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Abstract 

 
Parallel manipulation is relatively a new field in robotics. The development in this 

field intensified during the last two decades; however, there are still unsolved problems to be 

investigated in this field. These problems include kinematic modeling and synthesis of new 

parallel architectures and singularity analysis. The solution of the forward kinematics of a 

general 6 DOF fully parallel manipulator is only three years old and the first example of a 

general 6 DOF fully parallel manipulator with 40 real solutions is only one year old. Although 

during the last decade there were many attempts for implementation of parallel robots, the full 

merits of these architectures were not fully understood and exploited.      

Robot assisted surgery is also a new trend of development in surgery. Assimilating a 

robotic assistant in the surgical arena as an additional smart and precise tool bears numerous 

advantages. These advantages include broadening the capabilities of the surgeon in 

performing precise procedures and uplifting the burden of routine tasks. The intrinsic 

characteristics of parallel robots are discussed in this work and shown to suit the requirements 

of a robotic assistant better than the characteristics of serial robots.  

Based on these facts, we aim our work towards developing a mini parallel robot for 

medical applications and exploring new parallel architectures. The work presents a task-

oriented synthesis and design of a mini parallel robot for medical applications. Two robotic 

architectures (the RSPR and the USR robots), which are modifications of known structures, 

are presented in detail and compared in terms of required actuator forces, minimal 

dimensions, workspace, and practical design considerations. The work includes type and 

dimensional synthesis for the suggested architectures, Jacobian formulation, and singularity 

analysis for a class of non-fully parallels robots.  

The Jacobian formulation presented in this work provides a method for classifying the 

non-fully parallel robots and grouping several architectures in families with common Jacobian 

formulation and singularity analysis. In particular, the formulation presented here groups 14 

non-fully parallel robots into one family. This formulation also shows that all these 14 

manipulators share the same parallel singularities due to a tripod mechanism common to all 

these manipulators. The singularity analysis and Jacobian formulation are based on 

geometrical understanding of the system, thus, providing easy method for physical 

interpretation of singularities and deducing conclusions regarding possible elimination of 

singularities by altering the geometrical characteristics of the robots.    
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The comparison between the USR and the RSPR robots shows that the RSPR robot 

better suits the procedure in hand than the USR robot in terms of smaller required actuator 

forces. The singularity analysis highlights an additional advantage of the RSPR over the USR 

robot in terms of having less singular configurations. 

Based on the results of the comparison and the dimensional synthesis we constructed a 

prototype of a medical robotic assistant. We also implemented position control and wrote the 

control program that allows activating the prototype in a Master-Slave mode. This prototype 

features a new parallel architecture based on the RSPR concept, low weight, compactness, 

and accuracy. These characteristics promise successful future implementation of this 

prototype for laparoscope manipulation and knee surgery.   
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List of Symbols 

 
Font setting 

Throughout the entire work, we use small bold letter font setting for vectors, capital 

bold letters for matrices, and capital or small letters for scalars.  

 

General symbols  
i:  An index indicating a specific kinematic chain, i = 1, 2, 3. 

op:  Center point of the moving platform. 

rp:  Radius of the moving platform. 

t:   Position vector of the center of the moving platform. 

pi:  Position vector of the upper extremity of the i’th kinematic chain. 

ppi:   Position vector of the upper extremity of the i’th kinematic chain in the central 

platform-attached coordinate system. 

ξpi:  An angle measured from the x-axis of the central platform-attached coordinate system, 

xp, to ppi according to the right-hand rule about zp.  

ei:   Position vector of the lower extremity of the i’th kinematic chain. 

e:   The eccentricity measure (equal to the Euclidean norm of ei). 

ξbi:  An angle measured from the x-axis of the world coordinate system, x0, to ei according 

to the right-hand rule about z0.  

bi:   Position vector of the spherical joint of the i’th kinematic chain. 

n:   A unit vector normal to the moving platform.   

îr :  A unit vector along the axis of the upper revolute joint in the i’th kinematic chain.  

hi:  A vector specifying the height of the i’th kinematic chain upper extremity relative to 

the base plane.   

p
w R :  Rotation matrix transforming vectors from the central platform-attached coordinate 

system to world coordinate system. 

iC
p R : Rotation matrix form the Ci coordinate system to the central platform-attached 

coordinate system.   

lbi: A vector from the i’th joint located on the base platform to the spherical joint of the 

i’th kinematic chain.  
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x: Six-dimensional vector of the position and orientation variables of the output link. 

x : Six-dimensional vector of the linear/angular velocities of the output link.  

q: Six-dimensional vector of the active joints values. 

q : Six-dimensional vector of the active joints’ speeds. 

Ai:  The link of the i’th kinematic chain, which is connected to the moving platform.  

Bi: The link of the i’th kinematic chain, which is connected to the base platform and to 

link Ai.  

ŝ1i:  A unit vector along link Ai. 

s1i:  A vector from the spherical joint center to the upper extremity of the i’th 

kinematic chain along link Ai.   

ŝ2i:  A unit vector through the center of the spherical joint of the i’th kinematic 

chain and parallel to the axis of the upper revolute joint îr .  

f1i:  The magnitude of the force transmitted along link Ai.  

f2i:  The magnitude of force acting on the tripod link, Ai, along ŝ2i. 

f1:  Three-dimensional vector of the force intensities f1i.   

f2:  Three-dimensional vector of the force intensities f2i.   

fe: The resultant external force applied by the moving platform on its environment.  

te: The resultant external moment applied by the moving platform on its environment.  

se:  Six-dimensional vector of the external wrench applied by the moving platform 

on its environment. 

τ: Six-dimensional vector of the active joints’ force/torque intensities.  

A: Instantaneous direct kinematics matrix.  

B: Instantaneous inverse kinematics matrix.   

J~ :  Jacobian matrix of the tripod mechanism.   

Js:  Jacobian matrix of the serial chains. 

J: Jacobian matrix of a complete manipulator. 

ŝni:  A unit vector along the yaw rotation axis of  link Bi. 

ŝri:  A unit vector along the pitch rotation axis of  link Bi. 

tni:  Torque intensity of the yaw actuators. 

tri:  Torque intensity of the pitch actuators. 

hc: Initial height parameter.  

Pi:  The plane defined by the normal, n, and point pi, i=1,2,3. 

P0:  The plane defined by points pi, i=1,2,3. 
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B0: The tripod base plane, which is defined by points bi, i=1,2,3. 

(l,m): Mutual moment operator defined in Eq. 9.12.  

pjk: Plucker ray coordinate of a line. j, k∈{(4, 1), (4, 2), (4, 3), (2, 3), (3, 1), (1, 2)}, Eq. 

(9.4).   

jk:  A flat pencil generated by lines lj and lk.  k, j∈{1,2,3,4,5,6}, k≠j. 

Xjk:  A flat pencil generated by lines lj and lk that belongs to category of flat pencils X.  

jk
p X :  The plane defined by a flat pencil Xjk. 

jk
c X : The center point of flat pencil Xjk.  

pjpk:  The line defined by points pj and pk. 

lj: A line of the Jacobian, J~ , of the tripod mechanism. j = 1..6. 

Γ:  The complete group of Jacobian lines. Γ = {l1, l2, l3, l4, l5, l6}.  

Cjk: The group of Jacobian lines other than the Jacobian lines lj and lk.  

Cjk = {ln: ln∈Γ, n≠j, n≠k}.  

 

Note:  All the vectors, unless otherwise noted, are expressed in world coordinate system and 

treated as column vectors. 

 

Symbols used for the RSPR robot only 
rb:  The length of the rotating links. 

γi:  The angle between the normal, n, and the normal to the base plane.   

vi:  The line of intersection between the plane Pi and the base plane.   

Pi:  The plane in which the i’th extensible link rotates about the revolute joint, îr .  

θi: The rotation the i’th rotating link.   

li: The length of the i’th extensible link. 

 

Symbols used for the USR robot only 
αi:  The yaw angle of the lower rotating link, Bi.  

βi:  The pitch angle of the lower rotating link, Bi 

li1:  A vector pointing from the center of the active Hook’s joint to the center of the 

spherical joint.  
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li2:  A vector pointing from the center of the spherical joint to the upper extremity 

of the kinematic chain. 

l1:  The length of the lower rigid links in the kinematic chains. 

l2:  The length of the upper rigid links in the kinematic chains. 

tri:  Torque intensity of the pitch actuators. 

niθ :   The yaw angle of link Bi.  

riθ :   The pitch angle of link Bi.  

iBwω :  Angular velocity of link Bi relative to world coordinate system. 
pwω :  Angular velocity of the moving platform relative to world coordinate system. 
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Chapter 1 
Introduction to Parallel Manipulators 

 

1.1 Three robotic architectures 
This chapter presents the three basic architectures for robot manipulators. These 

architectures are characterized by the type of the kinematic chains connecting the output link 

of the manipulator to the base link. The three basic robot architectures are: 

a) Serial architecture 

b) Parallel architecture 

c) Hybrid architecture. 

 

The serial architecture 

This is the classical anthropomorphic architecture for robot manipulators, Fig. 1.1. In 

this architecture, the output link is connected to the base link by a single open loop kinematic 

chain. The kinematic chain is composed from a group of rigid links where each pair of 

adjacent links are interconnected by an active kinematic pair (controlled joint). 

Serial manipulators feature a large work volume and high dexterity, but suffer from 

several inherent disadvantages. These disadvantages include low precision, poor force 

exertion capability and low payload-to-weight ratio, motors that are not located at the base, 

large number of moving parts leading to high inertia.  

The low precision of these robots stems from cumulative joint errors and deflections in 

the links. The low payload-to-weight ratio stems form the fact that every actuator supports the 

weight of the successor links. The high inertia is due to the large number of moving parts that 

are connected in series, thus, forming long beams with high inertia.  

Output link 

Base link 

Active joint 

Open kinematic chain 

Figure 1.1: Serial manipulator 
 . מניפולטור טורי: 1.1איור 
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Another disadvantage of serial manipulators is the existence of multiple solutions to 

the inverse kinematics problem. The inverse kinematics problem is defined as finding the 

required values of the active joints that correspond to a desired position and orientation of the 

output link. The solution of the inverse kinematic problem is a basic control algorithm in 

robotics; therefore, the existence of multiple solutions to the inverse kinematics problem 

complicates the control algorithm. The direct kinematics problem of serial manipulators has 

simple and single-valued solution. However, this solution is not required for control purposes. 

The direct kinematics problem is defined as calculating the position and orientation of the 

output link for a given set of active joints’ values. 

The low precision and payload-to-weigh ratio lead to expensive serial robots utilizing 

extremely accurate gears and powerful motors. The high inertia disadvantage prevents the use 

of serial robots for applications requiring high accelerations and agility, such as flight 

simulation and very fast pick and place tasks.  

     

The parallel architecture 

This non-anthropomorphic architecture for robot manipulators, although known for a 

century, was developed mainly during the last two decades. This architecture is composed of 

an output link connected to a base link by several kinematic chains, Fig 1.2. Motion of the 

output link is achieved by simultaneous actuation of the kinematic chains’ extremities. 

Similarly, the load carried by the output link is supported by the various kinematic chains; 

therefore, this architecture is referred to as parallel architecture. In contrast with the open-

chain serial manipulator, the parallel architecture is composed of closed kinematic chains only 

and every kinematic chain includes both active and passive kinematic pairs. 

Parallel manipulators exhibit several advantages and disadvantages. The disadvantages 

of the parallel manipulators are limited work volume, low dexterity, complicated direct 

kinematics solution, and singularities that occur both inside and on the envelope of the work 

volume. However, the parallel architecture provides high rigidity and high payload-to-weight 

ratio, high accuracy, low inertia of moving parts, high agility, and simple solution for the 

inverse kinematics problem. The fact that the load is shared by several kinematic chains 

results in high payload-to-weight ratio and rigidity. The high accuracy stems from sharing, not 

accumulating, joint errors.     

Based on the advantages and disadvantages of parallel robots it can be concluded that 

the best suitable implementations for such robots include requirements for limited workspace, 



Chapter 1: Introduction to Parallel Manipulators                                                                       

 - 9 - 

high accuracy, high agility, and a lightweight and a compact robot. These ideal 

implementations exploit both the disadvantages and advantages of the parallel architecture.  

The hybrid architecture 

The combination of both open and closed kinematic chains in a mechanism leads to a 

third architecture, which is referred to as the hybrid architecture. This architecture combines 

both advantages and disadvantages of the serial and parallel mechanisms. Fig. 1.3 presents an 

example of a hybrid manipulator constructed from two parallel manipulators connected in 

series.    

Fig. 1.4 presents a hybrid manipulator with six degrees of freedom [Shahinpoor, 

1992]. The parallel sub-manipulators are connected in series. The manipulator is actuated by 

six extensible links. Fig 1.5 presents the 5 DOF ASEA industrial robot, which uses both open 

and closed kinematic chains. The main closed kinematic chain is a two DOF five-bar linkage, 

which moves the center of the wrist in a vertical plane relative to the ground. Tilt and turn 

motions of the wrist are achieved by two closed loop parallelogram linkages that transmit the 

motion from the motors located on the base to the wrist. The use of these linkages allowed the 

designers of this robot to locate the motors on the base.        

Figure 1.3: Hybrid manipulator. 
 . מניפולטור היברידי: 1.3איור 

Output link  

Base link  

Parallel manipulators  

Output link Closed kinematic chain

Figure 1.2: Parallel manipulator 
 . מניפולטור מקבילי: 1.2איור 

Base link 
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Figure 1.4: A hybrid manipulator [Shainpoor, 1992]. 

 .  [Shahinpoor, 1992]ובוט היברידי ר: 1.4איור 

 

Figure 1.5: The ASEA industrial robot as an example of a hybrid architecture. 

 . כדוגמה לרובוט היברידיASEAהרובוט התעשייתי מסוג : 1.5איור 
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1.2 Fully parallel and non-fully parallel manipulators 
There are two major categories of parallel robots. These categories are the fully 

parallel robots, and the non-fully parallel robots. The distinction between these categories is 

based on the following definition. This definition is the same as the one presented in [Chablat 

and Wenger, 1998]. 

 

 

Definition: Fully parallel manipulator 

A fully parallel manipulator is a parallel mechanism satisfying the following 

conditions:  

1) The number of elementary kinematic chains equals the relative mobility 

(connectivity) between the base and the moving platform.  

2) Every kinematic chain possesses only one active joint. 

3) All the links in the kinematic chains are binary links, i.e. no segment of an 

elementary kinematic chain can be linked to more than two bodies. 

Based on the solution multiplicity of the inverse kinematics problem this limiting 

definition can be summarized as follows. A fully parallel manipulator has one and only one 

solution to the inverse kinematics problem. Any parallel manipulator with multiple solutions 

for the inverse kinematics problem is a non-fully parallel manipulator. This will be shown 

mathematically in chapters 7 and 10 in terms of Jacobian matrix formulation and in terms of 

loss or gain of freedom in singular configurations.  

Table 1.1 specifies the physical characteristics of serial and parallel manipulators. The 

table also briefly presents the differences between fully parallel and non-fully parallel 

manipulators.  

 Table 1.1: Comparison between Serial and Parallel manipulators. 

 . השוואה בין מניפולטורים טוריים ומקביליים: 1.1טבלה 

Parallel manipulators 

Property Serial manipulator 
Fully parallel 

Non-fully 

parallel 

Type of Kinematic 

chains  
Open kinematic chain Closed kinematic chains 
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 Table 1.1: Comparison between Serial and Parallel manipulators – continued.   

