derivatives with respect to x, anduy , as an example.

JT5S 20.5742 20.6348 20.2662 20.1886 20.6702 20.5792

20.3223 20.2715 20.0610 20.3012 0.0799 0.3001

0.7526 0.7234 0.9620 0.9347 0.7379 0.7579

0.0154 0.0322 0.0245 20.0441 20.0349 0.0109

20.0269 0.0070 0.0317 0.0196 0.010720.0270

0.0002 0.0309 0.0088 20.0026 20.0328 0.0190

D
]~JT!

]x
5S 3.3431 2.4014 4.9488 5.8132 2.7368 3.4710

20.9232 20.6932 20.0866 20.3424 0.2661 0.9080

2.1555 1.8473 1.3640 1.0626 2.4570 2.2932

0.0440 0.0823 0.0348 20.0501 20.1161 0.0330

20.1226 0.0976 0.1547 20.0075 20.0213 20.1594

20.1208 20.0703 20.1163 0.2719 0.1316 0.0131

D (36)

]~JT!

]uy
55

20.1226 0.0976 0.1547 20.0075 20.0213 20.159

20.0433 0.0076 0.0103 0.0355 20.0043 0.0423

20.1121 0.0885 0.0435 0.0099 20.0189 20.1386

20.0169 0.0105 0.0032 0.0057 0.0005 0.0135

0.0373 20.0272 20.0252 0.0011 0.0059 0.0474

0.0041 20.0092 20.0054 0.0004 20.0019 20.001
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It is easy to see, using Eqs.~4! and~32!, that the columns ofJT

and its derivatives intersect each other and that the columns o
derivatives ofJT are a group of lines.

In the remaining part of this paper~sections 4–6! the impor-
tance of the derivatives ofJT is emphasized for active stiffnes
control ~stiffness modulation! in redundant parallel robots. It wil
be shown that, in particular, this line-based formulation simplifi
the analysis of stiffness modulation singularities.

4 Application of the Derivatives of the Jacobian to
Stiffness Control

Stiffness analysis of parallel manipulators plays a key role
determining the degree of adequacy of a given robot to a spe
task that involves interaction with the environment. This sect
relates the Jacobian derivative with active stiffness control, a
known as stiffness modulation. The interpretation of this deri
tive as lines is helpful in determining to what extent the stiffne
can be controlled.

4.1 Active Stiffness and the Derivative of the Jacobian.
The stiffness matrix maps the change of the wrench that the r
applies on its environment with the twist deflection of the movi
platform. Denoting thei th row of JT by Ji

T , one can write the
elements of the stiffness matrix,K , as:

ki j 5
] f i

]xj
5

]~Ji
Tt!

]xj
5

]Ji
T

]xj
t1Ji

T
]t

]xj
(37)
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Unlike the definition in@24#, this definition includes the stiff-
ness effect of introduced ‘‘preload’’~bias forces stemming from
e.g., gravity or external load! in non-redundant manipulators, o
antagonistic actuation in redundant robots. This effect is expres
by the term]Ji

T/]xjt, which is referred to as the ‘‘active stiff-
ness’’ or ‘‘antagonistic stiffness’’@25#. The other term in Eq.~37!
is referred to as the ‘‘passive stiffness’’ of the manipulator@17,26#.
Denoting thej th column ofJ by Jj and treating the m actuators o
the robot as springs with a stiffness matrixKd in joint space
results in:

Ji
T

]t

]xj
5Ji

T (
m

]t

]qm

]qm

]xj
5Ji

TKdJj (38)

Stiffness modulation is possible when actuation redundanc
introduced to the system, thus, allowing the use of antagon
actuation@17,27–29#. In this case, the actuation forces are divid
into tp and th , wheretp denotes the actuation forces balanci
the external load andth denotes the internal actuation forces~an-
tagonistic actuation forces!. Antagonistic actuation forces do no
affect the net force applied by the moving platform on its en
ronment since they belong to the null space of the Jacobian
trix, Eq. ~39!.

t5tp1th JTtp5Fe JTth50 (39)

Equation~37! can be rewritten in a matrix form as in Eq.~40!,
where the matrix,dJT/dx, is a three-dimensional matrix, as in Eq
~11!, with the dimensions of 63m36 for m actuators (m.6).
The multiplication in Eq.~40! should be performed according t
MARCH 2003, Vol. 125 Õ 37
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Eq. ~37!, i.e., in order to obtain the active stiffness element,K1 i j ,
one should take the scalar product of thei th row of the j th plane
in the three- dimensional matrix,dJT/dx, with t.

K5
]JT

]x
t1JTKdJ[K11K2 K1[

]JT

]x
t K2[JTKdJ

(40)

4.2 Stiffness Directions and the Derivative of the Jacobian
Equation~37! can be written in a matrix form as:

DFe5KDx5K1Dx11K2Dx21K3Dx31K4Dx4

1K5Dx51K6Dx6 (41)

whereK i denotes thei’th column of the stiffness matrix,K , DFe
the change in the reaction wrench of the moving platform on
environment for a positional perturbationDx.

Equation~41! shows thatK i , the i th column ofK , is the stiff-
ness in thexi direction since it determines the net change in
moving platform’s reaction,DFe , for a perturbation in thexi di-
rection. Larger norms of this column cause higher reaction fo
of the robot for the same displacement.

By Eqs. ~40!, ~41!, the i th derivative of the Jacobian matri
maps the joint efforts,t, into thei th column of the active stiffness
matrix, K1, thus, modifying the stiffness of the robot in its corr
sponding direction in the Cartesian world.

Next, the effect of the singularities~rank deficiency! of the
Jacobian derivatives on stiffness modulation capabilities
presented.

5 Stiffness Control in Redundant Robots and Singu-
larity of the Jacobian Derivatives

Equation~37! gives the expression of the elements of the st
ness matrix. The equation for thej th column of the stiffness ma
trix is given by:

K j5
]JT

]xj
t1JT

]t

]xj
5

]JT

]xj
t1JTKdJj (42)

The first term of Eq.~42! corresponds to the contribution of th
active stiffness gained by redundant actuation. If a given stiffn
is required, then the unknowns in Eq.~42! are the actuator forces
t, needed to cause the required stiffness columnK j . The general
solution of the static equilibrium problem~Eq. ~2!! is given by
@30#:

t5JT1
Fe1~ I2JT1

JT!j (43)

where theJT1
indicates the Moore- Penrose pseudo inverse ofJT

and (I2JT1
JT) is a projector of any arbitrary actuation intensiti

vector jPRm to the kernel ofJT. The minimum-norm solution
for j that satisfies Eq.~42! is given by:

j5 J̃1FK j2JTKdJj2
]JT

]xj
JT1

FeG[ J̃1b (44)

whereJ̃ is given byJ̃5]JT/]xj (I2JT1
JT).

Equation~44! has an exact~compatible! solution in the genera
case only if rank (J̃)5n where n is the number of the robot
degrees-of-freedom. By the definitionJ̃ it is clear that if]JT/]xj
is rank-deficient then in general there is no exact solution to
~42!. We note that additional singularities ofJ̃ may also stem from

the matrix (I2JT1
JT).
38 Õ Vol. 125, MARCH 2003
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Previous works@16,25,26,28# addressed the problem of activ
stiffness generation via redundancy and mentioned ‘‘second o
geometric singularities’’ that prevent exact stiffness modulati
All the above-mentioned works dealt with non-fully parallel m
nipulators having serial chains supporting the moving platfor
The formulations in these works lead to a matrix similar toJ̃ that
is composed of an augmented Hessian matrix. The singularitie
stiffness modulation were attributed in these works to both
singularity of the Hessian matrix and the singularities of the Ja
bian. However, geometrical interpretations were given to the
gularity of the Jacobian only. In the above-mentioned investi
tions the definition of the Hessian matrix varied from one work
another. Yi, Freeman, and Tesar,@16,26# defined an augmented
Hessian matrix having the Hessians of the inverse kinema
functions of the serial chains, while@25# defined this augmented
Hessians matrix based on the Hessians of the auxiliary equa
that relate the values of passive joints with the values of the ac
ones. These matrices were not given a geometric interpretatio
lines of the Jacobian and its derivatives since the Jacobian m
of a non-fully parallel manipulator is generally not composed
rows of lines.

The present investigation shows that an arbitrary stiffn
modulation is precluded ifdA/dx or A are singular. We also ob
tain, for the first time, a geometric interpretation to the singular
conditions ofdA/dx.

6 Geometric Interpretation of the Singularities of J̃

In this section we will prove that the singularity ofJ̃ has a
geometric interpretation and is directly related to the linear dep
dencies of the lines of]A/]xj . The cases whereJ is singular
~rank(J),n) are excluded since in these cases the robot is sin
lar from structural rigidity considerations. We also limit the di
cussion to the cases where the number of actuators,m, fulfills m
>2n which means that there are enough redundant actuato
fully control a column in the active stiffness matrix,K1, of Eq.
~40!.

proof:

From the definition ofJ̃ and Eq.~11! one obtains

J̃5
]JT

]xj
~ I2JT1

JT!5S ]B21

]xj
A1B21

]A

]xj
D ~ I2JT1

JT! (45)

By Eq. ~9! and the fact thatB21 is a non- singular square
matrix one obtains:

JT1
JT5~B21A!1~B21A!5A1B211

B21A5A1A (46)

~Note that we used (B21A)15A1B211
which is true only ifB21

andA are of the same rank, i.e.,A ~andJ! is non-singular!.

Fig. 6 Line and flat pencil singularities of the derivatives of
the matrix A
Transactions of the ASME
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Applying the properties of the generalized inverse, the first te
on the right-hand side of in Eq.~45! vanishes:

]B21

]xj
A~ I2JT1

JT!5
]B21

]xj
A2

]B21

]xj
AA1A

5
]B21

]xj
A2

]B21

]xj
A50 (47)

then:

J̃5
]JT

]xj
~ I2JT1

JT!5B21
]A

]xj
~ I2A1A! (48)

Thus, we proved that the singularity ofJ̃ stems from the singular-
ity of ]A/]xj .

The importance of this proof is that it is easy to visualize t
lines of ]A/]xj for planar manipulators and special cases of s
tial manipulators. One should recall that the lines of]A/]xj pass
through the joints in the base platform and are perpendicula
the actuators. For planar robots, when more than two lines
]A/]xj intersect at one point it causes flat pencil singularity of t
Jacobian derivatives. Figure 6 shows a flat pencil singularity@Fig.

Fig. 7 Line and flat pencil singularities of the Jacobian

Fig. 8 A planar redundant parallel manipulator in a stiffness
modulation singularity
Journal of Mechanical Design
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6~a!# and point singularity@Fig. 6~b!# of ]A/]xj for a planar 3
DOF non-redundant manipulator. In both configurations the m
trix J̃ has a rank of 2, which means that Eq.~43! has no exact
solution for an arbitraryK j . Figure 7~a! and 7~b! show flat pencil
and point singularities of the matrixA ~andJ!.

Figure 8 illustrates a redundant planar parallel manipulator w
six linear actuators. The dimension of the nullspace of the Ja
bian of this planar robot is 3 or higher. This means that we c
control the stiffness elements in thej th column of the stiffness
matrix provided that rank of the matrixJ̃ associated with this
column is no less than 3.

The manipulator in the configuration of Fig. 8 illustrates a s
gularity of J̃ ~rank(J̃),3) caused by flat pencil singularity o
]A/]xj since the lines of]A/]xj intersect in one point as show
in the figure. The singular values ofJ̃ are given by Table 1, where
the J̃x is associated with the derivative of the Jacobian with
spect to the X coordinate,J̃y with respect to the Y coordinate an
J̃uz

with respect to the rotation about the Z axis. The third singu

value is small enough to indicate singularity~practically J̃ has
rank 2 since the formulation ofJ̃ and the SVD process have cu
mulative numerical errors and because the dimensions in Fi
were given with 6 digits accuracy!.

Conclusions
This paper presents a line-based analytical formulation to

derivatives of the Jacobian of parallel robots. The derivatives w
taken with respect to the position/orientation variables of the m
ing platform rather than time or active joints’ variables. The Ja
bian derivatives formulation resulted in 36 lines divided into s
line-sextuplets, each one representing the derivative of the J
bian with respect to one position/orientation variable of the m
ing platform.

The problem of controlling the stiffness of the robot in Cart
sian space~also known as the stiffness modulation problem! was
solved and each derivative of the Jacobian was associated
active stiffness modification in a corresponding direction in spa
The significance of the line-based formulation of the Jacob
derivatives for stiffness modulation was emphasized and use
interpret stiffness modulation singularities of redundant para
robots. It was shown that these stiffness modulation singulari
are function ofA ~the instantaneous direct kinematics matrix! and
its derivative. This interpretation allows the use of line geome
tools for stiffness modulation singularity analysis similarly to t
line-based structural rigidity singularity analysis of parallel robo
In this sense, this paper adds to the knowledge of previous in
tigations that analyze the stiffness modulation singularities st
ming only from the classical first-order singularities of the Jac
bian matrix.