 .  המשך–השוואה בין מניפולטורים טוריים ומקביליים : 1.1טבלה 

Parallel manipulators 

Property Serial manipulator 
Fully parallel 

Non-fully 

parallel 

Type of Joints Used  Active joints Active and Passive Joints 

The role of active 

joints 
Twist applicators Wrench applicators 

Direct kinematics 

problem 

Simple and single-valued 

solution 

Complicated 

with up to 40 

solutions 

Complicated, but 

with less 

solutions  

Inverse kinematics 

problem 

Complicated with 

multiple solutions 

Simple and 

single-valued 

solution 

Simple with 

multiple 

solutions 

Joint errors   Cumulative Non-cumulative 

Positional accuracy Poor Average 

Payload-to-weight 

ratio 
Low Very high  

Singularity  Loss of freedoms Gain of freedoms 
Gain and loss of 

freedoms 

Singularity domain 
On the envelope of the 

workspace 

Both inside and on the envelope of 

the workspace.  

Jacobian mapping 

Maps joint speeds to end 

effector linear/angular 

velocity   

Maps the end effector linear/angular 

velocity to active joints’ speeds 

Work volume Large Small 

Inertia of moving 

parts 
High Low 
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Chapter 2 

Parallel Robots in Research and Industry:  

A Brief Review of the Literature 
 

This chapter presents a brief summary of the implementation of parallel robots. The 

review of the literature in this chapter is limited to presenting examples of parallel robots in 

industry and research. A more detailed literature review is given at the beginning of the 

following chapters.  

The first implementation of a parallel architecture by [Gough and Whitehall, 1962] 

presented a six degrees of freedom tire test machine with base and moving platforms 

interconnected by six extensible screw jacks. In 1965, Stewart presented a parallel robot for a 

six-degrees of freedom flight simulator [Stewart, 1965], Fig. 2.1. This robot was composed of 

a base and a triangular moving platform with three extensible links connecting the moving 

platform to the base. These three extensible links were connected to the base platform by 

Hooke’s joints with one actuated axis. Rotations of the active axes of the Hooke’s joints were 

achieved by additional three extensible links. Later, all platform-based manipulators were 

called Stewart-Gough platforms or, in short mistakenly, Stewart platforms. 

 

Figure 2.1: The original flight simulator concept presented by [Stewart, 1965]. 

 .[Stewart, 1965]מקורי לסימולטור טיסה אשר הוצג על ידי הקונספט ה: 2.1איור 
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It is possible to construct many Stewart platforms by altering the number of the 

connecting points on the moving and the base platforms. Therefore, a widely accepted coding 

system for sorting different Stewart platforms is the M-m code, which distinguishes between 

different Stewart platforms by the number of connecting points on the base and the moving 

platforms. Since this coding system does not fully define the topology of the parallel 

manipulator, Innocenti and Parenti-Castelli [1994] suggested an unambiguous coding system 

for distinguishing between topologically distinct Stewart platforms. Using this unambiguous 

coding system, they identified 17 topologically different Stewart platforms with single and/or 

double spherical pairs and four Stewart platforms with one triple spherical pair.  

 For instance, the Stewart platform of type 6-6 is a fully parallel robot with a moving 

platform connected to the base by six extensible links connected at six distinct points, both on 

the moving and the base platforms Fig. 2.2 (a). The Stewart 6-3 is a robot with six connecting 

points on the base and three connecting points on the moving platform, Fig. 2.2 (b). 

Based on the definition of a fully parallel manipulator [Chablat and Wenger, 1998] 

one concludes that all the Stewart platforms are fully parallel manipulators. This fact indicates 

that these manipulators have a single solution to the inverse kinematics problem, but a rather 

limited workspace.   

Fichter [Fichter, 1986] investigated the 6-3 Stewart parallel architecture, performed 

analysis of the workspace, and revealed two singular configurations of this structure. 

Innocenti and Parenti-Castelli [1994] performed an exhaustive enumeration of Stewart 

platforms and provided a listing of known Stewart platforms and their corresponding number 

of solutions for the direct kinematics problem. Later, many researchers investigated new 

parallel structures and did not limit their search for only fully parallel manipulators. Among 

(a) (b) 

Figure 2.2: Two common types of the Stewart platform. The 6-6 type (a) and 

the 6-3 type (b).  

 . 6-3 מבנה (b) 6-6 מבנה Stewart platform .(a)שני סוגים מקובלים של : 2.2איור 
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these researchers, Tsai and Tahmasebi [1993] and Ben-Horin and Shoham [1996] presented 

parallel robots featuring three kinematic chains with rigid links, Fig. 2.3 and 2.4 respectively. 

The lower extremities of the rigid links move in the plane of the base platform by planar 

motors or equivalent mechanisms. These robots feature large workspace because of the 

motion on the base plane. Merkle, of Xerox corporation, presented a parallel manipulator 

utilizing two tripods manipulating an output link and providing larger work volume than the 

Stewart platform [Merkle, 1997], Fig. 2.5.  

Several researchers employ two parallel sub-mechanisms to achieve uncoupled 

rotation and translation movements of the moving platform [Lallemand et al., 1997; Lee, 

1995], but this leads to a rather mechanically complicated architectures incorporating many 

Figure 2.3: The parallel robot presented by Tsai and Tahmasebi [1993].

 .  Tsai and Tahmasebi [1993]י "הרובוט המקבילי אשר הוצג ע : 2.3איור 

Figure 2.4: The parallel robot presented by Ben-Horin and Shoham [1996].

 .  Ben-Horin and Shoham [1996]י "הרובוט המקבילי אשר הוצג ע: 2.4איור 



Chapter 2: Parallel Robots in Research and Industry: A Brief Review of the Literature  

 - 16 - 

moving parts. Fig. 2.6 presents the 2-Delta uncoupled robot [Lallemand et al., 1997]. Simaan, 

Glozman, and Soham [1998], and Brodski, Glozman, and Shoham [1998] were inspired by 

the planar mechanism presented by Daniali, Zsombar-Murray, and Angeles [1993] and 

presented a six degrees of freedom parallel robot that incorporates two identical planar sub-

mechanisms, Fig. 2.7.  

Figure 2.6: The uncoupled 6-Dof 2-Delta robot. 

  . Delta-2 דרגות חופש ללא צימוד 6רובוט : 2.6איור 

Figure 2.5: The Double-Tripod [Merkle, 1997]. 

 .Double-Tripod [Merkle, 1997]רובוט : 2.5איור 
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Few works present innovative architectures providing simple closed form solution to 

the direct kinematics problem [Daniali, Zsombar-Murray, and Anjeles, 1993; Brodski, 

Glozman, and Shoham 1998; Ceccarelli 1996; Ceccarelli 1997; Soreli, et al., 1997; Byun and 

Cho, 1997]. All these works implement passive sliders in the kinematic chains of each 

suggested robot, thus simplifying the direct kinematics problem. 

Several researchers investigated parallel mechanisms with only rotational active joints 

in order to simplify actuation [Simaan, Glozman and Shoham, 1998; Cleary and Uebel, 1994; 

Zanganehe, Sinatra, and Angeles, 1997].  

The implementations of parallel robots for industrial use developed during the last few 

years. The possible benefit from the structural rigidity and dynamical agility of parallel 

architectures motivated the development of grinding machines based on parallel architectures. 

The three examples for grinding machines are the six axis machine tool by Giddings-Lewis 

Corporation [Sheldon, 1995], the Hexaglide milling machine [Honegger, et al., 1997] and the 

octahedral machine by Ingersoll-Rand Corporation [Lindem, 1995]. Another study for a novel 

grinding machine featuring uncoupled motion was presented in [Lee, 1995]. 

 

 

Figure 2.7: The Double Circular Triangular robot [Brodski, Glozman, and Shoham, 

1998]. 

 Brodski, Glozman, and] י"הוצג ע אשר Double Circular triangularרובוט : 2.7איור 

Shoham, 1998] 
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There are other applications that benefit from the high motion agility of parallel 

architectures and employ this feature, for example, in flight simulation [Stewart, 1965]. 

Kawasaki Heavy Industries Ltd. presented a six degrees of freedom flight simulator based on 

the 6-6 Stewart platform architecture with hydraulic actuation [Nakashima, 1994]. Dunlop in 

[Dunlop, Jones, and Lintott, 1994; Dunlop and Jones, 1997] presented a 3 DOF Parallel 

manipulator based on the double tripod mechanism, which was presented by Hunt as a 

constant velocity joint [Hunt, 1978]. A 2 DOF version based on this mechanism was used for 

satellite tracking in order to overcome the tracking keyhole problem that arises when using 

conventional active Hooke’s joint. Toyota R. & D. labs presented a 6-DOF Parallel 

mechanism for evaluating human motion sensation based on three five-bar mechanisms 

[Mimura and Funahashi, 1995].  

The field of tele-opration takes advantage of the parallel architectures for developing 

six DOF master that provides effective force feedback in a compact form [Slutski, 1998]. 

Using this advantage, Collins and Long [1995(a)] presented a hand controller (master) for 

force reflection, which had a parallel architecture utilizing three pantograph mechanisms.  

Finally, we refer the reader to Merlet’s web page [Merlet, web page], which includes a 

comprehensive list of parallel robots and related bibliography. In this web page, the different 

robots are categorized based on their number of degrees of freedom and based on the type of 

kinematic chains. 
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Chapter 3 

Robots for Medical Applications 

 

3.1 Medical robots and parallel robots in medical applications 
Robotic–assisted surgery is a new trend in medicine, which aims to help the surgeon 

by taking advantage of robots’ high accuracy and accessibility. Introducing a robotic assistant 

as an integral part of the surgical tool array provides the surgeon with several advantages. 

These advantages include off-loading of the routine tasks and reduction of the number of 

human assistants in the operating room. In addition, by using the capabilities of the robot, the 

surgeon can complement his own skills with the accuracy, motion steadiness, and 

repeatability of the robot. The experimental comparison, presented in [Kavoussi, et al., 1996], 

compared the performance of a human assistant and a robotic assistant in manipulating a 

laparoscope. The results of this comparison emphasized the superiority of the robot in terms 

of motion steadiness. Another work [Kazanzides, et al., 1995] presented experimental results 

comparing the cross sections of a manually broached implant cavities and cross sections of 

robot milled cavities for hip replacement surgery. The comparison resulted in clear 

preeminence of the robot in performing accurate milling of the implant cavities. Noticing 

these features of the robot, several researchers invested efforts in assimilating the robot in the 

surgical arena [Taylor, et al., 1995; Ho, et al., 1995; Kienzle, et al., 1995; Harris, et al., 1997; 

Jensen, et al., 1994].  

The approaches to robot assisted surgery divide into three main approaches. These 

approaches are the active execution approach, the semi-active approach, and the passive 

approach. In the active execution approach, the robot actively performs surgical procedures 

such as bone cutting and milling as in the works presented by [Kazanzides, et al., 1995; 

Brandt, et al., 1997]. In the first example, a serial robot performed milling of the femur bone 

to suite the implant in a knee surgery, and in the second one, a Stewart platform robot is used 

for hip surgery. In the semi-active execution approach, the robot is used as an aiding tool 

during surgery for tasks such as precise guidance of the surgical cuts without actually 

performing them. In this mode of operation, the robot holds the surgical tool while the 

surgeon moves the tool. The task of the robot is to prevent the surgeon from moving the tool 

out of the desired regions. Examples for this semi-active approach were presented in [Harris, 

et al., 1997; Ho, et al., 1995; Kienzel, et al., 1996] in total knee replacement surgery. Other 

works present systems that support both active and semi-active approaches, for example 
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[Brandt, et al., 1997]. In the third approach, the passive approach, the robot is merely a tool 

moved directly by the surgeon in remote manipulation mode as in [Grace, et al., 1993; Jensen, 

et al., 1994] that used a parallel six degrees of freedom robot in the field of ophthalmic 

surgery.  

Most of the works listed above use serial robots. Some use special purpose serial 

robots like in [Taylor, et al., 1995]. Other works use industrial serial robots [Kienzle, et al., 

1995; Kazanzides, et al., 1995]. These robots suffer from all the disadvantages of the serial 

architectures; thus, these designs result in large and heavy robots. The drawbacks of these 

serial robots motivate the research in the field of robot assisted surgery for a continuous 

search of task oriented robot architectures that best fit a specific group of medical 

applications. Among the vast array of robotic structures, the parallel structure seems 

promising because of its advantages that fit medical applications. Therefore, some 

investigators focused on exploring the capabilities of parallel robots in medical applications 

[Grace, et al., 1993; Brandt, et al., 1995]. The main advantages of the parallel architecture 

point toward it as being a better candidate than the serial one for use in surgery. Before listing 

those advantages we will first formulate the requirements from a medical robot and compare 

the parallel architecture with the serial one in terms of adequacy for medical applications. 

 

3.2 The fundamental requirements from a medical robot 
The following discussion is limited to formulating the fundamental requirements from 

the robotic architecture only. This section disregards the requirements from the data 

acquisition and registration systems or the pre-operative computer-based system. Some of the 

requirements were presented in [Khodabandehloo, et al., 1996] and implied in [Brandt, et al., 

1997].    

In order to insure the success of a medical robot, four fundamental requirements must 

be fulfilled. The first and most crucial requirement is safety. The following seven criteria 

constitute the safety requirement.  

1) Effective control: The robot must allow, in all configurations, effective control of 

the tool with both speed and force control schemes implemented. 

2) Limited Workspace: The robot must have limited workspace in order to prevent 

hazardous collisions between its moving parts and the medical staff or the patient.  

3) Limited Forces or Force feedback: In applications where the robot is active in 

performing surgical procedures that include tactile tasks, the force applied by the 
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tool must be limited. Alternatively, in applications where the robot acts as a slave, 

the robot must convey a maximum amount of data to the surgeon about the forces 

exerted on the tool. This requirement is essential in the process of bone cutting 

where different levels of force are required during different stages of the cut 

[Harris, et al., 1997].  

4) Immunity against magnetic interference of other surgical tools.  

5) Full control option: In applications where the robot performs automated tasks, the 

control program must allow the surgeon, in any stage in the task, to interrupt the 

automatic execution process and take over the control to his hands.  

6) Fail safe features: The most reliable systems will inevitably fail in some stage of 

their service. Based on this premise the robot must support a fail-safe mode. This 

includes keeping the position of the tool when the power supply is lost, electrical 

limiting of the end effector’s speed and force even when the control program fails.  

7) Safe behavior near singular configurations: The path planing of the robot should 

avoid passing near singular configurations. However, in the cases where the robot 

acts as a slave, the surgeon might manipulate it into singular configurations. 

Therefore, the architecture of the robot must provide signals for the surgeon that 

warn him from approaching singularity. 

The second requirement from a medical robot is compactness in size and lightness. 

This ensures that the robot does not consume a large amount of essential space in the 

operating room and facilitates the relocation of the robot in different positions for different 

tasks. The third requirement is simple operation in order to improve the learning curve of new 

surgeons. The last, but not least important, requirement is the requirement for easy 

sterilization. This requirement is critical since any tool in the operating room must either be 

sterilized or covered with sterile drapes in order to prevent infections. To summarize the 

fundamental requirements of a medical robot we present figure 3.1. 

 

3.3 Advantages of parallel robots in medical applications 
 From the two robot architectures, i.e., the serial and parallel ones, the one most 

compliant with the fundamental requirements is the parallel architecture. In contrast with the 

bulky serial architecture, the compact and lightweight parallel architectures simplify the 

relocation of the robot in the operating room, save necessary space, and allow easy 

sterilization by covering the robot with a closed drape. The relatively small work volume of 
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the parallel robots, if correctly designed, can introduce an important safety feature. In 

addition, parallel robots behave safely near singularity. When the robot traces a path towards 

a singular configuration, the required forces from the actuators reach high values. 

Consequently, monitoring the electrical current of the actuator motors gives a reliable warning 

against approaching singular configurations. In serial robots, singular configurations are 

associated with very high values of joint velocities and this introduces a hazardous element. 

The parallel robots provide accuracy with lower price when compared to similar serial robots 

with the same accuracy level. Some accuracy levels may not be achieved with serial robots. 

These high levels of accuracy are important for eye surgery [Jensen, et al., 1994]. Based on 

the above arguments, we may conclude that the parallel architecture is better than the serial 

one for medical applications that require a suitable workspace for reasonable robot design. 

  

Figure 3.1: The fundamental requirements from a medical robot. 
 . הדרישות הבסיסיות מרובוט רפואי: 3.1איור 
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Chapter 4 

Formulation of the Design Problem 

 This chapter presents the design requirements from a medical robot aimed for use in 

minimally invasive laparoscopic surgery. Minimally invasive surgery aims to overcome the 

disadvantages of open surgery by minimizing the number of openings performed during 

surgery; thus, reducing the patient’s pain, shortening the recovery time and minimizing the 

esthetic damage to the patient’s body. Laparoscopic surgery is an important procedure in 

minimally invasive surgery, in which, the surgeon performs several incisions in the abdominal 

wall and introduces the necessary surgical tools through these incisions. In the common mode 

of operation in laparoscopic surgery, the surgeon holds in his right hand the laparoscope and 

in his left hand the surgical tool, Fig. 4.1. In some cases, the surgeon works with a human 

assistant who holds the laparoscopic camera in a desired orientation. This arrangement is far 

from being satisfactory because of the fact that one of the surgeon’s hands is occupied in 

manipulating the laparoscope. In addition, the requirement for steadily holding the 

laparoscope for long time is physically demanding, thus, consuming unnecessary effort from 

the surgeon.     

Figure 4.1: Laser beam laparoscopic surgery. 
. ניתוח לפרסקופי בעזרת לייזר: 4.1איור 
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The motivation behind this work stems from the fact that in a laparoscopic surgery the 

robot can effectively play the role of a human assistant by manipulating the camera during the 

surgery. This allows the assistant to attend to other tasks, promises better stability of the 

camera, and bears possible future implementation in laser endoscopic surgery. The 

comparison between a human assistant manipulating a camera during a laparoscopic surgery 

and a robot performing the same task was presented in [Kavoussi, et al., 1996]. This 

experimental work resulted in a conclusion that a robot holds the camera significantly more 

steady without adversely affecting the total time of the surgical procedure. [Faraz and 

Payandeh, 1998] addressed the problem of laparoscopic surgery by searching for a suitable 

mechanism to serve as a passive stand that allows keeping the orientation of the camera even 

when the surgeon does not hold the laparoscope.  

There are many methods for manipulating the laparoscopic camera by a robotic 

assistant. These methods are categorized into three main approaches. The first approach uses 

control signals initiated by the surgeon using a remote controller. The second approach uses 

automatic guidance of the laparoscopic camera, and the third method is the direct method, in 

which, the surgeon manipulates the laparoscopic camera directly by using force compliance 

control. Remote controllers take many forms such as hand controllers, leg actuated pedals, or 

systems that interpret the motions of the surgeon’s head [Finlay and Ornstien, 1995]. Wei et 

al. [1997] presented a system for automatic laparoscopic camera guidance by tracking the 

laparoscopic instruments using color coding of the instruments.    

In addition to all the fundamental requirements in Chapter 3, this chapter is devoted to 

formulating the design requirements in terms of required workspace and required force 

exertion capability from the medical robot presented in this thesis. The design problem is 

visualized in Fig. 4.2. The cube in Fig. 4.2 represents the required workspace for the specific 

medical application and the weight W represents the required load to be supported by the 

robot.  

The explicit statement of the design problem is as follows. The design problem is to 

synthesize a robot that supports a load W and manipulates this load in a required workspace. 

Based on the conclusion of the previous chapter we choose to synthesize a mini parallel robot 

for this task. The synthesis includes both type and dimensional phases. The emphasis is on the 

fact that the robotic architecture is unknown and the research aims at comparing several 

architectures for the same task and choosing the best concept. One of the goals of the 

comparisons between several architectures is finding the smallest possible parallel robot 
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featuring a mechanically feasible design and presenting better characteristics than the other 

architectures. The details of the synthesis and comparison are presented in the following 

chapters. 

The required load W and the desired workspace were defined based on physical 

estimate for the surgical laparoscopic procedures. The desired workspace is a 40x40x20-mm 

cube and the robot is required to reach every point within this cube while maintaining a 

rotation of 20° about the [1,1,0] axis. This axis is described in a platform-attached coordinate 

system. The required external forces are equivalent to supporting a weight of W=1.2 kg with a 

lever of L = 0.1 [m]. The speed of the laparoscope tip should vary between 2.5 to 25 

[mm/sec]. Based on these design requirements other possible implementations for the robot 

would be in knee arthroscopy and total knee replacement surgery using the semi active 

approach.    

 The design requirements listed above are used in the following chapters in the stage 

of dimensional synthesis of the robots. The following chapter presents the type synthesis for 

parallel robots.  

Figure 4.2: Symbolic representation of the design goal. 
 .  ייצוג סימבולי לבעיה התיכונית: 4.2איור 
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 Chapter 5 

Type Synthesis 

5.1 Introduction 
 Type synthesis deals with the construction of new mechanisms to fulfill a desired task 

by considering various arrangements of links and joints. In type synthesis, emphasis is placed 

on the type of joints and links rather than on the dimensional or geometric properties of the 

mechanism. Many researchers tried to systemize the invention process of new mechanisms. 

Among these researchers the following works focused on the synthesis of parallel 

manipulators [Hunt, 1983; Earl and Rooney, 1983; Malik and Kerr, 1992; Shoham and Roth, 

1997]. These works were based on Grubler’s equation for general mobility in mechanisms, 

which is the fundamental formula for type synthesis.  

In order to clearly continue this chapter we whish to present the reader with the 

following definitions based on the material presented in [Hunt, 1978] and in [Phillips (a), 

1984].    

  

General Mobility: The general mobility of a mechanism is the required number of 

independently controlled joint variables in order to specify the 

location of the links relative to one another.  

Connectivity: The relative degrees of freedom between two links in a mechanism.   

 

The Grubler-Kutzbach equation for the general mobility in a mechanism is presented in 

Eq. (5.1).  

                M = d(n - g - 1) + ∑fi                                                   (5.1) 

Where d = 6 for spatial mechanisms, d = 3 for planar and spherical mechanisms, and d = 2 for 

planar prismatic mechanisms. For the interpretation of all the cases 2≤ d ≤6 see [Hunt, 1983]. 

n is the number of links in the mechanism including the ground link, g is the total number of 

joints in the mechanism, and Σfi is the sum of the degrees of freedom in the mechanism. The 

general mobility equation disregards the geometric properties of the mechanism; therefore, it 

fails to describe mechanisms in singular configurations in which the mobility is a result of 

specific geometrical relations between the joints’ axes. The parameter d in equation 5.1 is 

taken as 3 for spherical mechanisms or planar mechanisms because these mechanisms fulfill 

geometrical conditions that provide dependence of constraints regardless of the configuration 

of the mechanism. For example, Fig. 5.1 presents two such mechanisms. Fig. 5.1(a) presents 



Chapter 5: Type Synthesis 

 - 27 - 

the famous spatial four-bar mechanism usually referred to as Bennett’s linkage. Fig. 5.1(b) 

presents the spherical crank. For the analysis of Bennett’s linkage refer to [Hon-Chcung, 

1981]. Both these linkages have mobility M=1 while Eq. (5.1) indicates zero mobility. A zero 

general mobility indicates that the analyzed combination of joints and links represents a 

statically determinate structure. Negative general mobility indicates a statically indeterminate 

(over-constrained) structure.     

 Many researchers addressed the problem of type synthesis for parallel spatial 

mechanisms. The synthesis of parallel manipulators was described using the screw theory and 

based on Grubler’s equation in [Hunt, 1983]. This work presented criteria for avoiding 

undesirable robot arms that are prone to jamming and presented suggestions for six DOF 

parallel manipulators. Shoham and Roth implemented the graph theory in order to determine 

linkages, which have connectivity of six between at least two of the links. The work 

suggested a method for modifying the graph representation of mechanisms in order to 

facilitate computing the connectivity between every link pair in the mechanism. Malik and 

Kerr addressed the problem of type synthesis of in parallel mechanisms based on Grubler’s 

equation and discussed all the possible mechanisms with mobility ranging from three to six. 

The work presented 14 distinct possible configurations with varying number of in-parallel 

kinematic chains. 

 In manipulator design, emphasis should be placed on the distinction between the 

general mobility and the connectivity. A six degrees-of-freedom manipulator is a mechanism 

Figure 5.1: (a) The Bennett linkage. (b) The Spherical crank.  

  .    מכניזם הארכובה הכדוריBennett (b). מכניזם (a): 5.1איור 

(a) (b) 
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with a connectivity of order six between the ground link and the output link. Therefore, the 

connectivity and not the general mobility are important in manipulator synthesis [Shoham and 

Roth, 1997]. An example for this statement regarding mobility and connectivity is presented 

in Fig. 5.2. This figure presents the 6-6 Stewart platform with a moving and a base platform 

interconnected by six extensible links via spherical joints. The total number of links, n, in this 

mechanism is 14, the number of joints, g, is 18, and the sum of degrees of freedom, ∑fi, is 42. 

Therefore, the General mobility when using Eq. 5.1 with d = 6 is 12. This result means that 

we need twelve geometric parameters to fully describe the geometry of the mechanism. The 

result is misleading since it includes the passive rotations of the extensible links around their 

respective axes of rotation. These rotations do not affect the fact that the moving platform 

retains six degrees of freedom relative to the base platform.   

 

5.2 Synthesis of a class of parallel manipulators 
In this section, we present the type synthesis of parallel manipulators with identical 

kinematic chains. The focus on manipulators with similar and symmetrical distribution of the 

actuators stems from the need for even load distribution between the kinematic chains and 

design simplicity. The requirements for simplicity and structural rigidity guided us toward 

investigating mechanisms with minimal number of in-parallel kinematic chains and, in 

particular, kinematic chains that end with revolute joints connecting the kinematic chains’ 

extremities with the moving platform. This architecture diminishes the problem of collisions 

between the adjacent kinematic chains and, as will be shown in chapter 8, this architecture has 

advantages in terms of structural rigidity and lower actuator forces. 

Figure 5.2: Mobility and connectivity in the Stewart 6-6 platform with two spherical 

joints at the extremities of each extensible link.  

 עם מפרקים כדוריים Stewart 6-6המוביליות והקישוריות עבור מניפולטור  :5.2איור 

 . בקצוות החוליות הטלסקופיות

 n = 14. ∑fi, = 42. d = 6. g = 18. 

M = 6(14-18-1)+42 = 12  

Connectivity between platforms = 6.  

S 

P 

S 
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 We define the following quantities for the similar in-parallel kinematic chains. ml 

represents the connectivity between the moving and the base platforms along each one of the 

identical kinematic chains. nl represents the number of links including the moving and base 

platforms, gl denotes the number of joints, and ∑fl is the sum of degrees of freedoms in the 

kinematic chains. Accordingly, every kinematic chain fulfills Eq. (5.2): 

                ml = 6(nl - gl - 1) + ∑fl                                                (5.2)   

           Furthermore, we denote the number of in parallel kinematic chains by the letter L. The 

total sum of degrees of freedom in the mechanism, ∑fi, is given by Eq. (5.3). 

                              ∑fi  = L∑fl                                                          (5.3)  

 The total number of links in the mechanism and the total number of joints are given in 

Eq. (5.4) and Eq. (5.5), respectively.  

            n = (nl - 2)L + 2                                                   (5.4) 

g = Lgl                                                            (5.5) 

By substituting equations (5.3), (5.4), and (5.5) in Grubler’s equation for the general 

mobility and substituting Eq. (5.2) for the connectivity along an in parallel kinematic chain 

we obtain the following result presented in Eq. (5.6). 

                                                    M = Lml - 6(L - 1)                                                 (5.6) 

Since we are interested in non-redundant manipulators with identical kinematic chains 

the number of active joints in a kinematic chain, gal, in each kinematic chain is defined by Eq. 

(5.7). 

                                                             gal = M/L                                                       (5.7) 

Where the number of kinematic chains, L, ranges between unity for serial 

manipulators and L = M for fully parallel manipulators.  1 ≤ L ≤ M.   

In order to avoid redundancy or unwanted freedoms, as the ones presented in the case 

of the Stewart platform example, the connectivity between the moving and base platforms 

along each kinematic chain must be six at most. However, the connectivity must be greater or 

equal to the general mobility of the mechanism, therefore, 6 ≥ ml ≥ M. Based on these results 

Eq. (5.6) becomes a simple tool for listing parallel manipulators with identical in-parallel 

kinematic chains. The equation yields the required connectivity, ml, for a desired general 

mobility and a given number of kinematic chains, L. We note that Eq. (5.6) is fulfilled for any 

number of kinematic chains, L, if all the kinematic chains allow connectivity equal to six 

between the base and the moving platforms.  Table 5.1 presents all the possible combinations 

for parallel robots with identical kinematic chains. The table presents six possible 
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manipulators. The work presented in [Malik and Kerr, 1992] considered the cases with M ≥ L 

≥ 3. By using similar reasoning based on Grubler’s mobility equation they presented 14 

different combinations for parallel manipulators with different kinematic chains and non-

uniformly distributed actuation joints. 

Table 5.1: The possible parallel manipulators with identical kinematic chains.

 . הרובוטים המקביליים האפשריים בעלי שרשראות קינימטיות זהות: 5.1טבלה 

General 

Mobility 

M 

Number of 

kinematic chains 

 L  

required kinematic 

chain connectivity  

ml 

Active joints per 

kinematic chain 

 gal 

2 2 4 1 

2 ------- ------- 3 

3 5 1 

2 5 2 

3 ------- ------- 

4 

4 ------- ------- 

5 No solution available 

2 6 3 

3 6 2 

4, 5 ------- ------- 

6 

6 6 1 

 

5.3 Selecting architectures based on design guidelines 

 According to table 5.1, there are three general architectures for obtaining six degrees 

of freedom parallel manipulators with identical kinematic chains. These three architectures 

differ one from another in the number of kinematic chains. The three general architectures can 

be achieved by many combinations of links and joints. Therefore, we must follow some 

design guidelines that take into account the practicality of the different manipulators.  

We consider the practical joints of types R, P, S, U, and C. Where R stands for 

revolute joint, P for prismatic, S for spherical, U for Hooke’s, and C for cylindrical joint. We 
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begin by first ruling out the helical joint because of its unnecessary complication. In the next 

step, we look for manipulators with simple kinematic chains. This requirement for simplicity 

highlights the essential use of coalescence of joint axes. For example, a spherical joint is 

preferable on its equivalent 3R kinematic chain in terms of simplicity. The importance of 

utilizing joint coalescence for simplifying the kinematic chains was highlighted in [Hunt, 

1983].  

For parallel manipulators with identical kinematic chains, there are two practical 

solutions with three or six kinematic chains. The case with L=2, i.e. two kinematic chains is 

ruled out because of the complexity of activating three joints in a kinematic chain. Table 5.2 

presents the known six DOF parallel manipulators with three kinematic chains. The table 

specifies the kinematic chains in a customary way, in which, the kinematic chains are 

identified by the types of joints when traversing the chains from the base to the moving 

platform. The active joints in each kinematic chain are identified by bold font setting. Some 

works utilize four-bar, five-bar or other complex planar sub-mechanism for actuation; 

therefore, these planar mechanisms are equivalent to planar kinematic pairs. We refer to a 

planar kinematic pair by the letter E and we present the kinematic equivalence of the complex 

kinematic chains. Figures 5.3 to 5.15 present the schematic representations of the robots in 

table 5.2.    