The authors believe that the line geometry-based formulatio
the Jacobian derivatives facilitates the geometrical interpreta
of rigidity, stability and dynamics that are based on the derivat
of the Jacobian matrix.

Table 1 Singular values of J ˜

J̃x J̃y J̃uz

1.2050 1.0353 1.3279
0.6957 0.9204 0.7667
9.3307e-006 4.7369e-016 5.5241e-006
0 0 0
0 0 0
0 0 0
MARCH 2003, Vol. 125 Õ 39



Appendix A-1
The i th rows of the JacobiansJa , Jb , andJg are given by:

Appendix A-2
The following equations give the explicit expression of thei th column ofT2K , k, i 51, . . . ,6.
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Abstract This paper addresses the problem of task-based stiffness synthesis of a 
variable geometry three DOF (Degrees Of Freedom) planar robot. The 
synthesis considers the case where the robot has a limited number of free 
geometric parameters and constant actuator stiffness coefficients. This 
defines twenty problems of stiffness synthesis, in which, three parameters of 
the stiffness matrix are controlled according to task requirements. These 
problems are modeled as systems of polynomials in the free geometric 
parameters of the robot’s base platform. Using Gröbner bases, the solubility 
of these polynomial systems is characterized. It is shown that arbitrary 
desired values of the Cartesian stiffness elements (kxx and kyy) are 
unattainable when only the geometry of the base platform is variable. An 
example of synthesizing three stiffness elements of the planar robot is solved 
and shown to have at most 48 solutions in the complex plane. In a numerical 
case study, sixteen real solutions are obtained, of which only eight are non-
singular.  

Keywords: Parallel robot, Re-configurable, Stiffness Synthesis, Gröbner bases. 

1.  Introduction  
Robots are used to perform various tasks involving complex 

manipulations and interactions with their environment. Consequently, 
there are inevitable compromises when using a fixed-geometry robot for 
some tasks. To overcome this problem, the use of variable geometry 
robots is considered. In particular we concentrate here on variable 
geometry parallel robots. These robots can change the geometry of their 
base/moving platforms to accommodate the required characteristics, e.g. 
stiffness, specific to each task.    

Researchers used various methods to enhance parallel robots’ 
capabilities for better fitting task requirements in terms of stiffness, 
singularity avoidance, and inclusion of specific paths in the workspace. 
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Actuation redundancy was used by Yi and Freeman (1993), Kim et al. 
(2000) for stiffness modulation. Kinematic redundancy of the robot for a 
given task was used by Merlet, et al. (2000) for path inclusion in the 
workspace and singularity avoidance. Stiffness/compliance synthesis 
algorithms were presented by Huang and Schimmels, (1998), and 
Roberts, (1999) for a system of springs supporting a rigid body.  

Works directly addressing variable geometry parallel robots are 
limited in number. Zhiming and Song (1998) investigated the design 
aspects of modular Stewart-Gough platforms with workspace and joint 
limits considerations. Zhiming and Zhenqun (1999) presented an 
algorithm for identifying the parameters of the joint locations on the base 
in a modular Stewart-Gough platform. Merlet, (1997, 2000) presented a 
design algorithm for achieving a constant-orientation workspace of 
Stewart-Gough robots, which can be adapted for workspace modification 
of variable geometry robots♠.  

 In the present investigation, a case study of stiffness synthesis for a 
point in a given path of a planar 3 DOF robot with a variable geometry of 
its base platform is presented. The aim of the synthesis is to obtain a 
specific stiffness in a given position/orientation of the robot’s moving 
platform.  Under a simplifying assumption that the stiffness coefficients 
of the redundant actuators that change the base geometry are 
considerably larger than the coefficients of the other actuators, this work 
may be viewed as an algorithm for changing the geometry of the base 
platform of a variable geometry 3 DOF planar robot for obtaining a 
required stiffness in a point along a path specified by the given task.   

2. Variable Geometry Planar Robot 
The planar robot of Fig. 1 has an 

equilateral triangular moving 
platform connected to a circular base 
by three kinematic chains composed 
of a slider on the circular base, a 
revolute joint, a prismatic joint, and 
a revolute joint on its moving 
platform. The sliders on the circular 
base control the geometry of the 
base platform and the prismatic 
actuators manipulate the moving 
platform. This introduces a kinematic redundancy in this three DOF 
planar robot. The objective of this paper is to determine the geometry of 
                                                 
♠ The authors acknowledge the valuable discussions with J.-P. Merlet on this subject  

Figure 1. Planar Robot with variable 
geometry base platform 

= prismatic = revolute 

Variable 
geometry 
base slider

xp

yp
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the base platform by computing the locations of these three redundant 
sliders for achieving a desired stiffness goal in a point of a path defined 
by the task.   

3. Stiffness Polynomial Formulation 
In this section, the stiffness matrix of the robot of Fig. 1 is formulated 

as a function of the positions of the sliders on the circular base and is 
described in a Platform–attached Coordinate System (PCS). The location 
and orientation of the moving platform are given by the task while the 
orientations of the prismatic actuators are given by the stiffness 
synthesis solution and are easily transformed to desired positions of the 
redundant sliders on the circular base.  

The transformation of the desired stiffness from World Coordinate 
System (WCS) to PCS is given by, Tsai (1999): 

)1( ⎥⎦
⎤

⎢⎣
⎡== R0

0RAAKAK des
wT

des
p  

where R is the 3x3 rotation matrix from the PCS to WCS, des
pK and 

des
w K  are the desired stiffness matrix in PCS and WCS, respectively. 
Hereafter, all vectors and matrices are represented in PCS.  

The only controllable geometric variables by the sliders’ locations are 
the unit vectors of the prismatic actuators’ axes, ( il̂ , i=1,2,3), Figs. 1-2.  

)2(  3,2,1iˆbˆaˆ
2ii1iii =+= eel   

where the symbol ^ indicates a unit vector, êi1 and êi2 are unit vectors 
indicated in Fig. 2, il̂ is a unit vector along the i’th prismatic actuator, and 
ai, bi are the projections of il̂  on êi1 and êi2. In order for il̂  to be a unit 
vector, ai and bi (i=1,2,3) must obey: 

)3( ( ) 01ˆˆba2ba 2i1iii
2

i
2

i =−⋅++ ee  
For an equilateral platform, Eq. (3) is an ellipse in ai-bi plane: 

)4(  3,2,1i01baba ii
2

i
2

i ==−++ 
A simplifying assumption is made that 
the sliders on the circular platform have 
a mechanical means to lock rigidly on 
the circular base once the desired 
geometry of the base is obtained or that 
the stiffness coefficients of the sliders 
are considerably larger than the 
stiffness coefficients of the prismatic 
actuators. With this simplifying 
assumption, the stiffness matrix 
depends only on the stiffness coefficients 
of the three remaining active prismatic 

Figure 2. Geometric notations for the   
planar robot 
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actuators. These three active actuators are assumed identical having 
stiffness coefficient kd. The rows of the Jacobian matrix of the robot of 
Fig. 1, with its sliders locked on the circular base, are the Plücker line 
coordinates of the three axes of the prismatic actuators, Eq. (5). 

 

)5(  
 

 
The 6×6 Stiffness matrix of the planar robot with three identical 
prismatic actuators is given by JJK T

dk= , Tsai (1999), and the reduced 
planar 3×3 stiffness matrix is then, obtained. Notations of the elements 
of this symmetric stiffness matrix are given in Eq. (6). 
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4. Stiffness synthesis with limited number of 
variable geometry parameters 

Given a desired triplet of stiffness elements from the upper triangular 
part of K in Eq. (6), the problem of stiffness synthesis with limited 
number of variable geometry parameters deals with finding the geometry 
of the base platform (i.e., finding ai, bi, i=1,2,3) of the robot in Fig. 1.  

To fully depict the 3×3 stiffness matrix, all the six equations in Eq. 
(7)given below must be fulfilled together with the three equations in Eq 
(4). 
Since the planar robot of Fig. 1 has a kinematic redundancy of order 
three, only three stiffness equations from Eq. (7) can be simultaneously 
fulfilled. 

)7( },y,yy,x,xy,xx{nnn|,0kk 321desiredinin 3,2,1i θθθθ∈≠≠=− = 

Note that this results in ( )6
3 =20 systems of six polynomials with each 

having a total degree of 2 in ai, bi (i=1,2,3). 
Generally, we ask whether it is possible to solve this problem for any 

such triplet and, if so, is changing the directions of the lines in Fig. 2 
enough to allow controlling all such triplets? 

To solve the polynomial systems derived from Eq. (4) and Eq. (7) ,the 
method of multiplication tables’ eigenvalues (see Stetter (1993)) is used. 
The following sub-section briefly describes this method. Further details 
can be found in Möller and Stetter (1995) and Cox et al. (1998). 
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5. The method of eigenvalues for solving 
polynomial systems 

Let C[x1..xm] represent the ring of polynomials with variables x1..xm, 
and coefficients over the complex field, C. Let also S={p1,p2,..pn | 
p1,p2..pn∈C[x1..xm]} be a system of n polynomials with a corresponding 
zero-dimensional Ideal I =<p1,p2,..pn>, I ⊂C[x1..xm]. The variety V(I) of 
solution is defined by all the m-tuples of x1..xm such that p1=p2=..pn=0, 
i.e., V(I)={[x1..xm]∈Cm | p1=p2=..pn=0}. We seek all the solutions of S. 

The original system of polynomial equations, S, can be replaced by 
another minimal set of polynomials, G={g1...gt}, called standard basis (or 
Gröbner basis) of the ideal I using Buchberger’s algorithm, Buchberger 
(1965), which is not reviewed here for lack of space. Questions regarding 
ideal-membership of a given polynomial to I, solubility of S, and 
finiteness of the dimension of V(I) are readily answered when using this 
basis, Heck (1997). Also, for lexographic ordering G is a system of 
polynomials with successively eliminated number of variables as in the 
result of Gauss-Jordan elimination method for linear equations. 
However, this elimination method is unfavorable for large systems due to 
the computation effort associated with this ordering, Cox et al. (1998).   

Two polynomials ]x..x[g,f m1C∈ , are said to be congruent modulo I 
, Imodgf ≡ , if f-g∈I. Consequently, f and g have the same normal form 
with respect to G and equal cosets [g]=[f]. A coset [f] of f∈C[x1..xm] is the 
sub-group of C[x1..xm] in which all its elements have the same normal 
form with respect to G, [f]=f+I={f+h | h∈I}. The totality of cosets of the 
polynomials in C[x1..xm] is the quotient ring of C[x1..xm] modulo I 
indicated by C[x1..xm]/I, i.e., C[x1..xm]/I={f+I | f∈C[x1..xm]}.  

Given two polynomials ]x..x[g,f m1C∈  then a normal form arithmetic 
similar to number arithmetic exists for addition and multiplication: 

( ) ( ) ( )gnfngfn fff +=+  and ( ) ( ) ( )( )gnfnngfn ffff = . Since every normal 
form is associated with a coset and vise-versa, this arithmetic is also 
translated to an associated coset arithmetic in the ring C[x1..xm]/I 
resulting in the fact that C[x1..xm]/I  is a vector space in nC . Let B be a 
basis of monomials for this space B={bi, i=1..n}. This means that the 
remainder (or normal form) of any f∈C[x1..xm] is given by: 

)8(  ( ) Bb,c|bcnfn ii
n..1i

iiff ∈∈⎟
⎠
⎞

⎜
⎝
⎛ ∑=
=

C 

)9(     ∑≡
= n..1i

ii modbcf Ior in congruence terms:                    

Define the monomial basis vector b=[b1, b2, ...bn]t , bi∈B, i=1..n, then each 
polynomial f∈C[x1..xm] has a multiplication table Mf  such that: 

)10(  Imodf f bMb ≡  
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Since the congruence relation in Eq. (10) indicates that I∈− bMb ff  
then 0bMb =− ff  for all the points of V(I). Consequently, the 
eigenvalues method is based on Eq. (11): 

)11(  ( ) 0bIM =− ff  
Equation (11) shows that the eigenvalues of Mf are the values of f for all 
the points of V(I). If f is taken as f=x1 then Eq. (11) gives all the 
coordinates x1 of the points of V(I). Thus, by constructing the 
multiplication tables xm1x ...MM  and solving for their eigenvalues, all the 
values of the coordinates x1...xm for the points of V(I) are obtained. The 
minimal polynomials of xiM , i=1..m, when written with xi as its variable, 
give the monic generators of the elimination ideals ]x[ iCI ∩ .  