Table 5.2: Listing of known parallel manipulators with three kinematic chains. 
 . רשימת המניפולטורים המקביליים הידועים עם שלוש שרשראות קינימטיות: 5.2טבלה 

Related work Type of the kinematic chains Figure 

[Behi, 1988] PRPS  Fig. 5.3

[Kholi, et al., 1988] PRRS Fig. 5.4

[Romiti and Soreli, 1990] Two actuated parallelograms in series, P, S. 

Equivalent to EPS Kinematic chains. 

Fig. 5.5

[Soreli, et al., 1997] Double parallelogram actuation, P, S. 

Equivalent to EPS kinematic chain. 

Fig. 5.6

[Zlatanov, et al., 1992] Planar kinematic chains with asymmetrical 

distribution of actuation between the kinematic 

chains and planar sub-mechanisms.  

RRPS, RRPS, RRPS  

Fig. 5.7
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Table 5.2: Listing of known parallel manipulators with three kinematic chains – 

continued. 

.   המשך–רשימת המניפולטורים המקביליים הידועים עם שלוש שרשראות קינימטיות : 5.2טבלה 

Related work The kinematic chain Figure 

[Tsai and Tahmasebi, 

1993] 

A family of three legged manipulators with non-

extensible rigid links and planar actuation by five 

bar linkages, pantographs or planar motors. 

Equivalent to ESR kinematic chain.  

Fig. 2.3 

[Ben-Horin and Shoham, 

1996] 

Planar motors, R, S.   

Equivalent to ERS kinematic chain.  

Fig. 2.4

[Alizade, Tagiyev, and 

Duffy, 1994] 

RRPS kinematic chains. Fig 5.8

[Collins and Long, 

1995(a)] 

R, pantograph actuation, S. 

Equivalent to RES kinematic chain. 

Fig 5.9

[Mimura and Funahashi, 

1995] 
R, Five bar mechanism actuation, S. 

Equivalent to RES kinematic chain. 

Fig. 5.10

[Ebert and Gosselin, 

1998] 

Three Five-bar parallelogram linkages with 

actuation of both sides of each parallelogram in 

each kinematic chain. Equivalent to RES.  

Fig. 5.11

[Byun and Cho, 1997] PPSP Equivalent to ESP kinematic chain. Fig. 5.12

[Cleary and Uebel, 1994] URS kinematic chain with the U joints controlling 

the pitch and roll of the lower rotating links.  

Fig. 5.13
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Figure 5.3: The robot presented by Behi [1988]. 

 . Behi [1988]הרובוט המקבילי של : 5.3איור 

Figure 5.4: The robot presented by Kholi et al. [1988]. 

 . Kholi et al. [1988]הרובוט המקבילי של : 5.4איור 

Figure 5.5: The robot presented by Romiti and Soreli [1990]. 

 . Romiti and Soreli [1990]הרובוט המקבילי של : 5.5איור 
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Figure 5.8: The robot presented by Alizade, Tagiyev, and Duffy [1994]. 

 . Alizade, Tagiyev, and Duffy [1994]הרובוט המקבילי של : 5.8איור 
 

Figure 5.6: The kinematic chain of the robot presented by Soreli, et al. [1997]. 

 . Soreli, et al. [1997]השרשרת הקינימטית של הרובוט המקבילי של : 5.6איור 
 

Figure 5.7: The robot presented by Zlatanov, et al. [1992]. 

 . Zlatanov, et al. [1992]הרובוט המקבילי של : 5.7איור 
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Figure 5.9: The robot presented by Collins and Long [1995(a)]. 

 . Collins and Long [1995(a)]הרובוט המקבילי של : 5.9איור 
 

Active 

Active 

11: The parallel robot presented by Ebert and Gosselin [1998]. 

 . Ebert and Gosselin [1998]הרובוט המקבילי של : 5.11איור 
 

10: The parallel robot presented by Mimura and Funahashi [1995]. 

    . Mimura and Funahashi [1995]הרובוטים המקביליים של: 5.10איור 
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5.4 A family of parallel manipulators 

All the manipulators in table 5.2, except for the robot suggested by [Tsai and 

Tahmasebi, 1993], use kinematic chains that end with spherical joints to connect the 

kinematic chains with the moving platform. In this section, we present a family of parallel 

manipulators that includes fourteen distinct manipulators. All the manipulators in this family 

have three identical kinematic chains connected to the moving platform by revolute joints. In 

addition, all these manipulators have the same reactions acting on the moving platform. In 

chapter 7, we will show that these manipulators share the same instantaneous direct 

kinematics matrix, and in chapter 10, we will analyze the parallel singularities of this family 

of manipulators. 

 

12: The parallel robot presented by Byun and Cho [1997]. 

 . Byun and Cho [1997]הרובוט המקבילי של : 5.12איור 
 

13: The parallel robot presented by Cleary and Uebel [1994]. 

 . Cleary and Uebel [1994]הרובוט המקבילי של : 5.13איור 
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Figure 5.14 presents all the fourteen kinematic chains that belong to this family of 

manipulators. The last links in all the kinematic chains are connected to the moving platform 

by revolute joints and apply on the moving platform the kinematic constraints of revolute-

spherical (RS) dyads. The figure includes the PPSR kinematic chain, which is the same as the 

one presented by [Tsai and Tahmasebi, 1993]. Among all the fourteen kinematic chains in the 

figure, we chose two candidate manipulators for the task that was presented in chapter 4. The 

PSPR HSPR 

PPSR RRSR HHSR 

RPSR HPSR HRSR 

PRSR PHSR 

RHSR 

CSR USR 

RSPR 

Figure 5.14: A family of 14 manipulators with common kinematic features. 
 .ימטיות משותפות מניפולטורים מקביליים עם תכונות קינ14משפחה של : 5.14איור 
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two candidate manipulators are the RSPR and the USR manipulators. All the kinematic chains 

with helical (H) pairs were excluded because of the kinematic complexity introduced by these 

pairs. In the following section, we present in detail the kinematic parameters of the two 

suggested manipulators.            

 

5.5 The RSPR and the USR manipulators 
 The USR and the RSPR manipulators are presented in Fig. 5.15 and 5.16. All the 

joints are indicated by encircled letters denoting the type of the joints. These manipulators 

were first presented in [Simaan, Glozman, and Shoham, 1998].   

 

5.5.1 The USR manipulator  

The USR robot consists of three identical kinematic chains connecting the base and 

the moving platform. Each kinematic chain is composed of two links. One link is connected 

to the base platform by a active universal (U) joint, the other link is connected to the moving 

platform by an R joint, and the two links are connected in between by a spherical (S) joint. 

The lower link of each kinematic chain is oriented in space by a differential drive, controlling 

its yaw and pitch angles relative to the base platform, Fig. 5.15.  

Using the mobility equation shows that this manipulator has a mobility m = 6. The 

number of rigid links, nl, in each kinematic is 4, the number of joints in each chain, gl, is 3, 

and the sum of the joint freedoms in each kinematic chain, Σfl, is 6. Therefore, the 

connectivity between the moving and base platform is 6.     

This structure is a variation of the structure described by [Cleary and Uebel, 1994]  

which uses URS joint cobmination for each kinematical chain, controlling the pitch and roll 

of the lower links. The structure that we suggest has, however, a different order of joints - a 

revolute joint connecting the links to the moving platform, and a spherical joint between the 

S 

Moving Platform 

Stationary 
Base 

Figure 5.15: USR parallel robot. 

 . USRמניפולטור מקבילי : 5.15איור 

U 

R 
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links. This modification prevents collision between links and eliminates some of the singular 

configurations in the URS manipulator. 

 
5.5.2 The RSPR manipulator 

 
This manipulator consists of three identical kinematic chains connecting the base and 

the moving platform. Each chain contains a lower link rotating around a pivot perpendicular 

to the base platform and offset-placed from the center of the base. At the other end of the 

lower link, a prismatic actuator is attached by a spherical joint. The upper end of the prismatic 

actuator is connected to the moving platform by a revolute joint. The axes of the revolute 

joints constitute an equilateral triangle in the plane of the moving platform, Fig. 5.16.  

The mobility equation indicates that this manipulator has a mobility m = 6. The 

number of rigid links, nl, in each kinematic is 5, the number of joints in each chain, gl, is 4, 

and the sum of the joint freedoms in each kinematic chain, Σfl, is 6. Therefore, the 

connectivity between the moving and base platform is 6.     

 This manipulator is distinguished by the location of the lower links revolute axes 

being placed offset from the center of the base platform. Alizade, Tagiyev, and Duffy [1994] 

presented a robot with RRPS kinematic chains. We will show in chapter 8 that the RSPR 

robot requires less actuator effort for the same task. In chapter 10 we will show that this robot 

eliminates some of the singular configurations that are present in the RRPS robot. However, 

using the swept volume analysis, which was presented in Zhiming, [1994], reveals that when 

eccentricity is eliminated in RSPR robot then both RSPR and RRPS have the same swept 

volume of the kinematic chains’ upper extremities. Since RSPR robot has an R joint at the 

Stationary  
Base 

Moving Platform 

P 

S 

R 

Figure 5.16: The RSPR parallel robot. 

 .RSPRרובוט : 5.16איור 

R 
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end of each kinematic chain, which imposes additional perpendicularity constrains, it results 

in a smaller vertex space and work volume than RRPS robot. We will show in chapter 10 that, 

unlike the robot by Alizade, Tagiyev, and Duffy [1994], the eccentricity of the lower revolute 

joints eliminates singular configuration of the robot.   
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Chapter 6 

Kinematics of the USR and the RSPR Robots 

  
6.1 Introduction 
 The kinematics of a robot deals with finding the analytical relations between its input 

variables (the values of the active joints) and output variables (the position and orientation of 

the gripper). The equations that connect between the input and the output variables of a 

mechanism are called the kinematic equations of the mechanism. The equations that connect 

between input and output velocities in a mechanism are called the instantaneous kinematic 

equations of the mechanism. The direct kinematics problem deals with finding the output 

variables of the robot, i.e. the position and orientation of the gripper, for a given set of input 

variables, namely, the active joints’ variables. The inverse kinematics problem deals with 

finding the required input variables (active joints’ values) that correspond to a given set of 

output variables (position and orientation of the gripper). 

The inverse kinematics problem of the Stewart-Gough manipulators is trivial with 

single solution, but when the number of kinematic chains is reduced, the number of solutions 

of the inverse kinematics problem increases and the problem becomes more challenging. The 

direct kinematics problem of parallel manipulators is by far more challenging than the inverse 

kinematics problem since it requires solving a set of polynomial equations in the output 

variables. While the inverse kinematics problem for a general Stewart-Gough manipulator has 

only one solution, the direct kinematic problem has up to 40 real solutions [Lazard, 1993]. 

Recently, Deitmaier [1998] systematically changed the geometric properties of a general 

Stewart-Gough manipulator and, for the first time, gave an example of a manipulator with 40 

real solutions to the direct kinematics problem.  

In this chapter, we will show that the USR and the RSPR robots have eight solutions 

for the inverse kinematics problem. These inverse kinematics solutions for the USR and the 

RSPR robots are used in the simulations for evaluation of the workspace of both 

manipulators. The direct kinematics problem for a tripod mechanism such as the upper tripods 

of the USR and the RSPR robots was solved in [Tahmasebi and Tsai, 1994(a)]. Tahmasebi 

and Tsai [1994(a)] showed that there are 16 solutions for the direct kinematics problem of the 

tripod mechanism with pairs of solutions that are the mirror images of one another with 

respect to the plane that passes through the spherical joints. Based on the solution in 

[Tahmasebi and Tsai, 1994(a)], the direct kinematics problem of the RSPR and the USR 
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robots becomes simple. This is because the only required additional step is finding the 

positions of the spherical joints and defining the transformation matrices from the planes 

through the spherical joints’ centers and the base planes of the robots. For parallel robots, 

only the Inverse kinematic solution is needed for control purposes; therefore, we do not need 

to solve the direct kinematics problem and we limit this chapter to presenting the inverse 

kinematic solutions of the USR and the RSPR robots.  

Without loss of generality, the following analysis assumes symmetrical robots, but the 

same analysis presented here can be adapted for any non-symmetrical geometry of the 

manipulators. We refer to the plane, which is defined by the three lower extremities of the 

kinematic chains as the base plane. We assume that the lower extremities of the kinematic 

chains define an equilateral triangle in the base plane. The incenter of this triangle is called 

the center point of the base platform and we fix the origin of the world coordinate system at 

this point. The world coordinate system is defined such that its x-axis points from the center 

point to the lower extremity of the first kinematic chain. The z-axis points upward from the 

base plane and the y-axis completes the right-handed coordinate system. We also assume that 

the upper extremities of the kinematic chains connect to the moving platform at three distinct 

points such that these points define an equilateral triangle in the plane of the moving platform. 

The incenter of this triangle is called the center point of the moving platform and we attach a 

coordinate system having its origin coincident with this point. This coordinate system is 

referred to as the central platform-attached coordinate system. The x-axis, of this coordinate 

system, points form the center point of the moving platform to the upper extremity of the first 

kinematic chain. The z-axis is normal to the moving platform and the y-axis completes the 

system to a right-handed coordinate system, Fig. 6.1. In addition to the central platform-

attached system, we define three platform-attached coordinate systems called C1, C2, and C3, 

Fig. 6.1. These coordinate systems are right-handed and rotated about the z-axis of the central 

platform-attached coordinate system. The y-axis of the i’th coordinate system, Ci, is parallel 

to the axis of the upper revolute joint of the i’th kinematic chain. The origin of the Ci 

coordinate systems is located at the upper extremity of the i’th kinematic chain.   

In order to facilitate the formulation of the inverse kinematics problems for the USR 

and the RSPR robots we introduce the following symbols that will be used for both 

manipulators. Fig. 6.1 presents these common symbols without showing the details of the 

kinematic chains.     

i: an index indicating a specific kinematic chain i = 1, 2, 3. 

op: center point of the moving platform. 
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rp: the radius of the moving platform. 

t: position vector of the center of the moving platform. 

pi: position vector of the upper extremity of the i’th kinematic chain. 

ppi: position vector of the upper extremity of the i’th kinematic chain in the central 

platform-attached coordinate system. 

ξpi: an angle measured from the x-axis of the central platform-attached coordinate 

system, xp, to ppi according to the right-hand rule about zp.  

ei: position vector of the lower extremity of the i’th kinematic chain. 

e: the eccentricity measure (equal to the Euclidean norm of ei). 

ξbi: an angle measured from the x-axis of the world coordinate system, x0, to ei 

according to the right-hand rule about z0.  

bi: position vector of the spherical joint of the i’th kinematic chain. 

n: a unit vector normal to the moving platform.   

îr : a unit vector along the axis of the upper revolute joint in the i’th kinematic chain.  

pp1 

t xp 

yp 

zp = n

b1 

e1 

x0 

y0 

z0 
p1 

Figure 6.1: Common symbols used for the RSPR and the USR robots.  

 .USR ולרובוט RSPRסימונים משותפים לרובוט  : 6.1איור 

Base plane 

C2 

C1 
C3 

Moving platform 

Spherical 
joint 

Central platform-

attached 

coordinate system 

h1 

ir̂  
Revolute 

joint 

op 
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hi: A vector specifying the height of the i’th kinematic chain upper extremity relative 

to the base plane.   

p
w R : rotation matrix transforming vectors from the central platform-attached 

coordinate system to world coordinate system. 

iC
p R : rotation matrix form the Ci coordinate system to the central platform-attached 

coordinate system.   

Note: all the vectors, unless otherwise noted, are expressed in the world coordinate 

system.  