There are both symbolic and numerical advantages of this method 
compared to standard sequential elimination of variables by resultants, 
Raghavan and Roth (1995), Neilsen and Roth (1999). Since this method 
is based on Gröbner basis construction, solvability of the system of 
polynomial equations is readily determined. Moreover, this method is 
unaffected by the term order used for the computation of G, which 
reduces the computation time when using more efficient term orders 
such as total degree order, Cox et al. (1998). Compared to sequential 
elimination methods, in this method the numerical computation is kept 
to a minimum since numerical values are used only in the computation 
procedure of eigenvalues and the solution of each coordinate xi is 
independent of the numerical solutions of the other variables and, thus, 
it is unaffected by computation errors in the other variables xj.   

6. Application to the parallel planar robot 
To answer the questions of section 4, the reduced Gröbner bases 

associated with all the 20 possible systems of equations in the form of Eq. 
(7) were computed. A total-degree ordering with a1>b1>a2>b2>a3>b3 was 
used for reducing the computation effort of these bases.  

The non-solubility of a polynomial system is determined by checking 
whether its reduced Gröbner basis is {1}, Adams and Loustanau (1994). 
Performing this task using Maple® shows that all the polynomial systems 
including equations for simultaneously fulfilling the desired values of kxx 
and kyy are unsolvable. Consequently, changing the directions of the 
prismatic actuators relative to the moving platform is not sufficient for 
simultaneously achieving these stiffness elements.  

Next, the problem of Eq. (7) for kxx, kxy, and kxθ is solved, i.e., all the 
stiffness elements in the x direction of PCS are prescribed based on task 
requirements. The reduced Gröbner basis for this problem, hereafter 
called G, with total degree ordering a1>b1>a2>b2>a3>b3 has 28 generators 
of degrees ranging from 1 to 5 in the variables. The ith column in table 1 
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presents the degrees of the ith basis polynomial in the variables 
corresponding to a1,b1,a2,b2,a3,b3.  It can be seen that the total degree 
ranges from 4 to 8. This basis is not presented here due to lack of space.  

Table 1.  Degrees of the 28 polynomials of G in the variables  

a1 
b1 
a2 
b2 
a3 
b3 

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
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, , , , , , , , , , , , , , , , , , , , , , , , , , ,0 0 0 2 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 1
, , , , , , , , , , , , , , , , , , , , , , , , , , ,0 1 2 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 0 1
, , , , , , , , , , , , , , , , , , , , , , , , , , ,0 2 2 2 2 2 1 1 3 2 2 1 1 0 0 2 1 1 1 2 1 2 2 1 1 0 0 1
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, , , , , , , , , , , , , , , , , , , , , , , , , , ,2 2 2 2 2 1 1 1 2 2 2 3 3 3 3 4 2 2 2 4 2 5 4 4 4 4 4 3

 

The leading terms of G are given by: 
 

)12(  
 
 

Based on the finiteness theorem, Adams and Loustaunau (1994), the 
system of polynomials corresponding to G is solvable and has a zero-
dimensional variety. This is established by examining the group of 
leading terms in Eq. (12) which shows that each variable among 
{a1,b1,a2,b2,a3,b3} appears alone as a leading term in G with the 
corresponding degrees of {2, 2, 2, 3, 2, 5}. Consequently, the group of all 
the remainders in C[a1,b1,a2,b2,a3,b3]/I , denoted by D, has terms with 
maximal degrees of {1, 1, 1, 2, 1, 4} in {a1, b1, a2, b2, a3, b3}, respectively.  

The monomial basis of C[a1,b1,a2,b2,a3,b3]/I, denoted by B, is found 
from D by extracting all the monomials in D that are equal to their own 
normal forms, Cox et al. (1998). This leads to the 48-dimensional 
monomial basis in Eq. (13): 

 
)13(  

 
 

Next, three 48×48 multiplication tables, Mf1, Mf2 and Mf3 for 111 baf += , 
222 baf += , 333 baf +=  are computed together with their corresponding 

minimal polynomials mpf1, mpf2, and mpf3. These minimal polynomials 
have only even degrees, so there are at most 24 pairs of complex 
solutions and their conjugate solutions (48 in total). These solutions give 
the values of f1=a1+b1, f2=a2+b2, and f3=a3+b3. The next step is solving for 
the values of a1, b1, a2, b2, a3, b3. These values establish the locations of 
the sliders on the circular base. The solution algorithms for obtaining the 
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values of (a1, b1), (a2, b2), and (a3, b3) are identical; hence, only the 
algorithm for obtaining (a1, b1) is presented herein.  

Let ±C be one of the 24 solution pairs of mpf1. The matching solutions 
for (a1, b1) are the intersections of the line and the ellipse of Eq. (14). 

)14( 01babaCba 11
2

1
2

111 =−++∩±=+ 
The solutions for +C and for –C are: 
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Since only real solutions for (a1, b1) are of interest, only the admissible 
real solution pairs of mpf1 satisfying 32C ≤  are used in Eq. (15). Note 
that the two solutions for +C (and –C) represent a mirror image about 
the bisector of the angle α in Fig. 2 and that the two solutions for +C are 
mirror images of the two solutions for –C about the normal to the 
bisector of the angle α in Fig. 2.  

Once this procedure is repeated for the roots of mpf2 and mpf3, sets of 
solutions for (a1, b1), (a2, b2) and (a3, b3) are obtained and all the 
sextuplets (a1, b1, a2, b2, a3, b3) satisfying Eqs. (4, 7)  are found. 

7. Numerical Example 
To verify the solution procedure, a predefined geometry of the planar 

robot was selected with [a1,b1,a2,b2,a3,b3]=[ 0,1,0,1,33,33 ]. This 
corresponds to [θ1, θ2, θ3]=[30°, 240°, 120°], where θ1, θ2, and θ3 are the 
angles of 1l̂ ,,  2l̂ ,,  and 3l̂   relative to xp in Fig. 2. The corresponding stiffness 
matrix, using a platform radius of 0.1[m] and kd=1e+5 [N/m], is: 

)16( 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

500.000000.5000.00000-
0.99174999.99943301.2701

5000.00000-8943301.270100125000.000
K 

The aim of the following example is finding all the solutions for (ai, bi), 
i=1,2,3, for obtaining the stiffness elements kxx, kxy, and kxθ of Eq. (16) at 
a given manipulation point of the path. The solution method is validated 
if one of the solutions gives the values of the predefined geometry.  

Three minimal polynomials, mpf1, mpf2, and mpf3 are obtained with 
their solutions. Table 2 lists only the admissible distinct solution pairs 
C1, C2, and C3, of mpf1, mpf2, and mpf3, respectively. These solutions are 
distinct up to 1e-3 resolution from other close solutions. Table 3 lists the 
distinct 16 solutions for ai, bi, i=1,2,3. Note that, as expected, Table 3 
contains a solution corresponding to the exact values of [ 0,1,0,1,33,33 ] 
of the pre-defined example. These 16 solutions are presented in Fig. 3. 
Note also that only the last eight solutions, (i) through (p), are non-
singular. 
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8. Conclusions 
This investigation addresses the stiffness synthesis problem of a 

planar kinematically redundant 3-DOF robot by controlling a limited 
number of its free geometric parameters. It is shown that it is impossible 
to control both Cartesian stiffness elements kxx and kyy, by only changing 
the locations of the sliders on its circular base. In an example of 
controlling kxx, kxy, and kxθ, it is shown that, at most, there are 48 
solutions in the complex plane. The numerical example solved shows only 
eight real non-singular solutions.  
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Table 2. Admissible real distinct solutions of mpf1, mpf2, and mpf3 
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C2 ±0.38207e-13 ±0.376135 ±0.967869 ±0.999999 
C3 ±0.514087 ±0.968432 ±(1+12e-30)* ±1.154700 
* All numerical computations were made with 32 digits, but results are 
truncated to 6 decimal digits for presesntation purposes 
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Stiffness Synthesis of a
Variable Geometry
Six-Degrees-of-Freedom
Double Planar Parallel
Robot

Abstract

In this paper, we address the stiffness synthesis problem of vari-
able geometry double planar parallel robots. For a desired stiffness
matrix, the free geometrical variables are calculated as a solution
of a corresponding polynomial system. Since in practice the set of
free geometrical variables might be deficient, the suggested solution
addresses also the case where not all stiffness matrix elements are
attainable. This is done through the use of Gröbner bases that de-
termine the solvability of the stiffness synthesis polynomial systems
and by transforming these systems into corresponding eigenvalue
problems using multiplication tables. This method is demonstrated
on a novel variable geometry double planar six-degrees-of-freedom
robot having six free geometric variables. A solution of the double
planar stiffness synthesis problem is obtained through decomposing
its stiffness matrix in terms of the stiffness matrices of its planar units.
An example of this procedure is presented in which synthesizing six
elements of the robot’s stiffness matrix is obtained symbolically and
validated numerically yielding 384 real solutions.

KEY WORDS—parallel robot, double planar robot, re-
configurable, stiffness synthesis, Gröbner bases

1. Introduction

Robots are designed to perform various tasks that involve
complex manipulations and interactions with their environ-
ment. Consequently, the performance of fixed geometry (non-
redundant) robots is compromised for some tasks, e.g., a fixed
geometry robot performing a task involving contact with the
environment has stiffness characteristics determined by its
inverse kinematics solution rather than by the task specifica-
tions. In contrast tofixed geometry parallel robots, using rigid

∗Mr. Simaan is currently affiliated with CISST at Johns-Hopkins University.
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fixed geometry platforms,variable geometry parallel robots
can change the geometry of their base/moving platforms. In
the present study we focus on variable geometry robots that
can change their geometry to accommodate task-based re-
quirements of stiffness and we present a solution for double
planar (DP) variable geometry robots.1

Various methods of adding redundancy were suggested in
the literature to enhance robot performances. Actuation re-
dundancy (antagonistic actuation) was used in stiffness mod-
ulation of parallel manipulators and synthesis of RCC (Re-
mote Center of Complience) devices to control their stiffness
and compliance center (Yi, Freeman, and Tesar 1989; Yi and
Freeman 1992; Kim, Lee, and Yi 1997; Kock and Schumacher
1998). However, for robots with actuators having high stiff-
ness values or non-back-drivable actuators, the contribution
of the antagonistic actuation to the overall stiffness is dimin-
ished unless large antagonistic forces are used (Yi and Free-
man 1993). Furthermore, stiffness modulation is affected by
higher-order singularities (Yi and Freeman 1993; Simaan and
Shoham 2003).

Kinematic redundancy of robots was used by Merlet,
Preng, and Daney (2000) to design a six-degrees-of-freedom
(6-DoF) Stewart–Gough robot as a five-axis milling machine.
The robot’s one extra DoF was used to include a desired tra-
jectory inside the workspace of the robot and to ensure that
the robot path is singularity-free. Investigations focusing on
stiffness/compliance characteristics include the works of Pat-
terson and Lipkin (1990, 1993) who classified robot compli-
ance matrices based on their eigenscrews and twist compli-
ant axes and discussed the relations among twist compliant
axes and wrench compliant axes. Loncaric (1985) and Huang
and Schimmels (1998a) characterized the space of realizable
stiffness matrices using only simple springs. Other works fo-
cused on stiffness synthesis of systems of springs. Huang
and Schimmels (1998b) and Roberts (1999) determined the

1. The method was also applied for special cases of Stewart–Gough robots
and is a subject of a future publication.
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minimal number of simple springs for realizing a stiffness
matrix while Ciblak and Lipkin (1999) discussed the lim-
its on the minimal number of linear and torsional springs for
achieving a general rank-r stiffness matrix. Huang and Schim-
mels (1998a, 1998b), Roberts (1999), and Ciblak and Lipkin
(1999) presented synthesis algorithms using Cholesky decom-
position of the desired stiffness matrix to compute the required
springs for obtaining a desired stiffness of a system of two
rigid bodies connected by springs. These algorithms consid-
ered the general synthesis problem and assumed no limitation
on the geometry of the springs (connection points and spring
constants).

The present investigation differs from the above-
mentioned works. It suggests a method to synthesize a re-
quired stiffness with given actuator stiffness. Moreover, since
in practice only a limited number of variable geometry param-
eters are available, the present investigation offers a scheme
to determine which set of stiffness matrix elements can be
synthesized.

One promising method to overcome the robot-to-task fit-
ness problem is the use of variable geometry parallel robots.
However, currently there are only a small number of works
that address this approach. Among these works are the work
of Zhiming and Song (1998), who investigated the design as-
pects of modular Stewart–Gough platforms with workspace
and joint limits considerations, and the work of Zhiming and
Zhenqun (1999) who presented an algorithm for identifying
the parameters of the joint locations on the base in a modu-
lar Stewart–Gough platform. The recent work of Du Plessis
and Snyman (2002) presented an algorithm for changing the
geometry of a planar 3-DoF manufacturing robot. Their al-
gorithm is based on minimizing an objective function defined
by the overall maximal magnitude of the actuator forces for
a given desired path. These forces were updated by the in-
verse dynamics model of the robot. The optimization was
constrained with given limits on the length of the actuators.