 Equations (6.1) and (6.2) give the expressions of the vectors describing the location of 

the connection points of the kinematic chains to the platforms, ppi and ei.  

                                      ppi = [rp cos(ξpi), rp sin(ξpi), 0]t                                             (6.1)                  

                 ei = [e cos(ξbi), e sin(ξbi), 0]t                                                (6.2) 

Where the angles ξpi and ξbi are equal and have the values given by Eq. (6.3). 

                          ( )
π

−
=ξ=ξ

3
1i2

bipi                                                     (6.3) 

Eq. (6.4) gives the expression for the unit vectors îr . 

                                                îr = [cos(ξpi + π/2), sin(ξpi + π/2), 0]t                                     (6.4) 

The columns of the rotation matrices 
iC

p R  are the unit vectors along ppi, îr , and n expressed 

in the central platform-attached coordinate system; therefore, Eq. (6.5) has the following 

form. 

                                           







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
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100
0)cos()sin(
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ξξ
ξξ

R                                            (6.5) 

 

6.2 Inverse kinematics of the RSPR robot 
Figure 6.2 presents the kinematic model of RSPR robot with additional symbols that 

are defined herein. 

rb: the length of the rotating links. 

γi: the angle between the normal, n, and the normal to the base plane.   

Pi: the plane in which the i’th extensible link rotates about the revolute joint, îr .  

vi: the line of intersection between the plane Pi and the base plane.   
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In addition to these symbols, we define the active joints’ variables that control the 

movement of the moving platform. Figure 6.3 presents a top view of the base platform. The 

rotation of the i’th rotating link is measured as indicated in the figure and is denoted by θi. 

The length of the i’th extensible link is indicated by the symbol li. 

θ1>0 
θ1<0 

120° 

120° θ2<0 

θ3>0 

xp 

yp 

Figure 6.3: Top view of the base platform and the notation system of the 

rotating links’ angles. 
 .  מבט על על פלטפורמת הבסיס ושיטת סימון זוויות החוליות מסתובבות: 6.3יור א
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Figure 6.2: The RSPR with the kinematic model for one kinematic chain. 

 . עם המודל הקינימטי לשרשרת קינימטית אחתRSPRרובוט : 6.2איור 

Second solution 

First solution 

Base plane 

v1 

γ1 

ir̂

op 



Chapter 6: Kinematics of the USR and the RSPR Robots. 

 - 46 -

The locus of the spherical joint of the i’th kinematic chain is a circle with a radius equal 

to the length of the rotating links, rb. The center of the spherical joint, ui, is defined by the 

intersection of the plane Pi with the circle of the rotating link. This indicates that when the 

position and orientation of the moving platform is given then there are two possible solutions 

for each rotating link as demonstrated in Fig. 6.2. Since every rotating link has two possible 

values for θ, the whole manipulator has eight solutions for the inverse kinematics problem.    

The solution presented here allows careful selection of the desired inverse kinematics 

solutions for every kinematic chain. This is important in order to maintain consistency of the 

solution during the simulations for workspace evaluation. 

The unit vector normal to the moving platform is given by the third column of the 

rotation matrix p
w R  as expressed in Eq. (6.6). 

                                                  n = p
w R * [0,0,1]t                                                    (6.6)  

The position of the kinematic chain upper extremity is given by: 

                                               pi = t + p
w R * ppi                                                    (6.7) 

We define a point di as the point, in which, a line parallel to the normal, n, and passing 

through pi pierces the base plane. We also define the vector pdi as the vector from point pi to 

di. 

                                                                 
)cos(

i
i

iγ
=

h
pd                                                      (6.8)  

Where the symbol |pdi| indicates the magnitude of the vector pdi.  

Using the scalar product definition between the vector -n and hi and substituting it in Eq. (6.8) 

yields: 

                                                               
i

t

2
i

i
hn

h
pd

−
=                                                            (6.9) 

The point di is obtained by Eq. (6.10). 

                                                         npdppdppd ∗−=+= iiiii                                                     (6.10) 

Point di belongs to the plane Pi; therefore, it is possible to obtain the two solutions of 

the inverse kinematics problem by tracing along vi in two directions as shown in Fig. 6.2. Any 

point (x, y) on vi is define by the parametric equation in Eq. (6.11). 

                                                            
yiy

xix

vtdy
vtdx

∗+=
∗+=

        t ∈ [-∞, ∞]                               (6.11)   
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We define a point tp along the normal n such that  

                                                                 tp = t + rp n                                                          (6.12) 

The equation of the plane Pi is given by the determinant of the matrix M expressed in Eq. 

(6.13). 

                                                
















−−−
−−−
−−−

=

333

222

111

det
zzyyxx
zzyyxx
zzyyxx

M                                      (6.13) 

Where (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) are the Cartesian coordinates of the points tp, t, 

and pi, respectively. Equation (6.14) for the line vi, is obtained by substituting z = 0 in Eq. 

(6.13) and expanding the determinant.  

                                                  Ax x + Ay y + C = 0                                                (6.14) 

Where Ax, Ay, and C are given by:  

         Ax  = (-z3 y1 + z3 y2 - z2 y3 + z1 y3 + z2 y1 - z1 y2)                                           (6.15) 

         Ay = (-x1 z2 - x2 z3 + x1 z3 - x3 z1 + x3 z2 + x2 z1)                                            (6.16)      

                     C = x1 z2 y3 - x3 z2 y1 - x1 z3 y2 + x2 z3 y1 - x2 z1 y3 + x3 z1 y2                        (6.17) 

We use the letter m to refer to the slope of the line vi. The unit vector along this line is given 

by Eq. (6.18).         
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The sign term in Eq. (6.18) ensures that the unit vector vi points in the same direction as the 

projection of the vector ppi on the base, Fig. 6.2. The sign of the parameter t distinguishes 

between the two solutions of the inverse kinematics for one kinematic chain. This method for 

identifying the solutions holds for all the cases, except for the case when the vector ppi is 

perpendicular to the base plane. This occurs when the platform is perpendicular relative to the 

base plane and this configuration is outside the desired rotational capability of the 

manipulator.     

The parameter t is found by the intersection of the line vi with the circle of the lower 

rotating link. The equation of the circle is given by Eq. (6.19).  

                                             ( ) ( ) 2
b

2
y

2
x reyex =−+−                                           (6.19) 

By substituting Eq. (6.11) in Eq. (6.19), we obtain a quadratic equation with the 

unknown parameter t. 

                                                         at2 + bt + c = 0                                                 (6.20) 
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Where a, b, and c are given by:    

                 a = vi
t vi .     b = 2(di –ei)t vi .    c = di

t di + ei
t ei –2di

t ei – rb
2.                (6.21) 

The solution for t is given by Eq. (6.22).  

                                                               
2a

4acbbt
2 −±−

=                                             (6.22)                 

The solution with the plus sign corresponds to the solution shown in Figure 6.1 and 

labeled as the first solution. The solution with the minus sign corresponds to the second 

solution shown in Fig. 6.2. Figures 6.4 and 6.5 present the eight inverse kinematics solutions 

for the RSPR robot with the moving platform parallel and right above the base platform. 

 

 

 

 

 

Figure 6.4: The first four out of eight solutions of the inverse kinematics problem for 

the RSPR robot.  
ארבעת הפתרונות הראשונים מתוך שמונת הפתרונות לבעיית הקינמטיקה : 6.4איור 

 .RSPRההפוכה של רובוט 
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6.3 Inverse kinematics of the USR robot  
 The USR robot, like the RSPR robot, has eight possible solutions for the inverse 

kinematics problem. The yaw and the pitch angles of the lower rotating links are the unknown 

parameters of the inverse kinematics problem.  

Figure 6.6 presents the USR robot with the relevant symbols. We use the following 

symbols in addition to the symbols and geometrical assumptions that were presented in 

section 6.1.  

αi:  the yaw angle of the lower rotating link. αi is measured in the same way 

like θi for the RSPR robot. Figure 6.3 applies for the USR robot with the 

replacement of θi with αi.   

βi:  the pitch angle of the lower rotating link. βi is measured relative to the 

base plane as shown in Fig. 6.6. 

Figure 6.5: The remaining four out of eight solutions of the inverse kinematics 

problem for the RSPR robot.  
ארבעת הפתרונות הנותרים מתוך שמונת הפתרונות לבעיית הקינמטיקה ההפוכה : 6.5איור 

 .RSPRשל רובוט 
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li1:  a vector pointing from the center of the active Hook’s joint to the center 

of the spherical joint.  

li2:  a vector pointing from the center of the spherical joint to the upper 

extremity of the kinematic chain. 

l1:  the length of the lower rigid links in the kinematic chains. 

l2:  the length of the upper rigid links in the kinematic chains. 

The rotation of upper rigid link about the axis of the revolute joint defines a circle 

with a radius l1. This circle is the locus of the spherical joint in the platform-attached 

coordinate system. The lower link defines a sphere, with a radius l1. All the points on this 

sphere are the locus of the spherical joint in the world coordinate system. The solution of the 

inverse kinematics problem of one kinematic chain is obtained by finding the intersection 

points between the circle and the sphere associated with the kinematic chain. Consequently, 

there are two solutions for every kinematic chain and, in total, there are eight solutions for the 

whole manipulator.  

The position of the center of the spherical joint in a kinematic chain is given by Eq. 

(6.23). 

         bi = pi – li2                                              (6.23) 
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Figure 6.6: USR robot with the kinematic model for one kinematic chain. 
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Where pi is given by Eq. (6.7) and li2 is expressed in world coordinate system by Eq. (6.24). 

                                                    li2 = iC
p

p
w RR [-l2 sin(γi), 0, l2 cos(γi)]t                          (6.24) 

Substituting Eq. (6.24) and Eq. (6.7) in Eq. (6.23) results in: 

                                        bi = t + p
w R (ppi + 

iC
p R * [l2 sin(γi), 0, -l2 cos(γi)]t )                 (6.25) 

The vector along the lower rotating link, li1, is given by Eq. (6.26). 

                                                                    li1 = bi - ei                                                           (6.26) 

The rotating link has a constant length l1, therefore, we obtain one constraint equation, 

Eq. (6.27). 

                              | t + p
w R * (ppi + iC

p R  [l2 sin(γi), 0, -l2 cos(γi)]t ) - ei | = l1                  (6.27) 

Raising Eq. (6.27) to the power of two results in an equation with one unknown parameter γi.  

                                                              ( ) ( ) csinbcosa ii =γ+γ                                          (6.28) 

Where a, b, and c are given by: 

                    a = 2l2([ei - pi]t n)                                                 (6.29) 
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Equation 6.28 has two solutions [Lipkin and Duffy, 1985]: 

                                              








 −+±
+






=γ

c
cba2tan

a
btan2

222

i AA                             (6.32) 

These solutions are demonstrated in Fig. 6.6. The solution with the minus sign 

corresponds to the first solution in Fig. 6.6 and it is characterized by positive γi. The solution 

with the plus sign corresponds to the second solution in Fig. 6.6 and it is characterized by 

negative γi. 

After selecting the desired solution we substitute γi in Eq. (6.26) and we obtain the 

vector li1. We use the symbol wi to refer to the unit vector along the perpendicular projection 

line of li1 on the base plane. wi is given by Eq 6.34. 
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Where xi1l and 
yi1l  are the first two direction numbers of li1. We compute the required yaw 

angle, αi, by utilizing the expression for dot and cross products between wi and a unit vector 

along ei.  
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The pitch angle, βi, is limited in the range βi ∈ [0,π]; therefore, computing the scalar 

product between the unit vectors along li1 and wi is sufficient for explicit computation of βi.  
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 Equations (6.37) and (6.38) give the desired yaw and pitch angles for every active 

universal joint in the manipulator, hence, the solution of the inverse kinematics problem is 

complete. Figures 6.7 display the eight solutions of the inverse kinematics problem with the 

moving platform parallel and right above the base platform.  
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Figure 6.7: The eight solutions of the inverse kinematics problem for the USR robot. 

 .USRשמונת הפתרונות לבעיית הקינמטיקה ההפוכה לרובוט : 6.7איור 
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Chapter 7 

Jacobian Formulation of A Class of Parallel Robots 
 
7.1 Introduction 

This chapter presents the Jacobian formulation of a class of parallel manipulators that 

was introduced in section 5.4 Fig. 5.14. The robots in this class of manipulators share a 

common tripod mechanism, which constitutes of a moving platform and three links connected 

to it by revolute joints. These links transmit to the moving platform the same constraints as 

the constraints associated with a spherical-revolute (SR) dyad. This fact allows unifying the 

Jacobian formulation for this class of manipulators.    

Various Jacobian formulation methods for parallel robots can be found in the 

literature. The methods are based on velocity equations [Tahmasebi and Tsai, 1992], static 

equilibrium [Cleary and Uebel, 1994, Simaan, Glozman, and Shoham, 1998] and screw theory 

[Waldron and Hunt, 1991]. Collins and Long [1995(b)] formulated the Jacobian matrices for 

fully parallel and serial manipulators based on reciprocal screws. More recently, [Tsai, 1998] 

used similar method to the one presented in [Collins and Long, 1995(b)] and utilized 

reciprocal screws to formulate the Jacobian matrix of the PPSR parallel-chain robot, which 

was presented in [Tsai and Tahmasebi, 1993]. This formulation of the Jacobian matrix, 

though mathematically simple, lacks the geometrical view that allows simpler derivation of 

the Jacobian matrix. The formulation presented in the sequel divides a typical manipulator of 

Fig. 5.14 into a parallel part and a serial part. This overcomes the problem of obtaining a line-

based Jacobian formulation [Hao and McCarthy, 1998] for the class of manipulators of Fig. 

5.14 and unifies the singularity analysis of this class of manipulators. The method enables 

interpreting the singular configurations in terms of the geometry of the robot.    

 

7.2 The Jacobian matrix for parallel manipulators  
The Jacobian matrix for parallel manipulators relates the instantaneous twist motion of 

the moving platform with the corresponding required speeds of the active joints. This 

definition is dual to the definition of the Jacobian matrix for serial manipulators where the 

Jacobian matrix relates the speeds of the active joints with the corresponding instantaneous 

twist motion of the moving platform. This duality was presented in [Waldron and Hunt, 1991] 

and later in [Collins and Long, 1995(b)]. The duality of the Jacobian definitions for Serial and 

Parallel manipulators stems from the duality between wrenches and twists. For serial 
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manipulators, the twist of the end effector is a linear combination of the motion screws 

associated with the active joints. For parallel manipulators, the resultant wrench acting on the 

moving platform is a linear combination of the active joints’ action screws. Equation (7.1) is 

the general form of the input-output velocity relation of a general non-redundant manipulator 

[Gosselin and Angeles, 1990].  

                                        qBxA =                                      (7.1) 

Where x denotes the vector of the output link’s position and orientation variables, x  denotes 

twist rates of the output link, q denotes the vector of the active joints values, and q  denotes 

the speeds of the active joints.  

For open-chain manipulators, the direct kinematics is trivial; therefore, there exists an 

explicit relation in the form of Eq. (7.2). 

                                                              x = f(q)                                                         (7.2) 

Taking the time derivative of Eq. (7.2) yields a relation in the general form of Eq. (7.1) with 

the matrix A being the identity matrix. Therefore, the definition of the Jacobian matrix for 

serial manipulators is according to Eq. (7.3).  

                                                                           qJx =                                                         (7.3) 

 The matrix J is the Jacobian matrix for serial manipulators and it is defined by the partial 

derivatives of the direct kinematics relations.  

                                                                       
j

i
ij q

xJ
∂
∂

=                                                          (7.4) 

The direct kinematics of closed-chain manipulators does not have simple explicit form 

and the inverse kinematics problem has explicit and relatively trivial form. Therefore, a 

relation in the form of Eq. (7.5) is always attainable. Alternatively, loop closure equations 

may be used for the Jacobian formulation [Basu and Ghosal, 1996].   