Recently, Simaan and Shoham (2002) investigated a vari-
able geometry planar 3-DoF robot for stiffness synthesis pur-
poses. This robot can change the geometry of its base platform
to accommodate the required stiffness characteristics specific
to each task. It has been shown, via polynomial formulation
of the stiffness matrix in terms of the free geometry param-
eters, that for a given set of variable geometry parameters
not all stiffness matrix terms are attainable, and a solution of
the task-based stiffness synthesis problem through the use of
Gröbner bases was presented.

In the present investigation we utilize the results of above-
mentioned work for the stiffness synthesis of a 6-DoF robot
composed of two variable geometry 3-DoF planar units. The
aim of the synthesis is to obtain a specific stiffness for a given
position/orientation of the robot’s moving platform.

The following section of this work presents the architec-
tures of the planar 3-DoF variable geometry units—one level
out of two—that composes the DP 6-DoF robot. In Section 3
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Fig. 1. Planar robot with variable geometry base.

we state the task-based stiffness synthesis problem. In Sec-
tion 4 we decompose the stiffness of the DP robot in such a
way as to allow the decomposition of the stiffness synthesis
problem of the DP robot into two similar stiffness synthesis
problems for each of its planar units. In Section 5 we present
the solution algorithm for the stiffness synthesis problems of
the 3-DoF planar units and the complete DP robot. In Section 6
we present a numerical example of the algorithm validating
the theoretical results.

2. Variable Geometry 6-DoF Double Planar
Robot

2.1. Variable Geometry Planar Robot

Figure 1 shows the variable geometry robot presented in
Simaan and Shoham (2002) for stiffness synthesis. This robot
has a triangular moving platform connected to a circular base
by three kinematic chains composed of an active slider on the
circular base, a passive revolute joint, an active prismatic joint,
and another passive revolute joint on the moving platform.

The sliders on the circular base control the geometry of
the base platform and the prismatic actuators are the active
joints that manipulate the moving platform. This introduces a
kinematic redundancy of three in this 3-DoF planar robot.

2.2. Variable Geometry Double Planar Robot

Figure 2 shows the variable geometry DP robot based on two
similar planar units as in Figure 1. These planar units consti-
tute a variation over theDouble Circular-Triangular (DCT)
robot presented in Simaan, Glozman, and Shoham (1998) and
Brodsky, Glozman, and Shoham (1998), which, in its turn, is
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 1 
 

Gripper (end effector)  7 
 Lead screw  s Center point of the spline joint 

 2 
 

Lead-screw nut  8 
 Linear spline joint 000 ˆ,ˆ,ˆ zyx  World Coordinate System (WCS) 

 3 
 

Upper universal joint  9 
 

Lower universal joint 
ggg ˆ,ˆ,ˆ zyx  Gripper Coordinate System (GCS) 

 4 
 

Upper moving platform  10 
 

Lower moving platform 
uuu ˆ,ˆ,ˆ zyx  Upper platform-attached 

coordinate System  

 5 
 Prismatic joint (active) g Center point of the 

gripper  
bbb ˆ,ˆ,ˆ zyx  Lower platform-attached 

coordinate System  

 6 
 Slider (active) n Center point of the nut q Universal joints’ inclination angle  

Fig. 2. The DP variable geometry robot.

a variation over theDouble Triangular Robot presented by
Daniali, Zsombar-Murray, and Angeles (1993).

The two planar units of the DP robot control the position
and orientation of their moving platforms by changing the
lengths of their prismatic joints and the location of the sliders
on their circular bases. In total, the DP robot has twelve con-
trollable parameters: the six prismatic actuator lengths and the
six locations of the sliders on their circular bases. All joints
in this robot, other than the prismatic joints and the sliders on
the circular bases, are passive joints.

The end effector of the DP robot is a gripper connected to
a screw body that passes through the centers of the moving
platforms of the planar units. The screw body mates with a nut

supported on a universal joint on the upper moving platform
and passes through a passive linear spline coupling supported
on a universal joint on the lower moving platform. Changing
the planar positions of the upper and lower moving platforms
controls the four DoFs of the line passing through their cen-
ters while controlling their rotations controls the displacement
along the line and the orientation of the end effector about the
line. The inverse kinematics of this robot is presented in detail
in Appendix A.

The objective of this paper is to determine the locations of
the six redundant sliders in order to achieve a desired stiffness
goal for the DP robot.
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3. Stiffness Synthesis with a Limited Number of
Variable Geometry Parameters

Since in the DP robot only six parameters are redundant and
their freedom lies in two planes, not any required stiffness is
attainable. Stiffness synthesis with a limited number of vari-
able geometry parameters, as in our case, calls for theoretical
analysis that determines which terms of the stiffness matrix
are controlled by the free geometrical parameters. In this pa-
per the stiffness of the DP robot is formulated as a linear
combination of the stiffnesses of its planar units. This allows
us to decompose the stiffness synthesis problem of the DP
robot into two similar stiffness synthesis problems dealing
with finding the required locations of the sliders for each of
the two planar units.

The stiffness matrices of the planar units are formulated
(see Section 4) as polynomials in the free geometric variables;
thus, different stiffness synthesis problems correspond to dif-
ferent systems of polynomials in these variables. The solubil-
ity of these polynomial systems was investigated in Simaan
and Shoham (2002). This paper elaborates on the solution
method and extends the solution procedure of the stiffness
synthesis problem presented therein to the 6-DoF DP robot.

To solve the stiffness synthesis polynomial systems, the
method of multiplication table eigenvalues (Stetter 1993) is
used. This method was explained in Simaan and Shoham
(2002) and it is briefly described in Appendix B. Further de-
tails of this method can be found in Möller and Stetter (1995)
and Cox, Little, and O’Shea (1998).

4. Robot Stiffness Formulation

4.1. Polynomial Formulation for the Stiffness of the
Planar Units

In this section, the stiffness matrices of the planar units of the
DP robot are formulated as a function of the variable geome-
try parameters of its base platform, i.e., the slider positions on
the circular bases. For any given desired gripper position and
orientation, the inverse kinematics of the DP robot is solved
and the corresponding positions and orientations of the planar
units’ moving platforms are found (see Appendix A). Once
this solution is obtained, the only free geometric parameters
that remain undetermined are the slider locations of the pla-
nar units. These locations are derived from stiffness synthesis
requirements.

The unit vectors directions(l̂i ,i=1,2,3) along the prismatic
actuator axes are the only free parameters that can be con-
trolled by moving the sliders on the circular bases (Figure 1)

l̂i = ai ê1 + bi ê2 i = 1,2,3

ê1 = [1, 0, 0]T ê2 = [0, 1, 0]T
(1)

where the symbol∧ indicates a unit vector,̂e1 andê2 are unit
vectors alonĝxw andŷw respectively,̂1i is a unit vector along
the ith prismatic actuator, andai, bi are the projections of̂1i
on ê1 andê2. To make sure that the vector1̂i is a unit vector,
the coordinatesai andbi (i = 1,2,3) must fulfill

a2
i
+ b2

i
− 1 = 0. (2)

The geometry of the moving platform used for this exam-
ple approximates an equilateral triangle with a characteristic
dimension h. The three revolute joints in the platform coordi-
nate system (PCS), see Figure 1, are given by

P1 = [−5h,−3h,0]T P2 = [0,6h,0]T

P3 = [5h,−3h,0]T.
(3)

These vectors are transformed to the world coordinate system
(WCS) by a rotation transformation,R, given by the param-
etert representing the tangent of half the moving platform’s
rotation angle:

R =




1 − t2

1 + t2
−2

t

1 + t2
0

2
t

1 + t2

1 − t2

1 + t2
0

0 0 1


 . (4)

The Jacobian of the planar robot in Figure 1, with its sliders
locked on the circular base, is given in eq. (5). The rows of
this Jacobian are the Plücker line coordinates of the three axes
of the prismatic actuators (Merlet 1989, 2000):



a1 b1 0 0 0
(
10 th

1+t2 + 3(1−t2)h
1+t2

)
a1

+
(
−5(1−t2)h

1+t2 + 6th
1+t2

)
b1

a2 b2 0 0 0 −6(1−t2)ha2
1+t2 − 12thb2

1+t2

a3 b3 0 0 0
(
−10 th

1+t2 + 3(1−t2)h
1+t2

)
a3

+
(
5(1−t2)h

1+t2 + 6th
1+t2

)
b3



. (5)

Since in this paper we study the effect of stiffness mod-
ification/synthesis using a limited number of free geometric
variables and a given set of actuators, we focus on the effect
of geometry change instead of changing the stiffness coef-
ficients of each actuator, as was done in previous works on
stiffness control (Mason and Salisbury 1985). Accordingly, a
simplifying assumption is made that the sliders on the circular
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platform have a mechanical means to lock rigidly on the cir-
cular base once the desired geometry of the base is obtained
or that the stiffness coefficients of the sliders are considerably
larger than the stiffness coefficients of the prismatic actuators.
The three active prismatic actuators are assumed to be identi-
cal, having stiffness coefficient kd. This stiffness coefficient is
either determined by the control law and transmission prop-
erties of each actuator or it is determined by the mechanical
properties of the actuator for the case of non-back-drivable
actuators. In this paper we assume non-back-drivable actua-
tors with fixed stiffness coefficient, kd, and that there is no
preload on the robot. In accordance with all these assump-
tions, the 6× 6 stiffness matrix is symmetric and is given
by K = kdJTJ, (Gosselin 1990; Tsai 1999) and the reduced
planar 3× 3 stiffness matrix is then constructed by taking
only the stiffness elements in thexx, xy, xθ , yy, yθ , andθθ
directions.

4.2. Formulation of the Stiffness of the Double Planar Robot

In this section we combine the stiffness of the planar units to
obtain the stiffness of the DP robot. This is used in Section 5
to determine which of the stiffness matrix elements can be
controlled by the robot’s redundant geometry variables.

Referring to Figure 2, the letters “s” and “n” indicate the
center points of the spline joint and the nut, respectively, while
the letter “g” represents the gripper center point and the letters
“u” and “b” represent the upper and lower planar platforms.

Throughout this paper, the letters “v” and “ω” are used
to indicate linear and angular velocities while the letters “s”,
“n”, and “g”, whenever used as subscripts, indicate a property
associated with the linear spline, the nut and the gripper, re-
spectively. Also, the letters “u” and “b” are used as subscripts
to indicate properties associated with the upper and the lower
moving platforms, respectively. Using this symbol conven-
tion,vs indicates the linear velocity of the spline center point,
whileωωωg indicates the angular velocity vector of the gripper
andωgx indicates the component of this vector along thex-axis
of the WCS. The symbolṡxg, ẋu andẋb are respectively used
to indicate the generalized velocities of the gripper and the
upper and lower moving platforms of the planar units. These
generalized velocities are defined in eqs. (6)–(8) (all vectors
are column vectors expressed in the WCS unless otherwise
specified):

ẋg = [
vgx, vgy, vgz, ωgx, ωgy, ωgz

]T
(6)

ẋu = [
vnx, vny, θ̇u

]T
(7)

ẋb = [
vsx, vsy, θ̇b

]T
. (8)

The actuator speeds of the upper planar platform and lower
planar platform are respectively indicated byq̇u andq̇b. These
vectors are 3× 1 vectors having the speeds of the active

prismatic actuators in Figure 1. The vector of actuator speeds
for the DP robot is defined bẏq:

q̇ = [
q̇T
u
, q̇T

b

]T
. (9)

UsingJ to denote the Jacobian of the DP parallel robot allows
us to write its instantaneous inverse kinematics:

q̇ = Jẋg. (10)

The instantaneous inverse kinematics of the upper and lower
moving platforms are given by

q̇b = Jbẋb = JbAbẋg q̇u = Juẋu = JuAuẋg (11)

whereJb and Ju are the Jacobians of the lower and upper
planar units given in eq. (5) andAu andAb are 3× 6 matrices
to be formulated in the following subsection.

According to the definition in eqs. (9) and (10), the Jaco-
bian of the DP robot is given by

J =
[

JuAu

JbAb

]
. (12)

Using the definition of the stiffness matrices of the planar
units, we obtain the stiffness of the DP robot as a combination
of the 3×3 reduced stiffness matrices,Ku andKb, of the upper
and lower planar units:

K = kdJTJ = AT
u
KuAu + AT

b
KbAb. (13)

4.3. Formulating Au and Ab

The explicit expressions for matricesAu andAb in eq. (13)
are formulated herein based on velocity constraint analysis of
the planar units. These equations stem from the fact that the
nut and the spline have no velocity component in the direction
of ẑ0 (Figure 2), since they are constrained by the upper and
lower moving platforms to planar motions.

Let rij (i, j = 1, 2, 3) indicate the elements of the rotation
matrix from the gripper coordinate system (GCS) to the WCS.
The unit vector̂zg in Figure 2 is given by the third column of
this matrix, eq. (14), whilêz0 is given by[0,0,1]T:

ẑg = [r13, r23, r33]
T . (14)

We respectively define the vectors from the gripper center to
the nut and spline center points asrgn andrgs

rgs = −ls ẑg rgn = −lnẑg (15)

whereln andls respectively indicate the distances between the
gripper center and the center points of the nut and the linear
spline.

Based on the generalized velocity,ẋg, in eq. (6), the angular
velocity matrix of the gripper is give by���g:

���g =

 0 −ωgz ωgy

ωgz 0 −ωgx
−ωgy ωgx 0


 . (16)
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The angular velocity of the linear spline,ωωωs , is the same as the
angular velocity of the gripper,ωωωg, which is rigidly attached
to the screw body (Figure 2):

ωωωs = ωωωg. (17)

The projection of the angular velocity of the nut along the
screw axis is indicated byan:

ωωωT
n

ẑg = an. (18)

Let the symbolsvng andvsg indicate the velocities of the nut
and the spline relative to the gripper, which is rigidly attached
to the screw. Also, letas indicate the speed of slip in the linear
spline and let L be the lead of the screw (the amount of linear
translation per turn of the screw relative to its nut). Using these
definitions,vsg is given by the slip speedas along the screw
axis, ẑg, while the velocity of the nut relative to the gripper
is given by the relative angular velocity of the nut about the
screw times the lead of the screw:

vsg = as ẑg vng = [
L (ωωωn −ωωωs)

T ẑg
]

ẑg. (19)

Referring to Figure 2, the linear velocities of the spline and
nut center points are given by the linear velocity of the gripper
center point, the angular velocity matrix of the gripper,���g,
the corresponding relative slip velocity along the screw axis
and their corresponding location with respect to the gripper
center point:

vs = vsg + vg +���g rgs

vn = vng + vg +���g rgn.
(20)

Since both the linear spline and the nut are each supported
on their corresponding universal joint (Figure 2), we need to
consider the instantaneous kinematics of these joints in order
to relate the angular velocity of their corresponding moving
platform with their angular velocity about the screw axis. The
instantaneous kinematics of these universal joints is given by

θ̇b = fbθ̇s = fb
(
ωωωT
g

ẑg
)

θ̇u = fuan. (21)

The angular velocity transmission functions,fu andfb, of the
U-joints, according to Wagner and Cooney (1979), are

fu =
(
1 − sin2

(βu) sin2
(θ)
)

cos(θ)

fb =
(
1 − sin2

(βb) sin2
(θ)
)

cos(θ)

(22)

whereθ is the universal joint angle (angle betweenẑg andẑ0),
andβu andβb are the angles from the axes of the upper and
lower driving yokes to the normal to the plane defined byẑg
and ẑ0. Figure A3 (in Appendix A) shows the angleβb; the
other angleβu is defined similarly for the upper U-joint. The

driving yokes are rigidly connected to the moving platforms
while the lower and upper driven yokes are, respectively, the
spline body and the nut with their corresponding hinges (see
Figures A3 and A4 in Appendix A).

Both the nut and spline center points are limited to perform
planar motions. Accordingly, the velocity constraint equations
used for finding the angular velocity component,an, of the nut
and the sliding velocity of the spline joint,as , are given by

vT
s
ẑ0 = 0 vT

n
ẑ0 = 0. (23)

By using the formulation in eq. (20) and solving eq. (23)
for an andas we obtain

an = Lr33ωgxr13 + Lr33ωgyr23 + Lr2
33ωgz

Lr33

+ −vgz − ωgylnr13 + ωgxlnr23

Lr33

(24)

as = −vgz + ωgylsr13 − ωgxlsr23

r33

. (25)

Next these expressions foran andas are substituted in eqs.
(19)–(21) and eqs. (7) and (8). Noẇxu andẋb are expressed
in terms of the elements oḟxg. Noticing the relationṡxb =
Abẋg andẋu = Auẋg in eq. (11), we obtain the expression for
the elements ofAu andAb by reading off the corresponding
coefficients of the elements ofẋg. This results in the following
expressions forAu andAb:

Au =




1 0 − r13

r33

r13lnr23

r33

0 1 − r23

r33

lnr
2
33 + lnr

2
23

r33

0 0 − fn

Lr33

fn(Lr33r13 + lnr23)

Lr33

−lnr2
33 − lnr

2
13

r33

lnr23

− r13lnr23

r33

lnr13

fn(Lr33r23 − lnr13)

Lr33

fnr33




(26)

Ab =




1 0 − r13

r33

r13lsr23

r33

0 1 − r23

r33

lsr
2
33 + lsr

2
23

r33

0 0 0 fbr13

− lsr
2
33 + lsr

2
13

r33

lsr23

− r13lsr23

r33

−lsr13

fbr23 fbr33


 .

(27)
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SubstitutingAu andAb in eq. (13) yields the stiffness ma-
trix of the DP robot in the WCS. The explicit expression for
this matrix is not given for space considerations; however, one
noticeable remark is in order regarding the characteristics of
this matrix.

Huang and Schimmels (1998a) discussed the form of the
stiffness matrix of a rigid body supported on simple linear or
rotational springs and showed that, if the stiffness matrix is
divided according to eq. (28), then it can be characterized by
the nullification of the trace of its submatrixB, eq. (29):

K =
{[

A B
BT C

]
∈ R6×6 : A = AT, C = CT, A,C ∈ 3×3

}
(28)

tr (K���) = 2tr (B) = 0 ��� ≡
[

0 I
I 0

]
. (29)

The condition in eq. (29) stems from the fact that the axes
of simple linear springs are Plücker line coordinates fulfilling
theKlein quadric condition (Pottman 1999). For the DP robot,
the trace in eq. (29) has a distinct value given by

tr (K���) = 2tr (B) = −2
f 2
u
Ku

θθ

L
(30)

whereKu
θθ

indicates the rotational stiffness of the upper pla-
nar unit, and L is the screw lead. This is an important char-
acteristic of the DP robot since its architecture produces a
screw spring acting on its gripper, although all its actuators
are simple linear springs.

In the following section we present the solution of the stiff-
ness synthesis problem for the DP robot based on the stiffness
decomposition according to eq. (13). The desired stiffness
characteristics of the DP robot are decomposed into two sets
of desired stiffness characteristics for its planar units, and the
slider locations are then calculated.

5. Stiffness Synthesis for the Double Planar
Robot

5.1. General Description of the Synthesis Algorithm

Theoretically, it is possible to use a direct approach for the
stiffness synthesis by using a polynomial formulation to the
stiffness of the DP robot in terms of the locations of the six
sliders of its planar units. This approach requires solving a
system of twelve polynomials for twelve unknowns (ai , bi ,
i = 1,2,3 for each planar unit), in which six polynomials are
in the form of eq. (2) and the other six are the equations for
depicting the values of the six synthesized stiffness elements
in the stiffness matrix. However, the polynomial systems as-
sociated with this approach are not practically solvable for
the slider locations in the general case due to their size and

degree. Therefore, an indirect approach using the stiffness
decomposition of eq. (13) is implemented. This stiffness de-
composition gives the DP robot’s stiffness matrix in terms of
the stiffness matrices of its upper and lower planar units. Us-
ing this approach, the stiffness synthesis algorithm begins by
decomposing the given stiffness synthesis problem into two
simpler stiffness synthesis problems for the planar units and,
later, these systems are solved separately.

In Section 5.2 we present the stiffness synthesis problems
for the planar units. In Section 5.3 we present the solution to
these stiffness synthesis problems and characterize the non-
solvable stiffness synthesis problems for the given set of free
geometric parameters, i.e., the slider locations. In Section 5.4
we present the method for decomposing the stiffness synthesis
problems of the DP robot into two stiffness synthesis problems
of its planar units.

5.2. Stiffness Synthesis for the Planar Units

Each planar 3-DoF unit has an associated 3× 3 symmetric
stiffness matrix (mentioned in Section 4.1) and the slider lo-
cations as three redundant parameters available for stiffness
synthesis. Given a desired triplet of stiffness elements from
the upper triangular part of the symmetric 3× 3 stiffness ma-
trix, the associated problem of stiffness synthesis is finding
the required geometry of the base platform (i.e., findingai ,
bi , i = 1,2,3) of the planar robot in Figure 1.

To fully synthesize the symmetric 3× 3 stiffness matrix,
all six equations in eq. (31) must be fulfilled together with
the three equations in eq. (2). Since each planar mechanism
of Figure 1 has a kinematic redundancy of order 3, only three
stiffness equations from eq. (31) can be simultaneously ful-
filled. Accordingly, there are

(
6
3

)
=20 systems of six polyno-

mials with each having a total degree of 2 inai , bi (i = 1,2,3).
Each of these systems represents a different stiffness synthesis
problem in which a corresponding triplet of stiffness elements
of the 3× 3 stiffness matrix is being synthesized:

Kij −Kdesired
ij

= 0 i = 1,2,3 i ≤ j. (31)

Equation (31) poses the question whether it is possible to
solve all the 20 stiffness synthesis problems, i.e., is changing
the directions of the lines in Figure 1 enough to allow control-
ling all the stiffness triplets corresponding to the 20 stiffness
synthesis problems?

5.3. Application of the Eigenvalue Method to the
Planar Units

In this subsection we use the method of multiplication ta-
ble eigenvalues given in Appendix B to solve the stiffness
synthesis problem for the planar units. To answer the ques-
tions listed in the previous subsection, the reduced Gröb-
ner bases associated with all the 20 possible systems of
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equations in the form of eq. (31) were computed. A total-
degree ordering (degree reverse lexicographical order) with
a1 > b1 > a2 > b2 > a3 > b3 was used.

When the reduced Gröbner basis equals {1}, the system of
polynomials has no solution (Adams and Loustanau 1994).
Hence, the use of Gröbner bases allows us to characterize the
space of solvable synthesis problems of robots with a lim-
ited number of free geometric parameters. For the particular
example of the planar units of the DP robot, it was found
that whenever bothkxx andkyy are specified then there is no
solution to the system of polynomials (Simaan and Shoham
2002b). Physically, this means that with the free geometry pa-
rameters (slider locations) it is impossible to synthesize both
kxx andkyy terms of the stiffness matrix.

To determine the solvability of the stiffness synthesis prob-
lems for the planar units, all 20 corresponding polynomial
systems mentioned in Section 5.2 were symbolically formu-
lated. These polynomial systems stem from eq. (31) for the
corresponding triplets of synthesized stiffness elements and
from eq. (2) for fulfilling the unit vector constraint on the
lines of the Jacobian. Then, the corresponding reduced Gröb-
ner bases for these polynomial systems were computed. All
the non-solvable stiffness synthesis problems correspond to a
reduced Gröbner basisG = {1} since in this case the ideal is
improper, i.e.,I = C[x1 . . . xm] whereC[x1 . . . xm] is the ring
of polynomials with variablesx1 . . . xm and coefficients over
the complex fieldC (Appendix B). Based on Hilbert’s weak
nullstellensatz theorem (Becker and Weispfenning 1993), an
ideal has an empty varietyV (I) (i.e., empty solution set) if
and only if I = C[x1 . . . xm]. Hence, by computing the re-
duced Gröbner bases and finding those that reduce to {1} we
find all the stiffness synthesis problems that are unsolvable.

Figure 3 gives a solvability map of all 20 possible stiffness
synthesis problems mentioned in Section 5.1. Each tile repre-
sents an entry in the reduced 3× 3 symmetric stiffness matrix
of the planar unit. Light gray tiles indicate the synthesizable
triplets while dark tiles indicate the non-synthesizable triplets
of the stiffness matrix elements.

As an example, consider stiffness synthesis ofkxx , kxy , and
kxθ elements of the stiffness matrix, i.e., all the stiffness ele-
ments in thex-direction are prescribed based on task require-
ments. The reduced Gröbner basis for this problem, hereafter
calledG, with total degree orderinga1 > b1 > a2 > b2 >

a3 > b3 has 29 generators of degrees ranging from 1 to 5
in the free geometry variables. The symbolic computation of
this particular basis took about 16 h using Maple on a 1Ghz
Pentium III processor. Theith column in Table 1 presents
the degrees of theith basis polynomial in the variables corre-
sponding toa1, b1, a2, b2, a3, b3. Table 1 shows that the total
degree of the equations ranges from 4 to 8. Due to space con-
siderations, this Gröbner basis is not presented here, but its
leading terms are shown in eq. (32).