                                                            q = f(x)                                                           (7.5) 

Taking the derivative of Eq. (7.5) with respect to time yields a relation in the form of 

Eq. (7.1). For a fully-parallel manipulator, the matrix B is a diagonal matrix and it is easy to 

invert it. Therefore, the definition of the Jacobian matrix and the input/output velocity relation 

for parallel manipulators is given by Eq. (7.6). This definition assures that for a fully-parallel 

manipulator the Jacobian matrix exists for all configurations [Ma and Angeles, 1992].  

                                                                         xJq =                                                            (7.6) 
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Equation (7.7) gives the expression for the Jacobian matrix cells. Moreover, the Jacobian 

matrix, J, is the product of multiplying two matrices according to Eq. (7.8), [Gosselin and 

Angeles, 1990]. 

        
j

i
ij x

qJ
∂
∂

=             (7.7)   ABJ 1−=         (7.8) 

The matrices, A and B, are called the instantaneous direct kinematics matrix and the 

instantaneous inverse kinematics matrix, respectively. These matrices are used for 

determining the singularity conditions regarding loss or gain of degrees of freedom [Gosselin 

and Angeles, 1990] and will be used in the singularity analysis presented in chapter 10. 

 By assuming no power loss in the manipulator, we obtain the input/output static forces 

relation. For serial manipulators, the Jacobian relates between the wrench applied by the 

output link on the environment and the corresponding forces of the active joints, Eq (7.9).  

                                                  fJ t=τ                                                          (7.9) 

Where τ is the vector of active joints’ forces and f is the wrench applied on the environment 

by the output link. For parallel manipulators, the Jacobian matrix relates between the 

force/torque intensities of the active joints and the resultant wrench on the output link 

according to Eq. (7.10). 

                                                                         fJ
1t−=τ                                                     (7.10) 

Table 7.1 summarizes the input/output velocity and static forces relations for parallel 

and serial manipulators.  

Table 7.1: Jacobian definition for Parallel and Serial manipulators.  
  . הגדרת היעקוביאן לרובוטים מקביליים ולרובוטים טוריים: 7.1טבלה 

General input/output velocity relation:     qBxA =  

Property Parallel manipulators Serial manipulators 

Explicit kinematic relation q = f(x) x = f(q) 

Instantaneous relation xJq =  qJx =  

Jacobian definition 
j

i
ij x

qJ
∂
∂

=     ABJ 1−=  
j

i
ij q

xJ
∂
∂

=        J = B 

Static forces relation fJ
1t−=τ  fJ t=τ  
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In chapter 1 we gave the definition of a fully-parallel manipulator. This definition 

results in parallel robots with diagonal and non-singular instantaneous inverse kinematics 

matrices. Therefore, we refer to every manipulator that has a non-diagonal instantaneous 

inverse kinematics matrix as a non-fully-parallel manipulator.  

 

7.3 Jacobian formulation of a class of parallel robots 
 All the manipulators in Fig. 5.14 share the same tripod mechanism shown in Fig. 7.1. 

Accordingly, we first develop the Jacobian matrix of this tripod mechanism and we use this 

Jacobian matrix to develop the Jacobian matrix of a complete manipulator that belongs to the 

aforementioned class of manipulators. We then concentrate in particular on the USR and the 

RSPR robots and we derive the Jacobian matrices for these robots. We will use force 

decomposition method to formulate the Jacobian of the tripod mechanism and the RSPR 

robot. We will also formulate the Jacobian matrix for the USR robot and demonstrate the 

velocity-based method. The formulation of the Jacobian matrices for the USR, RSPR, and the 

Double Circular Triangular (Fig. 2.7) robots was presented in [Simaan, Glozman, and 

Shoham, 1998] based on the force decomposition method.  

 

7.3.1 Jacobian of the tripod mechanism 

The tripod in Fig. 7.1 includes a moving platform and three links, Ai. The links, Ai, are 

connected to the moving platform by revolute joints and to the previous links in the kinematic 

chains, Bi, by spherical joints. The spherical joint simplifies the force decomposition since it 

Spherical Joint 

Moving platform 

op 

2iŝ  

Revolute 
Joint 

f1i 

f2i 

Figure 7.1: Common tripod mechanism. 
 . רגל משותף-מכניזם תלת: 7.1איור 

ir̂

1ii ˆˆ sr ×

Ai 

Bi 

se 

1iŝ
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transmits forces only [Cleary and Uebel, 1994]; therefore, we will use this method to 

formulate the Jacobian.  

We will use the following symbols in agreement with and in addition to the symbols 

presented in chapter 6:  

i: an index referring to a specific kinematic chain. i=1,2,3.  

op: the center point of the moving platform.  

îr : a unit vector along the axis of the upper revolute joint in the i’th kinematic chain.  

p
w R : rotation matrix transforming vectors from the central platform-attached 

coordinate system to world coordinate system. 

ŝ1i: a unit vector along the i’th tripod link, Ai. 

s1i: a vector from the spherical joint center to the upper extremity of the i’th kinematic 

chain.   

ŝ2i: a unit vector through the center of the spherical joint of the i’th kinematic chain 

and parallel to the axis of the upper revolute joint ir̂ .  

f1i: the magnitude of the force transmitted along link Ai.  

f2i: the magnitude of force acting on the tripod link, Ai, along ŝ2i. 

f1: three-dimensional vector of the force intensities f1i.   

f2: three-dimensional vector of the force intensities f2i.   

se: the external wrench applied by the moving platform on its environment. The 

external wrench is a six-dimensional vector specifying in its upper three elements 

the resultant external force fe, and in its last three elements the resultant moment te, 

i.e., se = [fe, te]. 

Link Ai is connected to the moving platform and to link Bi by a revolute joint and a 

spherical joint, respectively. Consequently, in static analysis it is capable of exerting on the 

platform a force in a direction spanned by the flat pencil of ŝ1i and ir̂ , and a moment in the 

direction of 1ii ˆˆ sr × as illustrated in Fig. 7.2. Link Bi can exert on link Ai, through the center of 

the spherical joint, a force in a direction defined by the flat pencil of ŝ1i and ŝ2i, Fig. 7.2. 

Therefore, we decompose the force transmitted from link Bi to Ai into two components. The 

first component is of magnitude f1i and in the direction of ŝ1i and the second component is of 

magnitude f2i and in the direction of ŝ2i.  

Equations (7.11) and (7.12) result from static equilibrium of forces and moments about 

the center point of the moving platform, respectively.   
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Where the expression ∑ =
×−3

1i 2i2i1i ˆfˆ ss  represents the moments of the forces f2iŝ2i along the 

axes 1ii ˆˆ sr × , Fig. 7.2.  

Writing Equations (7.11) and (7.12) in a matrix form yields:    
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 Equation (7.13), when compared to Eq. (7.10), yields the Jacobian matrix of the tripod 

mechanism, which will be referred to by the symbol J~ .  
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The forces at the spherical joints are given by:  
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The rows of the Jacobian matrix of the tripod, J~ , are the Plücker line coordinates of 

the lines along the links, ŝ1i, and the lines ŝ2i. This geometric interpretation of the Jacobian 

matrix, J~ , is presented in Fig. 7.3. 

2iŝ  

op 

f1i 

f2i 

Figure 7.2: Force transmission from link Bi to Ai and from link Ai to the moving 

platform.  
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Bi 
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Unlike the result obtained by [Tsai, 1998], The formulation of J~  presents a matrix 

which is constructed from lines that are easy to determine since it describes a typical 

subassembly of a class of manipulators. The geometrical interpretation of the rows of J~  is 

important for the singularity analysis, which is based on line geometry. The geometry of the 

lines of the Jacobian J~  is easily determined in a platform-attached coordinate system.  

 The group of manipulators in Fig. 5.14 shares the same tripod mechanism. The 

complete Jacobian matrix of a manipulator in this group is easily obtained by taking into 

account the equilibrium of forces at the spherical joints. It is possible to obtain a relation 

between the forces f1i and f2i and the active joints forces by treating the remainder of the 

kinematic chains as a serial chain and applying the reactions on link Bi. The relation between 

the actuators’ force intensities and the forces at the spherical joints is given in Eq. (7.16) 

where Js denotes the Jacobian matrix of the serial chains.  

                                                                







=τ

2

1t
s f

f
J                                                         (7.16)                 

 Substituting the expression for the forces at the spherical joints according to Eq. (7.15) 

in Eq. (7.16) results in:  
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1~ sJJ
f
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J
−

=







=τ s                                        (7.17) 

Equation (7.17) and Eq. (7.10) have the same form, therefore, by using the definition of the 

Jacobian matrix we conclude that the Jacobian of a complete manipulator is given by Eq. 

(7.18). 

                                                                        JJJ ~1−= s                                                     (7.18) 

ŝ11 
ŝ21 

 ŝ12 
ŝ22 

ŝ13 

ŝ23 

Figure 7.3: Geometrical interpretation of the rows of the tripod’s Jacobian matrix. 
 . רגל-תיאור גיאומטרי של שורות היעקוביאן של מכניזם התלת: 7.3איור 
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Therefore, the instantaneous direct kinematics matrix, A, is the Jacobian matrix of the 

tripod mechanism and it is common for all the manipulators in Fig. 5.14. The instantaneous 

inverse kinematics matrix, B, is the Jacobian matrix of the serial part of the kinematic chains 

and every manipulator of Fig. 5.14 has a different matrix.    

 

7.3.2 Jacobian matrix of the RSPR robot 

The Jacobian matrix of the RSPR robot can be easily obtained by using the method 

described in the previous section. Figure 7.4 presents the lower part of the manipulator 

separated from the tripod mechanism.  

We use these additional symbols For the RSPR robot: 

lbi: the vector from the center of rotation of link Bi to the center of the i’th spherical 

joint. 

ŝni: a unit vector along the axis of rotation of link Bi.   

The torque required from a rotational actuator balances the moment of the forces 

acting on link Bi through the spherical joint. Therefore, the expression for the required torque 

intensity, tni, after performing algebraic manipulations is:  

                          ( )[ ] ( )[ ] 2i2i1i1i2ibi
t

ni2i1ibi
t

ni1ini fCnfCnfˆˆfˆˆt +=×+×= lsslss                (7.19) 

Where Cn1i and Cn2i are the coefficients of f1i and f2i in Eq. (7.19), respectively. 

tni 

Moving platform 

lbi 

-f1iŝ1i
-f2iŝ2i

ŝni 

f1iŝ1i 

f2iŝ2i 

Base platform 

Figure 7.4: The actuators’ moments and the forces transmitted through the spherical joints. 
 .המומנטים של המפעילים והכוחות המועברים דרך המפרקים הספיריים: 7.4איור 
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We define the active joints force/torque intensities vector, τ, as the linear actuator 

forces and the rotating link’s torques; therefore, by substituting Eq. (7.19) and Eq. (7.15) we 

obtain the Jacobian matrix of the whole manipulator. 
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 Where tn is a three-dimensional vector of rotating link’s torque intensities, Cn1 and 

Cn2 are 3 by 3 diagonal matrices having Cn1i and Cn2i on their main diagonals, respectively. 

According to Eq. (7.20) and Eq. (7.17) the instantaneous inverse kinematics matrix, Js is: 
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The Jacobian matrix of the whole manipulator is given by Eq. (7.22). 
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We note that the Jacobian matrix is defined in all the configurations in which the inverse 

kinematics matrix Js is non-singular. We will deal with the physical interpretation of this 

phenomenon in chapter 10, where we present the singularity analysis.  

 

7.3.3 Jacobian matrix of the USR robot 

It is possible to use the same method that was used for the RSPR robot to formulate 

the Jacobian matrix of the USR robot. However, to demonstrate the loop closure method we 

will formulate the Jacobian matrix of the USR robot based on this method.  

We will use the following additional symbols for the USR robot. 

niθ : the yaw angle of the i’th link Bi.  

riθ : the pitch angle of the i’th link Bi.  

θn: three-dimensional vector of the yaw angles niθ . 

θr: three-dimensional vector of the pitch angles riθ . 

iBwω : the angular velocity of the i’th link Bi relative to world coordinate system. 

pwω : the angular velocity of the moving platform relative to world coordinate system. 

ŝni: a unit vector along the yaw axis of the universal joint. 

ŝri: a unit vector along the pitch axis of the universal joint. 
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Figure 7.5 depicts the kinematic loops of the USR robot. There are three independent 

loops that lead to the closure equation in Eq (7.23). In addition, the perpendicularity of Ai 

relative to the revolute joint axes is expressed in Eq. (7.24). 

                                           ibiip
w

1i elppRts −−+=                                             (7.23) 

                                                       0ˆ2i
t

1i =ss                                                                      (7.24) 

The time derivative of Eq. (7.23) and (7.24) is given in the following equations. 

                                        bi
Bw

ip
wpw

1i
i lppRts ×−×+= ωω                                   (7.25) 

                                                              0ˆˆ 2i
t

1i2i
t

1i =+ ssss                                                                       (7.26)                     
The lower link is actuated by controlling its pitch and yaw angles, therefore, the expression 

for iBwω  is: 

                                                            ririnini
Bw ˆˆi ss θ+θ=ω                                               (7.27) 

In addition, the upper link Ai is rigid, therefore, the following condition in is fulfilled. 

                                                                                 0ˆ1i
t

1i =ss                                                                     (7.28) 
 
By substituting equations (7.25) and (7.27) in Eq. (7.26) and performing mathematical 

manipulations, we obtain the following result.  
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Figure 7.5: USR robot with the kinematic loop. 
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 We also substitute equations (7.25) and (7.27) in equation (7.28) and we obtain the following 

result. 
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p θ×+θ×=×+ lsslsssppRts ω                   (7.30)                  

Writing equations (7.29) and (7.30) in a matrix results in a matrix equation in the form of Eq. 

(7.1). 
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Where Cn1, Cn2, Cr1, and Cr2 are 3 by 3 diagonal matrices with the following elements on 

the main diagonal. 
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The instantaneous direct and inverse kinematics matrices are directly obtained by 

equating Eq. (7.31) with Eq. (7.1) and the Jacobian matrix of the USR robot is given by Eq. 

(7.8).  
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7.4 Conclusions 

We showed that the Jacobian formulation for all the robots of Fig. 5.14 has the same 

instantaneous direct kinematics matrix A, which is determined solely by the upper tripod 

mechanism. However, these robots differ in the instantaneous inverse kinematics matrix, B, 

which is determined by the serial part of the kinematic chains.  

Additionally, the rows of the instantaneous direct kinematics matrix were shown to be 

the Plücker line coordinates of the lines that govern the kinematics of the tripod mechanism. 

The formulation of the Jacobian matrix, when compared to other methods such as the 

formulation which was suggested by [Tsai, 1998] using reciprocal screws, yields a direct 

geometrical interpretation regarding the lines that govern the kinematics of the system.  

The Jacobian formulation in this chapter serves as a mathematical background for the 

singularity analysis of the family of manipulators presented in Fig. 5.14. This method is 

simpler for mechanisms with spherical joints because of the easy decomposition of the forces 

transmitted through the spherical joint.     
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Chapter 8 

Dimensional Synthesis of the USR and the RSPR Robots and 

Performance-Based Comparison 

8.1 Introduction 
 This chapter presents the dimensional synthesis of the USR and RSPR robots to fulfill 

the task assigned for in chapter 4. The details of this work were presented in [Simaan, 

Glozman, and Shoham, 1998] where, in addition to the USR and the RSPR robots, we 

included in the comparison the Double Circular Triangular robot and the RRPS parallel robot.  