[
a2

3, a2b2, a
2
2, b

2
1, a1b1, a

2
1, b1a2a3, a2a1a3, b

3
2, b

2
2b1, a1b

2
2,

Fig. 3. Solvability map for the stiffness synthesis problems
of the planar units.

b2
3b2a3, a3b

2
3a2, b

2
3b1a3, a1b

2
3a3, b

2
3b

2
2, b1a2b

2
3, b

2
3a2a1,

b3b
2
2a3, b1a3b2b3, a3b2a1b3, b

5
3, b

4
3a3, b2b

4
3, a2b

4
3, b

4
3b1,

b4
3a1, b1b2b

3
3, b2b

3
3a1

]
. (32)

Each variable among{a1, b1, a2, b2, a3, b3} appears alone
as a leading term inG with the corresponding degrees of {2,
2, 2, 3, 2, 5}, eq. (32). Consequently, based on the finiteness
theorem (Adams and Loustaunau 1994), the system in eqs.
(31) and (2) has a zero-dimensional variety. Also, the group
of all the reminders inC[a1, b1, a2, b2, a3, b3]/I , denoted by
D, has terms with maximal degrees of {1, 1, 1, 2, 1, 4} in
{a1, b1, a2, b2, a3, b3}, respectively. Hence, the monomial ba-
sis ofC[a1, b1, a2, b2, a3, b3]/I , denoted byB, is found from
D by extracting all the monomials inD that are equal to their
own normal forms (Cox, Little, and O’Shea 1998). This pro-
cedure took 97 s to compute and resulted in the following
48-dimensional monomial basis:[

1, b3, a3, b2, a2, b1, a1, b
2
3, b3a3, b2b3, a2b3, b1b3, a1b3,

b2a3, a2a3, b1a3, a1a3, b
2
2, b2b1, b2a1, b1a2, a2a1, b

3
3, b

2
3a3,

b2
3b2, b

2
3a2, b1b

2
3, b

2
3a1, a3b2b3, a2a3b3, b1a3b3, a3a1b3,

b3b
2
2, b2b1b3, a1b2b3, a2b1b3, a2a1b3, b

2
2a3, b2a3b1,

a1b2a3, b
4
3, a3b

3
3, b2b

3
3, a2b

3
3, b

3
3b1, b

3
3a1, b1b2b

2
3, a1b2b

2
3

]
.

(33)

To solve for the geometry free parameters (location of the
sliders) three 48× 48 multiplication tables,Mf 1, Mf 2 and
Mf 3 for f1 = a1 + b1, f2 = a2 + b2, andf3 = a3 + b3, are
computed together with their corresponding minimal poly-
nomials,mpf 1,mpf 2, andmpf 3. These minimal polynomials



Simaan and Shoham / Stiffness Synthesis of a Variable Geometry 765

Table 1. Degrees of the 29 Polynomials of G in the Variables

a1 0 0 0 0 1 2 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1
b1 0 0 0 2 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1
a2 0 1 2 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1
b2 0 2 2 2 2 2 1 1 3 2 2 1 1 0 0 2 1 1 2 1 1 2 2 1 1 0 0 1 1
a3 2 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1
b3 2 2 0 2 2 2 1 1 2 2 2 3 3 3 3 4 2 2 4 2 2 5 4 4 4 4 4 3 3

have only even degrees. Consequently, this stiffness synthesis
problem has at most 24 pairs of complex solutions forf1, f2,
f3 and their conjugate solutions (48 solutions in total in terms
of ai , bi i = 1, 2, 3).

Once the sumsai + bi(i = 1,2,3) are known, the values of
a1, b1, a2, b2, a3, b3 can be computed separately and the slider
locations are found. The following is the solution procedure
for (a1, b1), which is identical for (a2, b2), and (a3, b3).

Let ±C be one of the solution pairs ofmpf 1. The corre-
sponding solutions for (a1, b1) are given by solving

a1 + b1 = ±C ; a2
1 + b2

1 − 1 = 0. (34)

The two solutions for +C and two solutions for –C are

for + C : (a1, b1) =
(
C

2
± �

2
,
C

2
∓ �

2

)

for − C : (a1, b1) = −
(
C

2
∓ �

2
,
C

2
± �

2

)

� ≡ √
2 − C2

(35)

Figure 4 shows the corresponding four solutions. The sym-
bols Cp1, Cp2 indicate the two solutions in eq. (35) for+C
while Cm1, Cm2 designate the other two solutions for−C.

Note that each pair of solutions is a mirror image of the
other about the unit vector (

√
2/2,

√
2/2) with each solution

forming an angleξ according to

ξ = cos−1

(
C√
2

)
. (36)

Since only real solutions for (a1, b1) are of interest, only
the real solution pairs ofmpf 1 whose absolute values smaller
than

√
2 are substituted in eq. (35) (see eq. (36)).

Once this procedure is repeated for the roots ofmpf 2 and
mpf 3, sets of solutions for (a2, b2) and (a3, b3) are obtained.
Then all sextuplets (a1, b1, a2, b2, a3, b3) satisfying eqs. (31)
are found; thus, determining the slider locations.

In this subsection we have presented a method to solve the
stiffness synthesis of the planar units and to determine which
combinations of the stiffness matrix terms are attainable. It
was shown that for the robot of Figure 1, it is impossible to
concurrently fulfill requirements of Cartesian stiffness matrix
elementskxx andkyy by only changing the slider locations.
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x 
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Fig. 4. Geometric interpretation to the solution in eq (39)

In the next subsection we solve the problem of task-based
stiffness synthesis of the DP robot by using the results ob-
tained from the stiffness synthesis of the variable geometry
planar units.

5.4. Stiffness Synthesis for the Double Planar Robot

The stiffness synthesis problem of the 6-DoF DP robot is
solved next. Given a desired sextuplet of stiffness parameters,
we can solve linear equations stemming from eq. (13) for the
desired stiffness elements of the planar units. Then, we have
to solve two similar stiffness synthesis problems of the planar
units by using the method of the previous section. Once the
solutions for (ai , bi), i = 1..3, are found for each planar unit,
the slider locations are readily found.

To define solvability of all the stiffness synthesis problems
for the DP robot, we have to compute all the corresponding
Gröbner bases of all equations depicting sextuplets of stiff-
ness elements. There are six redundant geometric variables
in the DP robot and its 6× 6 symmetric stiffness matrix has
20 independent variables since it is bound to fulfill eq. (30).
This is tantamount to computing

(
20
6

)
Gröbner bases, which is

practically an impossible task. However, the stiffness of the
DP robot is given according to eq. (13); therefore, synthesiz-
ing sextuplets of stiffness elements is limited only to those
sextuplets that the planar units can attain. Accordingly, Fig-
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ure 3 depicts the solvable synthesis problems for the planar
units and also draws the limits for the solvable stiffness syn-
thesis problems of the DP robot with the given redundancy.
The unsolvable stiffness synthesis problems for the DP robot
are all the stiffness synthesis problems for which one of the
corresponding stiffness synthesis problems of its planar units
is unsolvable according to Figure 3. Note also that eq. (13) is a
linear combination of the two stiffness synthesis problems of
the planar units, therefore the non-solvable stiffness synthe-
sis problems for the DP robot are only those associated with
non-solvable stiffness synthesis problems of one of its planar
units.

The stiffness synthesis process for the DP robot is demon-
strated herein for stiffness synthesis in thex-direction of the
WCS. The solutions of the equations stemming from the stiff-
ness decomposition equation (eq. (13)) for this problem are
given by eqs. (37)–(42) where�kx,x, kxy, kxz, kx,α, kx,βkx,γ � is
the vector of desired (task-based) stiffness elements of the DP
robot in thex-direction andKu andKb respectively designate
the corresponding desired 3× 3 stiffness matrices of the upper
and lower planar units. Note that these equations show that
this problem is solvable since eqs. (37)–(42) do not require
simultaneously depictingKux,x andKuy,y norKbx,x andKby,y .
In eqs. (37)–(42)rij , i, j = 1,2,3 indicate the elements of the
rotation matrix R from the GCS to the WCS:

Kbx,x = lnr13Kx,zr33 + r23Kx,γ −Kx,βr33

−ln + ls

+ r23lnr13Kx,y +Kx,xlnr
2
13 −Kx,xln

−ln + ls

(37)

Kbx,y = −lnr2
33Kx,y + lnr23Kx,zr33 + r13lnr23Kx,x

−ln + ls

+ Kx,αr33 − r13Kx,γ − lnr
2
13Kx,y

−ln + ls

(38)

Kbx,θ =
(
Kx,β + LKx,y

)
r23 + (

Kx,γ +Kx,zL
)
r33

fb

+
(
Kx,α + LKx,x

)
r13

fb

(39)

Kux,x = −lnr13Kx,zr33 − r23Kx,γ +Kx,βr33

−ln + ls

+ −r23lnr13Kx,y −Kx,xlnr
2
13 +Kx,xls

−ln + ls

(40)

Kux,y = r13Kx,γ −Kx,αr33 − r13lnr23Kx,x − lnr23Kx,zr33

−ln + ls

+ Kx,yls + lnr
2
13Kx,y + lnr

2
33Kx,y − lnKx,y

−ln + ls
(41)

Kux,θ = −Lr13Kx,x − Lr23Kx,y −Kx,zLr33

fn
. (42)

In the following section we demonstrate a numerical ex-
ample of this algorithm.

6. Numerical Example: Stiffness Synthesis of the
Double Planar Robot

In this section we demonstrate the solution of a stiffness syn-
thesis problem for the DP robot of Figure 2. The unknowns
are the locations of the sliders of the planar units. These lo-
cations are readily found once the solutions for the variables
(ai , bi), i = 1..3, are found for each planar unit of the DP
robot. The aim of the synthesis problem is to specify all the
six elements of the stiffness matrix in thex-direction of the
WCS.

To validate the solution we first set up an example of the
DP robot with given slider locations and compute its stiffness
matrix according to eq. (13). The first row of this stiffness
matrix (the stiffness elements in thex-direction) is used to set
up the desired stiffness values for the stiffness synthesis algo-
rithm. After solving for all possible solutions, the computed
solutions are expected to include also the same values used
for setting up the example.

6.1. Setting Up The Example

The geometric properties of the DP robot used for setting up
the numerical example are listed in Table 2. The gripper of
the robot is positioned ing = [–0.1, –0.1, 0.3] [m] and rotated
20◦ about thex-axis of the WCS.

The inverse kinematics given in Appendix A results in the
rotation angles of the lower and upper moving platforms and
in the positions of the spline and the nut together with the
universal joint anglesβu andβb (see Figure A3). The corre-
sponding results for the required position and orientation of
this example are given in Table 3.

Next, the angles of the prismatic actuator axes (l̂1, l̂2, l̂3 in
Figure 1) of the upper and lower planar units are selected as
φu = [30◦, 240◦, 120◦] andφb = [60◦, 200◦, 100◦], respectively.
The corresponding values forai , bi , i = 1,2,3, are termedaui
andbui for the upper planar unit andabi andbbi for the lower
planar unit:

for upper planar unit:aui = cos(φui)

bui = sin(φui)

for lower planar unit:aui = cos(φbi)

bui = sin(φbi)

i = 1,2,3.

(43)

The resulting reduced 3× 3 stiffness matricesKu andKb for
the upper and lower platforms are
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Table 2. Numerical Parameters Used for Setting Up the Numerical Example

Upper platform height 0.2 Charactersitic dimension of lower moving 0.02
(Zu in Figure A1) [m] platform [m] (see eq. (3))
Homing height [m] 0.3 Characteristic dimension of upper moving 0.02

platform [m] (see eq. (3))
Radius of lower base circle [m] 0.3 Actuator stiffness of lower planar unit kd

[N m−1]
1 × 105

Radius of upper base circle [m] 0.3 Actuator stiffness of upper planar unit kd

[N m−1]
1 × 105

Screw lead (m per rotation) 0.02

Ku=

125000.0000 43301.27019 2495.777993

43301.27019 175000.0000 −5084.097143
2495.777993 −5084.097143 3924.257238




Kb=

 116317.5911 58339.64351 −14955.57226

58339.64351 183682.4089 −86.24677281
−14955.57226 −86.24677281 2367.426309




(44)

The resulting stiffness matrix of the DP robot is given by


241317.5911 101640.9137 136598.9936
101640.9137 358682.4089 −72352.98440
136598.9936 −72352.98440 .6150181290 107

28349.51789 74837.93025 231755.2923
−41639.92352 −23106.75538 21805.93549
−33063.17483 −4443.898975 −115627.0068

28349.51789 −41639.92352 −33063.17483
74837.93025 −23106.75538 −4443.898975
231755.2923 21805.93547 −115627.0068
30053.33637 −5474.412144 −6114.035530

−5474.412144 9056.655994 6604.974634
−6114.035531 6604.974636 8789.449878




(45)

The elements of the first row of this stiffness matrix are
selected as the desired values for the stiffness synthesis al-
gorithm. Using the algorithm in Section 6.2, eqs. (37)–(42),
results in the desired stiffness elements of the upper and lower
units that are (as they should be) equal to the elements of the
first rows ofKu andKb of eq (45), respectively.