The aim of the synthesis process is to find the minimal dimensions of the robots that 

provide the required work volume and end effector forces (refer to chapter 4 for details). The 

synthesis process is based on computer simulations that use the inverse kinematics and the 

Jacobian formulations of the robots in order to evaluate the required actuator forces/ranges 

and spherical joint limits. The synthesis of the robots also included ruling out robots that 

exhibit singular configurations in the required work volume.   

 

8.2 Dimensional synthesis 

The dimensional synthesis presented in this chapter is based on computer simulations. 

In the simulations, we scan a vast range of robots with different characteristic dimensions and 

we select the robot with the minimal dimensions that satisfies the desired work volume with 

minimal actuator forces. 

In addition to the symbols presented in chapters 6 and 7, we introduce the terms 

central configuration and initial height of a robot. In a central configuration, the moving 

platform is parallel to the base platform and its center is located right above the center of the 

base platform and displaced from the base platform by an amount equal to the initial height 

parameter. We will use the symbol hc to refer to the initial height parameter. The central 

configuration of a robot corresponds with the center point of the required work volume cube, 

Fig. 8.1.  

The characteristic dimensions of the RSPR robot are the radius of the moving 

platform, rp; the radius of the lower rotating links, rb; the eccentricity amount, e; and the initial 

height hc, Fig 8.2(a). The characteristic dimensions of the USR robot are the radius of the 

moving platform, rp; the length of the lower and upper rotating links, l1 and l2 respectively; the 

eccentricity amount, e; and the initial height, hc, Fig. 8.2(b). 
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The computer simulations aim to determine all the admissible robots that fulfill the 

desired task (presented in chapter 4) and additional design requirements. The design 

requirements included feasible actuator forces and spherical joint tilting ranges.  

The characteristic dimensions of the USR and the RSPR robots were altered during the 

simulations and a vast array of robots was examined. Table 8.1 presents the scanned range of 

the characteristic dimensions for the USR and the RSPR robots in the final simulations. Prior 

to these final simulations, we carried out initial simulations, in which we scanned a larger 

array of characteristic dimensions and we induced an evaluation of the minimal required 

actuator forces/ranges. In addition, the final simulations took into account the requirement for 

reasonable actuator forces. This was accomplished by determining upper bounds for the 

hc 

Required work volume 

Figure 8.1: A parallel robot in central configuration and the correspondence of this 

configuration with the center of the required work volume. 
רובוט מקבילי בקונפיגורציה מרכזית והתאמת קונפיגורציה זו : 8.1איור 

 . למרכז נפח העבודה הדרוש

rp 

e 

hc

rp 

rb e 

hc 
l1 

l2 

(a) (b) 

Figure 8.2: Characteristic dimensions of the RSPR robot (a) and the USR robot (b). 

 .   USR (b) ולרובוט RSPR (a)מידות אופייניות לרובוט : 8.2איור 
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actuator forces based on evaluation of what is achievable from reasonable rotary/linear 

actuators. This also insures that the robots do not acquire singularities inside the desired work 

volume. For the RSPR robot, we set the upper bounds for the linear actuator forces and the 

rotating links’ moments at 30[N] and 1.0 [Nm], respectively. For the USR robot, we set the 

bound for the universal joint moments at 2.0 [Nm]. 

The solutions for the RSPR robot were limited by the minimal length and stroke of the 

linear actuators. This requirement of actuator length stemmed from the initial simulation set. 

The minimal length of the linear actuators was evaluated from design requirements of the 

linear actuators and this evaluation of the minimal length and stroke of the linear actuators 

was stipulated as a design requirement in the final simulation. Table 8.2 presents all the 

twenty-two RSPR robots that fulfill the desired work volume, the desired actuator 

dimensions, and upper the bounds of actuator forces/moments. Figure 8.3 explains all the 

symbols presented in Table 8.2. 

 

Table 8.1: The scanned range of characteristic dimensions of the RSPR and USR robots. 

  .  אשר נסרקו בסימולציותUSR ו RSPRתחום המידות האופייניות לרובוטים : 8.1טבלה 

Property Symbol RSPR USR 

Platform radius rp 30: 10: 100  20: 10: 60 

Rotating link length rb 30: 10: 100  ----------------------- 

Initial height hc 40: 10: 200  50: 10: 120 

Eccentricity e 20: 10: 80  20: 10: 60 

Lower link length l1 ---------------------  20: 10: 80 

Upper link length l2 ---------------------  20: 10: 80 

Number of scanned robots 7616 9800 

Number of admissible robots  22 95 

Note: All dimensions are in millimeters.  
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Table 8.3 presents forty out of ninety-five USR robots that fulfill the design 

requirements. In addition, the table presents additional motion limits. These motion limits 

inhibit inverse kinematic singularity by limiting the angle between the upper and the lower 

links. 

-ψ1 β1 

Figure 8.3: Geometric presentation of the symbols in table 8.2. 
  .8.2ייצוג גיאומטרי לסימונים בטבלה : 8.3איור 

α1 

γ1 

β1 δ1 

n 

Figure 8.4: Geometric representation of the symbols in table 8.3. 
  .8.3 לסימונים בטבלה ייצוג גיאומטרי: 8.4איור 
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Table 8.2: Simulation results for the RSPR robot.  תוצאות סימולציה עבור רובוט : 8.2טבלהRSPR . 

Actuator limits: Lmin=138.00 [mm], Lmax=208.00 [mm]

rp | rb  | hc  |  e ||  Lmin  |   ∆L || θmin  |θmax | ∆θ  ||ψmin |ψmax | ∆ψ || βmin | βmax| ∆β  || Tmin  | Tmax  || fmin | fmax 

3 |  8 | 13 |  6 || 13.83 | 6.65 || -69 | 40 | 110 || 20 | 43 | 23 || -16 | 15 | 31 || -0.30 | 0.52 || -8  |  9  
3 |  8 | 14 |  5 || 14.12 | 6.46 || -80 | 43 | 123 || 15 | 39 | 24 || -12 | 10 | 22 || -0.25 | 0.51 || -9  | 10  
3 |  9 | 10 |  8 || 13.96 | 6.79 || -45 | 29 |  73 || 37 | 57 | 20 || -24 | 27 | 51 || -0.56 | 0.73 || -9  |  9  
3 |  9 | 11 |  7 || 13.86 | 6.70 || -48 | 31 |  79 || 32 | 52 | 20 || -20 | 22 | 42 || -0.47 | 0.66 || -8  |  8  
3 |  9 | 12 |  6 || 13.82 | 6.65 || -52 | 33 |  85 || 27 | 48 | 21 || -16 | 17 | 33 || -0.40 | 0.62 || -8  |  8  
3 |  9 | 13 |  5 || 13.94 | 6.54 || -56 | 35 |  91 || 23 | 43 | 21 || -13 | 12 | 25 || -0.33 | 0.59 || -8  |  9  
3 |  9 | 14 |  4 || 14.23 | 6.35 || -61 | 37 |  98 || 18 | 39 | 20 ||  -9 |  7 | 17 || -0.27 | 0.58 || -8  | 10  
3 |  9 | 15 |  2 || 14.34 | 5.90 || -66 | 40 | 106 || 11 | 32 | 21 ||  -6 |  3 | 10 || -0.16 | 0.61 || -10 | 12  
3 |  9 | 15 |  3 || 14.68 | 6.11 || -66 | 40 | 106 || 14 | 34 | 20 ||  -6 |  4 | 10 || -0.21 | 0.58 || -9  | 11  
3 | 10 | 10 |  7 || 14.02 | 6.73 || -39 | 26 |  65 || 37 | 57 | 20 || -21 | 23 | 44 || -0.62 | 0.81 || -9  |  9  
3 | 10 | 11 |  6 || 13.94 | 6.63 || -42 | 27 |  69 || 32 | 52 | 20 || -17 | 18 | 35 || -0.51 | 0.74 || -8  |  8  
3 | 10 | 12 |  5 || 13.90 | 6.57 || -45 | 29 |  74 || 27 | 48 | 20 || -13 | 14 | 27 || -0.43 | 0.69 || -8  |  8  
3 | 10 | 13 |  4 || 14.03 | 6.46 || -48 | 31 |  79 || 23 | 43 | 21 || -10 |  9 | 19 || -0.36 | 0.66 || -8  |  9  
3 | 10 | 14 |  2 || 13.86 | 6.11 || -52 | 33 |  85 || 15 | 37 | 21 ||  -7 |  4 | 11 || -0.25 | 0.67 || -9  | 10  
3 | 10 | 14 |  3 || 14.31 | 6.28 || -51 | 33 |  84 || 18 | 39 | 20 ||  -7 |  5 | 11 || -0.29 | 0.65 || -8  |  9  
3 | 10 | 15 |  2 || 14.75 | 6.04 || -55 | 35 |  90 || 14 | 35 | 20 ||  -6 |  3 |  9 || -0.22 | 0.64 || -9  | 11  
4 |  9 | 15 |  2 || 13.84 | 6.19 || -66 | 40 | 106 ||  8 | 30 | 22 ||  -7 |  4 | 11 || -0.11 | 0.62 || -9  | 12  
4 |  9 | 15 |  3 || 14.12 | 6.43 || -66 | 40 | 106 || 11 | 32 | 21 ||  -6 |  3 | 10 || -0.16 | 0.59 || -9  | 11 
4 | 10 | 13 |  5 || 13.85 | 6.92 || -48 | 31 |  79 || 22 | 44 | 21 || -10 |  9 | 20 || -0.35 | 0.64 || -8  |  8  
4 | 10 | 15 |  2 || 14.18 | 6.36 || -55 | 35 |  90 || 11 | 32 | 21 ||  -7 |  4 | 11 || -0.17 | 0.66 || -9  | 11  
5 |  9 | 16 |  2 || 14.37 | 6.39 || -73 | 42 | 115 ||  5 | 26 | 21 ||  -7 |  4 | 12 || -0.11 | 0.62 || -9  | 14  
6 |  9 | 16 |  2 || 14.01 | 6.67 || -73 | 42 | 115 ||  2 | 23 | 22 ||  -9 |  5 | 14 || -0.20 | 0.64 || -9  | 14  

 
L = linear actuator length. f = Linear actuator force. T = Rotary actuator torque. 
Units: rp, rb+, hc, e, lmin, ∆l =[cm].θmin, θmax, ∆θ, ψmin, ψmax, ∆ψ, βmin, βmax, ∆β = [Degrees]. Tmin, Tmax = [Nm]. fmin, fmax = [N]. 

Note: The row with the dark background indicates the chosen candidate robot.     
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Table 8.3: Simulation results for the USR robot- The first 

20 robots out of 95 admissible robots.     

 הרובוטים USR – 20תוצאות סימולציה עבור רובוט : 8.3טבלה 

 . רובוטים קבילים95הראשונים מתוך רשימת 

Design requirements: -90< α <90, 0< γ <90, 0< δ <180, |Tn|<2 [Nm], |Tr|<2 [Nm]. 

e | rp  | hc  | l1| l2 || αmin | αmax| ∆α  ||βmin   | βmax| ∆β || γmin | γmax| ∆γ || δmin | δmax | ∆δ ||  
minnT  | 

maxnT||  
minrT | 

maxrT 

2 |  2 |  6 | 6 | 8 || -73 | 50 | 123 || -32 | 44 | 75 || 2  | 87 | 85 || 34 | 70  | 36 || -0.41 | 0.75 || -0.72 | 0.87 
2 |  2 |  7 | 6 | 7 || -57 | 41 | 98  || -7  | 58 | 65 || 4  | 89 | 85 || 49 | 89  | 40 || -0.58 | 0.85 || -1.01 | 1.02 
2 |  2 |  7 | 6 | 8 || -59 | 43 | 102 || -19 | 48 | 68 || 3  | 83 | 79 || 44 | 80  | 37 || -0.41 | 0.74 || -0.81 | 0.91 
2 |  2 |  8 | 6 | 7 || -65 | 46 | 112 ||  3  | 63 | 60 || 0  | 83 | 82 || 60 | 102 | 42 || -0.50 | 0.79 || -1.05 | 1.02 
2 |  2 |  8 | 6 | 8 || -64 | 41 | 106 || -8  | 54 | 62 || 1  | 78 | 77 || 53 | 91  | 38 || -0.39 | 0.71 || -0.89 | 0.94 
2 |  2 |  8 | 7 | 8 || -48 | 35 | 83  || -2  | 54 | 56 || 8  | 87 | 79 || 51 | 84  | 33 || -0.63 | 0.90 || -1.08 | 1.08 
2 |  2 |  9 | 7 | 6 || -63 | 52 | 115 ||  24 | 76 | 51 || 1  | 89 | 88 || 70 | 116 | 46 || -0.76 | 1.00 || -1.90 | 1.40 
2 |  2 |  9 | 7 | 7 || -57 | 43 | 100 ||  15 | 67 | 52 || 4  | 85 | 81 || 65 | 104 | 39 || -0.65 | 0.91 || -1.43 | 1.23 
2 |  2 |  9 | 7 | 8 || -54 | 38 | 92  ||  6  | 59 | 52 || 5  | 82 | 76 || 60 | 95  | 35 || -0.54 | 0.84 || -1.11 | 1.08 
2 |  2 | 10 | 7 | 8 || -62 | 43 | 106 ||  14 | 64 | 50 || 1  | 76 | 75 || 69 | 106 | 38 || -0.46 | 0.77 || -1.15 | 1.08 
2 |  2 | 10 | 8 | 7 || -52 | 42 | 94  ||  25 | 70 | 45 || 7  | 87 | 80 || 69 | 106 | 38 || -0.79 | 1.04 || -1.95 | 1.47 
2 |  2 | 10 | 8 | 8 || -49 | 36 | 85  ||  17 | 62 | 45 || 9  | 84 | 75 || 64 | 97  | 33 || -0.69 | 0.95 || -1.47 | 1.29 
2 |  2 | 11 | 8 | 7 || -63 | 49 | 112 ||  30 | 75 | 45 || 1  | 80 | 79 || 78 | 120 | 42 || -0.60 | 0.91 || -1.66 | 1.37 
2 |  2 | 11 | 8 | 8 || -56 | 41 | 98  ||  23 | 67 | 44 || 4  | 78 | 74 || 73 | 109 | 36 || -0.56 | 0.86 || -1.38 | 1.25 
2 |  3 |  6 | 7 | 8 || -46 | 39 | 85  || -28 | 41 | 69 || 4  | 89 | 85 || 32 | 71  | 39 || -0.49 | 0.82 || -0.71 | 0.88 
2 |  3 |  7 | 7 | 8 || -46 | 35 | 81  || -17 | 45 | 62 || 3  | 85 | 81 || 41 | 80  | 40 || -0.48 | 0.81 || -0.79 | 0.91 
2 |  3 |  8 | 7 | 7 || -48 | 37 | 85  ||  2  | 57 | 56 || 1  | 87 | 86 || 53 | 99  | 46 || -0.59 | 0.87 || -1.05 | 1.02 
2 |  3 |  8 | 7 | 8 || -49 | 34 | 83  || -8  | 49 | 57 || 1  | 81 | 79 || 49 | 90  | 41 || -0.46 | 0.78 || -0.86 | 0.92 
2 |  3 |  9 | 8 | 8 || -43 | 32 | 74  ||  5  | 54 | 50 || 6  | 85 | 79 || 54 | 93  | 39 || -0.63 | 0.91 || -1.09 | 1.08 
2 |  3 | 10 | 8 | 8 || -47 | 35 | 82  ||  11 | 58 | 47 || 2  | 80 | 78 || 62 | 103 | 41 || -0.53 | 0.84 || -1.12 | 1.07 

Units: rp, e, hc, l1, l2 =[cm]. α, β, γ, δ =[Degrees]. Tn, Tr = [Nm]. 
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Table 8.3: Simulation results for the USR robot - the s

robots out of 95 admissible robots. 