6.2. Solving for the Geometric Parameters of the Upper and
Lower Platforms

The three desired stiffness elements for the upper and lower
planar platforms that are given by the first rows ofKu andKb,

respectively, are used here as an input to the stiffness synthesis
algorithm. For each planar unit, three minimal polynomials,
mpf 1, mpf 2, andmpf 3, are obtained using the procedure of
Section 5.3. Table 4 lists all distinct real solutions ofmpf 1,
mpf 2, andmpf 3 for the upper and lower planar units.

Next, all the real solutions forai , bi , i = 1,2,3 that are
smaller than

√
2 are found by using eq. (34) (see eq. (36)).

From these paired sets the sextuplets [a1, b1, a2, b2, a3, b3] that
fulfill the stiffness equations, of each planar unit, are saved.
For the upper planar unit, this results in 48 real solutions for
aui , bui , i = 1,2,3 while for the lower planar unit, eight real
solutions forabi , bbi , i = 1,2,3 are found. Figures 5 and 6
present the geometry of the upper and lower planar units for
the solutions given numerically in Appendix C. The three
actuators in Figure 1 are distinguished in these figures by
circular, hexagram, and square symbols, respectively. The so-
lutions corresponding to the angles used to set up the example
are encircled. The time for the numerical computation of the
eigenvalues took about 500 s for each planar unit.

Appendix C presents all real solutions for the upper and
lower planar units, respectively. All computations were car-
ried out with 64 digit accuracy. The values for [a1, b1, a2, b2,
a3, b3] are presented as angles of the prismatic actuators in
Appendix C (̂li , i = 1,2,3 in Figure 1) in thex-y plane. Any
solution for the upper planar unit can be used with any so-
lution for the lower planar units; hence Appendix C presents
all 384 real solutions for the stiffness synthesis problem of
the DP robot of this example. Highlighted rows in Appendix
C represent the solutions corresponding to the values of the
actuator angles used for setting up the numerical example.

7. Conclusions

A solution for the stiffness synthesis problem of DP variable
geometry parallel robots is presented in this investigation.
This solution uses Gröbner bases and applies multiplication
tables that transform the solution of the stiffness synthesis
polynomial equations into an eigenvalue problem. Since in
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Table 3. Results of the Inverse Kinematics of the Double Planar Robot

nnn = position of the nut [ - 0.1, - 0.0636, 0 .20]T βb = lower U-joint angle (see Fig-
ure A3 in Appendix A)

0.0

sss = position of the spline [ - 0.1, 0 .0092, 0.0]T βu = upper U-joint angle (see Fig-
ure A3 in Appendix A)

–65.8384◦

θb = rotation of lower moving platform 0.0◦ θsn = relative rotation between
screw and nut

–115.5120◦

θu = upper moving platform rotation –114.1616◦

The number of four digits after the decimal points is only for numerical purposes.

Fig. 5. Geometry of the lower planar unit for all eight solutions of the stiffness synthesis example of the DP robot. The
encircled solution corresponds to the data used for setting up the numerical example.

Table 4. Real Solutions ofmpf 1mpf 1mpf 1,mpf 2mpf 2mpf 2, andmpf 3mpf 3mpf 3 for the Upper Planar Unit and Lower Planar Unit

Results for Upper Planar Unit Results for Lower Planar Unit

C1 C2 C3 C1 C2 C3

±0.20894173 ±0.96642204 ±0.36602540 ±1.3636051 ±0.29022483 ±0.81115957
±0.22517095 ±1.0048748 ±0.56625616 ±1.1215331 ±0.8328858
±0.99510127 ±1.0509660 ±0.94629300 ±1.2703051 ±1.1445878
±1.3659867 ±1.3660254 ±1.0324865 ±1.2817127 ±1.3356068
±1.3660254 ±1.3926714 ±1.2881221 ±1.3525921 ±1.3615997

±1.3986934 ±1.3613936
±1.4003424 ±1.3660254

±1.3961726

All numerical computations in this work were made with 64 digits, but results are truncated to eight significant decimal
digits for presentation purposes.
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Fig. 6. Geometry of the upper planar unit for all 48 solutions of the stiffness synthesis example of the DP robot. The encircled
solution corresponds to the data used for setting up the numerical example.

practice the number of actuators is deficient for synthesizing
the complete stiffness matrix, we take advantage of Gröbner
bases to characterize the space of solvable stiffness synthesis
problems for a given set of variable geometry parameters. The
effectiveness of this method was demonstrated on a novel DP
variable geometry robot which has six free geometry variables
and can control at most six elements of its stiffness matrix.

Due to the special structure of the DP robot it is possible
to decompose the problem into two stiffness synthesis prob-
lems of its upper and lower planar platforms that have three
free geometry variables each. The solution of the stiffness
synthesis of the planar units was shown to have at most 48
solutions. For each planar unit it was shown, for example, that
it is impossible to control both two elements,Kxx andKyy ,
of the stiffness matrix by only changing the locations of the
sliders on the circular base. Composing the solvable sets of
elements of the stiffness matrix of the planar units draws the
limits of the solvable sets of the stiffness matrix elements for
the 6-DoF DP robot. This method was verified by an example

that synthesizes the stiffness matrix elements of the DP robot
in theX-direction that was shown to have 384 real solutions.

Appendix A: Inverse Kinematics of the Double
Planar Robot

Figure A1 shows a schematic view of the gripper in four po-
sitions. The upright position of the screw body is considered
thehome position (position 1 in Figure A1). In this position,
the moving platforms of the two planar units are at the centers
of their circular bases and their PCS are parallel to the WCS.
The fourth position represents a general position of the grip-
per. Subscript h in Figure A1 indicates all the properties at the
home position and the lettersg, n, s respectively indicate the
positions of the gripper, the nut, and the spline center points
in the WCS.

To reach any desired configuration from the home posi-
tion, the motion is conceptually decomposed into three parts.
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Fig. A1. Motion from the home position to a general given
position.

gx̂  

Fig. A2. Cross-section of the spline joint.

The first part (transition from position 1 to position 2) is rota-
tion about the center point of the nut at home position,nh in
Figure A1, such that the desired orientation of the gripper is
reached and the corresponding rotation of the lower platform
is determined by the inverse kinematics of the lower U-joint
(eq. (A3)). To maintain the axial position of the screw body
relative to the nut, the upper moving platform is rotated in the
same amount as the lower moving platform. Next, parallel
translation of both the upper and lower moving platforms is
performed until the desired position of the screw axis is ob-
tained (position 3, Figure A1). Finally, only the upper moving
platform is rotated in order to move the end effector axially on
the screw to the desired axial position (position 4, Figure A1).

Apart from the GCS and WCS, we introduce an upper PCS,
lower PCS, and nut-attached coordinate system (NCS). The
details of these systems are given in Figures A2–A4 and are
explained in the subsequent paragraphs. At the home position
all these coordinate systems are parallel to the WCS.

Let the symbol∧ indicate a unit vector. Accordingly, letẑg
andẑ0 indicate the unit vectors along the screw axis and the

Fig. A3. Lower moving platform, universal joint and spline.

Fig. A4. Upper moving platform, universal joint, screw body
and gripper.

z-direction of the WCS (see Figure 2) respectively.ẑg is given
by the third column ofwRg, the rotation matrix from the GCS
to WCS. The parametric locus of all points along the screw
axis is indicated byl in eq. (A1) whereζ ∈  is the position
parameter along the screw axis:

l = g − ζ ẑg. (A1)

The nut and spline center points (pointsn ands) are found by
substituting in eq. (A1)z = zu andz = 0, respectively:

s = g −
(

gTẑ0

ẑT
g
ẑ0

)
ẑg n = g −

(
gTẑ0 − zu

ẑT
g
ẑ0

)
ẑg. (A2)

Figure A2 introduces the geometry of the spline supported
by the lower U-joint. The direction from the center point to
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the groove of the spline is parallel tox̂g, thex-direction of the
GCS (Figures A1 and A2). Figure A3 gives the geometry of
the U-joint connecting the spline to the lower platform. The
“driving yoke” of this universal joint is rigidly connected to
the lower moving platform and the lower PCS is indicated by
subscriptb such that itsx-direction,x̂b, is along the pivot of
the driving yoke and itsz-direction is always parallel tôz0

(Figure A3). The driven yoke of this U-joint is the spline with
its hinge always parallel tôyg, the y-direction of the GCS.
The geometry of the upper U-joint fixed to the upper moving
platform is identical when the spline of the lower U-joint is
replaced with the nut of the upper joint. However, since the
nut can rotate about the screw, the NCS is defined with its
z-direction alonĝzg andy-direction perpendicular tôzg and
along the axis of the driven yoke (seeẑn andŷn in Figure A4).
Thex-direction of the upper PCS,x̂u, is along the pivot of the
driving yoke connected to the upper moving platform.

The angle between̂z0 andẑg is labeledθ (Figures A3 and
A4). The rotation angle of the lower moving platform rela-
tive to the home position is given by the direction ofx̂b in
the x̂0 − ŷ0 plane. Since the structure of the U-joint depicts
perpendicularity of̂yg to x̂b, the direction of̂xb is given by

θb = Atan2(yb2/yb1)− π/2, (A3)

where (yb1, yb2) indicate the projections of̂yg on thex̂0 − ŷ0

plane. This solution is one of two possible solutions to the
inverse kinematics of the U-joint and it corresponds to the
geometry in Figure A3.

Once the lower and upper moving platforms are rotated by
θb and translated to pointsn ands given by eq. (A2), the desired
orientation of the gripper is achieved such that the desired
gripper position,g, lies alongẑg. In this position, homothetic
edges of the upper and lower platforms are parallel andŷn is
parallel toŷg. To achieve the desired position,g, what remains
is rotating only the upper moving platform (and thus the nut
about the screw) in order to produce the desired axial motion,
am, of the screw relative to the nut. The axial motion is given
by

am = ‖g − n‖ − ‖gh − nh‖. (A4)

Since the axial motion,am, is achieved by rotating the nut and
not the screw, the corresponding required rotation angle of the
nut about̂zg, is given by

θsn = −2π (am/L) (am/ | am|) (A5)

where L indicates the lead of the right-handed screw thread
in mm per revolution.

Rotatingŷg about ẑg in an angle ofγ = θsn, definesŷn
corresponding to the desired orientation of the nut

ŷn = wRgRzg,γ [0,1,0]T (A6)

whereRzg,γ is the rotation matrix by an angleγ aboutẑg:

Rzg,γ =

cγ −sγ 0
sγ cγ 0
0 0 1


 . (A7)

The unit vector̂yu is obtained by normalizing the vector pro-
duced by projectinĝyn on thex0 − y0 plane and̂xu is found
from the cross product of̂yu with ẑ0. The directed angle from
x̂b to x̂u is given by

α = Atan2
(
x̂T
u
ŷb, x̂T

u
x̂b
)

α ∈ [0,2π). (A8)

Let nr indicate the number of complete revolutions made by
the screw relative to the nut. The total rotation angleθu of
the moving platform relative to its orientation at the home
position is given by eq. (A9) and explained in Figure A5

θu = θb − (2πnr + β)sign(am) (A9)

whereβ is related toα and the sign ofam:

β = π(sign(am)+ 1)− sign(am)α. (A10)

Equations (A2), (A3) and (A9) complete the inverse position
analysis of the DP robot.

Appendix B: The Eigenvalue Method for Solving
Polynomial Systems

Let C[x1..xm] represent thering of polynomials with vari-
ablesx1 . . . xm, and coefficients over the complex field,C.
Let alsoS = {p1, p2, ..pn|p1, p2..pn ∈ C[x1..xm]} be a sys-
tem of n polynomials with a corresponding zero-dimensional
Ideal I =< p1, p2, . . . pn >, I ⊂ C[x1 . . . xm]. Thevariety
V (I) of solution is defined by all the m-tuples ofx1 . . . xm
such thatp1 = p2 = . . . pn = 0, i.e.,V (I) = {[x1 . . . xm] ∈
Cm |p1 = p2 = . . . pn = 0}. We seek all the solutions ofS.

The original system of polynomial equations,S, can
be replaced by another minimal set of polynomials,G =
{g1 . . . gt}, called standard basis (or Gröbner basis) of the
ideal I via the use of Buchberger’s algorithm (Buchberger
1965), which is not reviewed here due to lack of space. Ques-
tions regarding ideal-membership of a given polynomial toI ,
solubility of S, and finiteness of the dimension ofV (I) are
readily answered when using this basis (Heck 1997). Also,
if G is computed with a lexographic ordering, it results in a
system of polynomials with a consecutively eliminated num-
ber of variables as in the result of the Gauss–Jordan elimina-
tion method for linear equations. However, this elimination
method is unfavorable for large systems because of the com-
putation effort associated with this ordering (Cox, Little, and
O’Shea 1998).

It is said that two polynomialsf andg, f, g ∈ C[x1..xm],
arecongruent, f ≡ g mod I , if f -g ∈ I . In such a case
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Fig. A5. Relations betweenβ, α, θu, andθb for sign(am) = ±1.

they have the samenormal form when reduced with respect to
G and, therefore, are associated with equal cosets[g] = [f ].
A coset[f ] of a polynomialf ∈ C[x1..xm] is defined as the
subgroup ofC[x1..xm] in which all its elements have the same
normal form with respect toG, [f ] = f +I = {f +h|h ∈ I }.
The totality of cosets of the polynomials inC[x1..xm] is the
quotient ring ofC[x1..xm] moduloI indicated byC[x1..xm]/I ,
i.e.,C[x1..xm]/I = {f + I |f ∈ C[x1..xm]}.

The definition of a coset of a polynomialf ∈
C[x1, . . . , xm] associatesf with the coset of all polynomials
inC[x1, . . . , xm] having the same normal form with respect to
an ideal I. One interesting property of normal forms is that the
normal form of any polynomialf ∈ C[x1, . . . , xm] is always
a complex combination of monomials overC[x1, . . . , xm].
These monomials are called thebasis monomials (Cox, Lit-
tle, and O’Shea 1998) or, simply, themonomial basis and are
indicated byB = {b1, . . . , bs}. This means that the normal
form of every polynomial inC[x1, . . . , xm] is given by the
complex combination

∑s

i=1 cibi whereci ∈ C andbi ∈ B.
This is expressed by the congruence relation in the following
equation:

f ≡
∑s

i=1
cibi mod I | ci ∈ C, bi ∈ B

∀ f ∈ C[x1, . . . , xm]. (B1)

Consider now another polynomialp ∈ C[x1, . . . , xm] and
define the following linear mapping of cosets:

4p : C[x1, . . . , xm]/I → C[x1, . . . , xm]/I,
4p ([f ]) = [pf ], p, f ∈ C[x1, . . . , xm]. (B2)

This mapping constitutes an endomorphism (Möller 1998),
and has a matrix representation and eigenvalues.

To define this matrix representation, we recall the mono-
mial basis B forC[x1, . . . , xm]/I and we define for each
polynomialf ∈ C[x1, . . . , xm] a multiplication table,Mf ,
as given in the following definition.

DEFINITION 1. Multiplication table Let I be an ideal over
C[x1, . . . , xm],G its Gröbner basis, andb = [b1, . . . , bs]T be
a vector of the monomial basis elements of its quotient ring
C[x1, . . . , xm]/I . Every polynomialf ∈ C[x1, . . . , xm] has
an associated multiplication tableMf such that

f b ≡ Mfb mod I. (B3)

From the above definition, it is possible to write the normal
form with respect to the Gröbner basisG of f bi for each ele-
ment of the monomial basis,bi , i = 1 . . . s, as a combination
of the monomial basis elements inB:

nf (f bi) =
∑s

i=1
cibi | ci ∈ C, bi ∈ B. (B4)

Equation (B4) defines theith column of the matrixMf as the
vector of coefficientsc = [c1, . . . , cs]T.

The key point behind the method of the multiplication table
eigenvalues is eq. (B3), which implies the following

f b − Mfb ∈ I. (B5)

Therefore, for all the points,a ∈ V (I), of the solution set
V (I), all polynomials inI vanish; hence we can write

f b − Mfb = 0 ∀ a ∈ V (I). (B6)

Equation (B6) indicates that, for all the pointsa ∈ V (I), when
substituting these points inf and in the vector of monomial
basis elements,b, all s equations in eq. (B6) vanish simulta-
neously. This defines the eigenvalue problem:(

Mf − f I
)

b = 0. (B7)
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Table C-1: All 48 real solutions for prismatic actuators’ angles f1, f2, f3 of the upper planar unit 

All 8 real solutions for prismatic actuators’ angles f1, f2, f3 of the lower planar unit 
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305.8383803 240.0000000 215.8383803

305.8383803 240.0000000 35.83838027
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59.99999998 91.89295273 1.892952769

59.99999998 183.0000317 273.0000316

59.99999998 183.0000317 93.00003159

59.99999998 3.000031618 273.0000316

59.99999998 3.000031618 93.00003159

è

ê

éééééééééé

ø

ú

ùùùùùùùùùù

59.99999998 200.0000001 280.0000000

59.99999998 200.0000001 99.99999999

59.99999998 19.99999999 280.0000000

59.99999998 19.99999999 99.99999999

Equation (B7) is the basis for the method of multiplication
table eigenvalues in the following theorem (Cox, Little, and
O’Shea 1998).

THEOREM1. LetI ⊂ C[x1, . . . , xm] be a zero-dimensional
ideal. Letf ∈ C[x1, . . . , xm] andMf its corresponding mul-
tiplication table inC[x1, . . . , xn]/I . The eigenvalues of Mf
are the corresponding values off for all the points ofV (I).

Theorem 1 defines the basic form for the method of mul-
tiplication table eigenvalues. Accordingly, in order to solve a
polynomial system inC[x1, . . . , xm] we have to compute all
multiplication tablesMf wheref = xi , i = 1,2, . . . m, and
find all their eigenvalues. Then by substituting in the polyno-
mial system it is possible to find all the solution vectors in
V (I).

This method has several advantages over standard sequen-
tial elimination by resultants mentioned in Raghavan and Roth
(1995) and Neilsen and Roth (1999). The numerical compu-

tation is kept to a minimum by using it only for eigenvalue
computation. Also, unlike sequential elimination, the solution
of each variablexi is independent of the other variablesxj and,
thus, it is unaffected by computation errors inxj . Addition-
ally, by using Gröbner bases the solvability of the system of
polynomial equations is determined and it is unaffected by
the term order used for the computation ofG, which allows
using more efficient term orders such as total degree order
(Cox, Little, and O’Shea 1998).

Appendix C

Table C1 presents all 384 solutions to the problem of stiffness
synthesis of the DP robot presented in the numerical exam-
ple of Section 6. The highlighted solutions correspond to the
initial data used to set up this example.
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Chapter 4  

4. Conclusion 

 Chapter 3 presented a list of the publications made during this work. These 

publications are divided equally in treating problems of stiffness modulation and 

stiffness synthesis with a limited set of free parameters – two main subjects that were 

the aim of this work, namely, synthesis of variable geometry parallel robots for stiffness 

modification. These works follow the two modes presented in figure 16 of  chapter 1. The 

following section presents consice description of the contributions of each work. 

4.1 Findings and contributions summary  

The follwoing is the description of contributaions made in each work presented in 

 Chapter 3.  

Contributions of Simaan and Shoham, 2000-b 

This paper investigates the derivatives of parallel robots’ Jacobian. Contrary to 

previous works on parallel manipulators’ rate kinematics, this paper investigates the 

Jacobian derivatives with respect to moving platform’s position/orientation coordinates 

and presents a novel interpretation to these derivatives relating them to line geometry. 

The significance of this interpretation is shown for the stiffness directions of parallel 

robots. A case-study of a non-redundant wire-driven manipulator is presented where the 

singularity of one of the Jacobian planes is shown to affect its stiffness directions. 

Contributions of Simaan and Shoham, 2001 

This paper presents singularity analysis of a family of 14 composite serial in-parallel 

six degrees-of-freedom robots having a common parallel sub-mechanism. Contrary to 

previous works on singularity analysis that presented case-by-case singularity analysis, 

the paper shows how it is possible to unify the analysis of parallel singularities for this 

family of robots and presents a line geometry-based singularity analysis. Additionally, 

although line geometry was previously used for the analysis of fully parallel robots, the 

singularity analysis in this paper is unique in the fact that it is considers the 
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architectural constraints on the motion of the lines and uses these constraints in the 

synthetic reasoning for finding all singularities of non-fully parallel robots. 

This work is based on [Simaan, 1999], but serves as an example of how line geometry 

can be used for singularity analysis. It relates to reconfigurable robots in the fact that it 

considers the constraints on the motion of the Jacobian lines in order to characterize all 

possible singularities. This kind of analysis is valuable for the design of variable 

geometry or even reconfigurable robots. Determining key architectural characteristics, 

such as architectural flat pencils defined in this work, is the basis for determining which 

types of singularity are possible in each new reconfigurable architecture.  

Contribution of Simaan and Shoham, 2002-a 

This paper exploits the preliminary results obtained in [Simaan and Shoham, 2000] 

on the geometric interpretation of the Jacobian derivatives of parallel manipulators’ and 

extends them to stiffness control of redundant parallel manipulators. Previous works on 

stiffness control (modulation) of parallel robots♣ noticed the presence of “higher-order 

singularities” hindering the active stiffness control, but did not succeed in finding a 

physical and geometric interpretation to them. The paper uses the methodology of 

[Simaan and Shoham, 2001] for line-based singularity analysis to present a novel 

interpretation for the singularities of the stiffness control (modulation) of parallel 

redundant robots. These results are validated on a 3-dof planar redundant parallel robot 

with six actuators for stiffness control singularity analysis. These results are of prime 

interest to the stiffness control in variable-geometry parallel robots and relate to the 

stiffness modulation mode of figure 16. 

Contributions of Simaan and Shoham, 2002-b 

This paper presents an alternative approach to stiffness modulation [Simaan and 

Shoham, 2002-a], in which, kinematic rather than actuation redundancy in exploited for 

stiffness synthesis. The type of parallel robots capable of performing this geometry 

change is termed in this paper variable geometry parallel robots.  The paper presents an 

example of a planar three degrees-of-freedom variable geometry robot used for stiffness 

synthesis. Contrary to previous works on stiffness synthesis, this paper presents a novel 

approach in which only a limited number of geometric actuators are available for 

stiffness synthesis - as is the case in a physically constructible variable geometry robot. 

                                                 
♣ See references in the paper 
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The solution method is based on the use of Gröbner bases and transformation of the 

associated polynomial problem into corresponding eigenvalues problem – a method 

explained in  chapter 2. The results show that, for the specific case study, there are at 

most 48 conjugate solutions in the complex plane and presents an example with 16 real 

solutions.  

Contributions of Simaan and Shoham, 2002-c 

This paper extends the methodology of [Simaan and Shoham, 2002-b] for stiffness 

synthesis of a novel variable geometry six degrees-of-freedom double-planar robot. The 

paper presents a kinematic analysis of this novel robotic architecture with six redundant 

geometric parameters available for stiffness synthesis.  

The stiffness of the double-planar robot is formulated in terms of its two planar units; 

thus, allowing the decomposition of the stiffness synthesis problem of the double planar 

robot into two associated stiffness synthesis problems of its planar units. The method of 

Gröbner bases is used to solve the stiffness synthesis problem and a numerical example 

is shown to have 384 real solutions.   

This work, together with [Simaan and Shoham, 2002-c], demonstrate the efficiency of 

the method presented in  chapter 2 for solving problems of stiffness synthesis of variable 

geometry robots.  The solutions are not only found, but also the symmetries among them 

are discovered and a solution devoid of extraneous roots is obtained. Also the stiffness 

characteristics of the novel double planar variable geometry parallel robot are discussed.  

4.2 Closure 

The term variable geometry parallel robot was presented in this work in a  

twofold-novel approach. First virtual geometry change of the robot is considered by 

incorporating actuation redundancy in its architecture. This mode is called the stiffness 

modulation mode in this work. Then, a second mode is investigated, in which, physical 

geometry change is achieved by incorporating kinematic redundancies in the kinematic 

branches of the parallel robot.  

Since stiffness plays a major role in determining the effective accuracy of a given robot 

in performing assembly tasks, it was chosen as the driving criterion for the geometry 

change of variable geometry parallel robots. By doing so, the work had to address 

unsolved problems in stiffness modulation and stiffness synthesis before a variable 

geometry parallel robot can be synthesized. These problems include stiffness modulation 
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singularity analysis and stiffness synthesis with a limited set of variable geometry 

parameters – a term first coined in this work.   

The solution of these problems entailed incorporating knowledge ranging from line 

geometry, redundancy resolution methods, and effective symbolic polynomial system 

solving – all of which have been successfully implemented in addressing these problems. 

The examples presented include a wire-driven parallel robot, and a double planar 

variable geometry parallel robot. In the first example a numerical study of the stiffness 

derivatives and the associated lines was presented as a preliminary case study for ideas 

which, later in [Simaan and Shoham, 2002-a] were connected to the singularity analysis 

of the stiffness modulation problem. In the second example, the stiffness synthesis 

problem given a limited set of free geometric parameters was addressed. The suggested 

solution method characterizes the space of solvable problems and discusses symmetries 

among the solutions – a knowledge necessary for successfully choosing the correct set of 

free variable geometry parameters when synthesizing a variable geometry parallel robot.         

In viewing this work on variable geometry parallel robots as a whole, the variety of 

subjects addressed in it serve one cause – forming a knowledge base for designing and 

synthesizing variable geometry parallel robots. We hope that the work will serve as a 

pointer for solving other problems of synthesis of variable geometry parallel robots.    
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