 הרובוטים USR – 20תוצאות סימולציה עבור רובוט : 8.3טבלה 

 . רובוטים קבילים95השניים מתוך רשימת 

Design requirements: -90< α <90, 0< γ <90, 0< δ <180, |Tn|<2 [Nm], |Tr|<2 [Nm]. 

e | rp  | hc  | l1| l2 || αmin | αmax| ∆α  ||βmin   | βmax| ∆β || γmin | γmax| ∆γ || δmin | δmax | ∆δ ||  
minnT  | 

maxnT||  
minrT  | 

maxrT 

2 |  4 |  7 | 8 | 8 || -38 | 30 | 68  || -17 | 42 | 58 || 4  | 87 | 83 || 37 | 81  | 44 || -0.56 | 0.88 || -0.77 | 0.92 
2 |  4 |  8 | 8 | 8 || -40 | 29 | 69  || -8  | 46 | 54 || 1  | 83 | 81 || 44 | 90  | 45 || -0.52 | 0.85 || -0.84 | 0.92 
3 |  2 |  8 | 6 | 7 || -67 | 51 | 118 ||  9  | 71 | 63 || 7  | 89 | 82 || 60 | 106 | 47 || -0.63 | 0.87 || -1.29 | 1.07 
3 |  2 |  8 | 6 | 8 || -64 | 44 | 108 || -3  | 62 | 65 || 8  | 85 | 77 || 53 | 95  | 42 || -0.51 | 0.77 || -0.93 | 0.92 
3 |  2 |  9 | 6 | 8 || -77 | 51 | 128 ||  6  | 68 | 61 || 4  | 80 | 76 || 63 | 108 | 45 || -0.43 | 0.70 || -0.95 | 0.92 
3 |  2 |  9 | 7 | 8 || -55 | 42 | 97  ||  12 | 65 | 54 || 11 | 88 | 76 || 60 | 98  | 39 || -0.67 | 0.91 || -1.38 | 1.16 
3 |  2 | 10 | 7 | 7 || -73 | 58 | 132 ||  27 | 80 | 52 || 4  | 83 | 79 || 75 | 123 | 48 || -0.59 | 0.85 || -1.53 | 1.24 
3 |  2 | 10 | 7 | 8 || -65 | 48 | 112 ||  18 | 71 | 52 || 7  | 81 | 74 || 69 | 110 | 41 || -0.54 | 0.81 || -1.25 | 1.12 
3 |  2 | 10 | 8 | 8 || -50 | 40 | 90  ||  22 | 68 | 46 || 14 | 89 | 75 || 64 | 101 | 36 || -0.83 | 1.05 || -1.97 | 1.41 
3 |  2 | 11 | 7 | 8 || -84 | 58 | 142 ||  25 | 77 | 52 || 1  | 76 | 74 || 78 | 124 | 46 || -0.42 | 0.73 || -1.19 | 1.08 
3 |  2 | 11 | 8 | 7 || -67 | 56 | 124 ||  35 | 81 | 46 || 6  | 84 | 78 || 78 | 124 | 46 || -0.68 | 0.94 || -1.95 | 1.44 
3 |  2 | 11 | 8 | 8 || -59 | 46 | 105 ||  27 | 73 | 45 || 9  | 83 | 73 || 73 | 112 | 39 || -0.64 | 0.90 || -1.62 | 1.31 
3 |  2 | 12 | 8 | 8 || -73 | 55 | 128 ||  33 | 78 | 46 || 3  | 77 | 73 || 82 | 125 | 43 || -0.49 | 0.79 || -1.45 | 1.23 
3 |  3 |  7 | 6 | 8 || -59 | 44 | 103 || -22 | 51 | 73 || 3  | 84 | 81 || 41 | 84  | 43 || -0.38 | 0.70 || -0.70 | 0.79 
3 |  3 |  8 | 6 | 8 || -64 | 43 | 107 || -11 | 56 | 67 || 1  | 79 | 79 || 51 | 95  | 44 || -0.36 | 0.67 || -0.77 | 0.79 
3 |  3 |  8 | 7 | 8 || -48 | 36 | 84  || -4  | 56 | 60 || 8  | 89 | 81 || 49 | 88  | 39 || -0.58 | 0.85 || -0.95 | 0.94 
3 |  3 |  9 | 7 | 7 || -56 | 46 | 102 ||  14 | 69 | 55 || 3  | 87 | 85 || 63 | 109 | 46 || -0.60 | 0.85 || -1.28 | 1.06 
3 |  3 |  9 | 7 | 8 || -54 | 40 | 93  ||  4  | 61 | 56 || 4  | 83 | 79 || 58 | 99  | 41 || -0.50 | 0.78 || -0.98 | 0.94 
3 |  3 | 10 | 8 | 7 || -52 | 44 | 95  ||  24 | 72 | 48 || 6  | 89 | 84 || 67 | 111 | 44 || -0.74 | 0.96 || -1.78 | 1.27 
3 |  3 | 10 | 8 | 8 || -48 | 38 | 86  ||  16 | 64 | 48 || 8  | 86 | 78 || 62 | 101 | 39 || -0.64 | 0.89 || -1.32 | 1.14 

Units: rp, e, hc, l1, l2 =[cm]. α, β, γ, δ =[Degrees]. Tn, Tr = [Nm].  
Note: The row with the dark background indicates the chosen candidate robot. 
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8.3 Selecting a prototype candidate 
Based on the simulation results in tables 8.2 and 8.3 we chose one robot from the 

admissible RSPR robots and one robot from the admissible USR robots. These robots are 

identified in tables 8.2 and 8.3 by their dark background data rows. Theoretically, we should 

select the smallest robots in tables 8.1 and 8.2; however, we chose mechanically feasible 

robots. This requirement stems from the fact that we intend to locate the motors between the 

base and the moving platforms of the RSPR robot. Also for the USR robot we selected a robot 

with dimensions that allow locating three active Hooke’s joints in the base platform.      

 Tables 8.2 and 8.3 show that the rotary actuators in the RSPR robot are required to 

provide smaller moments than the rotary actuators for the USR robot. The required spherical 

joint tilting range for the selected RSPR robot is smaller than the one for the selected USR 

robot.  

In addition to the above simulations, we compared the selected USR and the RSPR 

robots by plotting the required actuator forces along a diagonal path from the lower corner of 

the workspace cube (point [-20, -20, -10] mm) to the upper corner of the cube (point [20, 20, 

10] mm), while keeping the moving platform with an orientation of 20 about the [1, 1, 1] axis. 

The results shown in Fig. 8.5 and Fig. 8.6 correspond to a [7, 7, 7 [N], .0.7, 0.7, 0.7 [Nm]] 

wrench applied by the moving platform on its environment.  

Figure 8.5: RSPR selected robot actuator forces along the diagonal path.

 . הנבחר לאורך המסלול האלכסוניRSPRכוחות המפעילים עבור רובוט : 8.5יור א
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The results in Fig. 8.5 and 8.6 show that the required actuator moments of the selected 

RSPR robot are smaller than the ones required from the actuators of the selected USR robot. 

In addition, the USR robot suffers from mechanically complicated design because of the 

usage of the three active Hooke’s joints. We will show in chapter 10 that the use of these 

active Hooke’s joints introduces undesirable singularities. Based on these results and on the 

design advantages of the RSPR robot we chose the RSPR robot as the best solution to our 

design problem because of its relatively small size, small required actuator forces and 

achievable spherical joint tilting ranges. Therefore, the prototype, which is presented in 

chapter 11, is based on the selected RSPR robot. 

 

8.4 Work volume of the selected RSPR robot 
This section analyses the workspace the RSPR robot. The algorithm for workspace 

evaluation starts from an initial position with a valid inverse kinematics solution. We use 

cylindrical coordinate system [ρ, φ, z] to evaluate the work volume. For every constant z 

section, we move the platform in radial directions for a varying angular coordinate, φ, and we 

register the maximal radial distances ρmax that correspond to a valid solution. All the 

workspace figures in this section give the workspace in a [x’, y’, z’] coordinate system 

Tn1 

Tn2 

Tn3 

Tr1 

Tr2 

Tr3 

Figure 8.6: USR selected robot actuator forces along the diagonal path.

 . ול האלכסוני הנבחר לאורך המסלURSכוחות המפעילים של רובוט : 8.6איור 
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parallel to the base-platform-attached coordinate system [x0, y0, z0] with an origin fixed at the 

initial position. Therefore in these figures z = 0 denotes the workspace section in which the 

robot maintains a height equal to its height in the initial position, Fig. 8.7. 

Fig. 8.8 presents constant height sections of the workspace of the RSPR robot. Fig 8.9 

depicts the 3-D work volume boundary surface of the RSPR robot. Both these figures 

represent the workspace of the RSPR robot with a moving platform parallel to the base 

platform and with an initial position [0, 0, 0.16][m] with respect to the base platform attached 

coordinate system.  

Figures 8.10 and 8.11 depict the workspace of the RSPR robot with a moving platform 

oriented 20° about the [1, 1, 0] axis. From these figures, it is clear that the desired 40x40x20-

mm work volume cube is within the workspace of the moving platform and it is obvious that 

the work volume of the RSPR robot is markedly affected by the orientation of the moving 

platform. However, even with 20° rotation of the moving platform about the [1, 1, 0] axis we 

still fulfill the desired workspace cube.   

x’ 
y’ 

z’ 

x’ 
y’ 

z’ 

x0 

y0 

z0 Base platform-attached 
coordinate system  

The robot in its initial position and its 
associated coordinate system  

Figure 8.7: The RSPR in an initial position and its associated coordinate system.  

 בקונפיגורציה התחלתית ומערכת הקורדינטות המתאימה RSPRרובוט : 8.7איור 

 . לקונפיגורציה זו
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Figure 8.8: Sections of the RSPR robot work volume with parallel platforms and an 

initial position of [0, 0, 0.16] [m]. 

ת מקבילות ומיקום התחלתי  עם פלטפורמוRSPRחתכים של נפח העבודה של רובוט : 8.8איור 

[0, 0, 0.16] [m] . 

z’
 [m

] 

x’ [m] 

y’ [m]

 x’ [m] 

y’ [m]

 

Figure 8.9: The RSPR robot work volume boundary surface with parallel platforms 

and an initial position of [0, 0, 0.16] [m]. 

 עם פלטפורמות מקבילות ומיקום התחלתי RSPRמעטפת נפח העבודה של רובוט : 8.9איור 
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10: Work volume sections of the RSPR robot with the moving platform rotated 

20° about the [1, 1, 0] axis. 

.  [0 ,1 ,1] סביב ציר °20 עם פלטפורמה מסובבת RSPRחתכי נפח העבודה של רובוט : 8.10איור 
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11: Work volume boundary surface of the RSPR robot with the moving platform 

rotated 20° about the [1, 1, 0] axis. 

. [0 ,1 ,1] סביב ציר °20 עם פלטפורמה מסובבת RSPRמעטפת נפח העבודה של רובוט : 8.11יור א
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8.5 Conclusion  
 Based on the design objectives set forth in chapter 4 we performed dimensional 

synthesis of the USR and the RSPR robots. The comparison of the RSPR robot with the USR 

robot, the Double circular triangular robot, and the RRPS robot indicated that the RSPR robot 

is better than the others in terms of smaller required actuator forces and smaller spherical joint 

tilting range. The synthesis process resulted in 22 admissible RSPR robots and 95 possible 

USR robots with different characteristic dimensions. Based on design guidelines we chose 

one USR robot and one RSPR robot as candidate robots for our design task. We performed 

comparison between the two selected robots and we showed that the candidate RSPR robot is 

better than the candidate USR robot in terms of mechanical simplicity and smaller actuator 

forces. Therefore, we chose the RSPR candidate robot as the preferable solution to our design 

problem. Chapter 11 will present prototype of the RSPR robot, which has the characteristic 

dimensions of the candidate RSPR robot described in this chapter. The following chapters 

present additional advantages of the RSPR robot over the USR robot in terms of less singular 

configurations.  
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Chapter 9 

Introduction to Line Geometry 
 
9.1 Introduction 

This chapter serves as a humble introduction to the subject of line geometry in space. 

The objective of this chapter is to lay the logical foundations for the singularity analysis 

presented in the next chapter.  

Line geometry deals with defining the elementary geometrical forms in space and 

determining the conditions for linear dependence between points, planes and lines. The 

material in this chapter is mainly based on [Veblen and Young, 1910; Graustein, 1930; 

Sommerville, 1934; Hunt, 1978]. Other good references, for the reader who is interested in a 

summary of the subject, are [Ben Horin, 1997] and [Dandurand, 1984].    

 

9.2 Homogeneous coordinates of points, planes and lines in space  
Every point in space is ordinarily defined by the set of three Cartesian coordinates [x, 

y, z]. This representation lacks the capability of treating points, lines, and planes at infinity. 

The definition of homogeneous coordinates allows overcoming this obstacle and leads to 

homogeneous equations for planes, thus, facilitating the analysis of linear dependence 

between planes and transforming it into a problem of solving a set of homogeneous equations. 

The use of lines at infinity is important in kinematics since, for example, it allows describing 

the motion of a prismatic joint and linear motion in plane by using screw motion about a line 

at infinity with zero pitch. Furthermore, the homogeneous coordinates have no metric basis 

and serve as a tool for projective geometry.  

 

9.2.1 Homogeneous coordinates of a point in space  

Let a point in space be represented by the non-homogenous Cartesian coordinates [x, 

y, z]. The Homogeneous coordinates of this point are defined by Eq. (9.1) Where the entire 

coordinate sets [x1, x2, x3, x4] and k[x1, x2, x3, x4], with x4 ≠ 0, represent the same point [x, y, 

z]. 

                                             z
x
x

y
x
x

x
x
x

4

3

4

2

4

1 ===                                        (9.1) 

Additionally, the coordinate set [l, m, n, 0] represents a point located at an infinite 

distance along all rays having the direction numbers l, m, n. This is proved by writing the 



Chapter 9: Introduction to Line Geometry 

 - 79 -

parametric representation of the Cartesian coordinates of the points located along a ray with l, 

m, n direction numbers. The Cartesian coordinates, written in a homogeneous form, of these 

points are [ ]nt,1zmt,ylt,x 000 +++ . Where x0, y0, and z0 are the Cartesian coordinates of a 

point on the ray. By dividing by the parameter t and considering the case where t approaches 

infinity, we obtain [l, m, n, 0].  

 

9.2.2 Homogeneous coordinates of a plane in space 

The equation of a plane in Cartesian coordinates, [x, y, z], is given by  

                                                  0dczbyax =+++                                                  (9.2) 

By using the definition of homogeneous coordinates, one obtains the homogeneous equation 

of a plane as presented in Eq. (9.3).  

                                                        0xaxaxaxa 44332211 =+++                                     (9.3) 

Thus, the homogeneous coordinates of a plane are the ordered set [a1, a2, a3, a4]. We note that 

since [l, m, n, 0] represents a point at infinity along a ray with l, m, n direction numbers, then 

the equation x4 = 0 represents the plane at infinity. 

If we refer to the plane having the homogeneous plane coordinates [a1, a2, a3, a4] as a, 

and to the point having the homogeneous coordinates [x1, x2, x3, x4] as x, then we can 

interpret Eq. (9.3) in two dual forms. Eq. (9.3) represents all the planes, a, passing through a 

given point, x, and in a dual form, it represents all the points, x, lying on a given plane, a. This 

brings us to the following duality principle in projective geometry.  

 

9.2.3 The principle of duality 

The principle of duality states that the basic elements in space, the plane and the point, 

are dual. Duality stems from the fact that points and planes have the same four-dimensional 

form of homogeneous coordinates. This duality is used in [Veblen, 1910] and [Graustein, 

1930] where all the theorems regarding points appear in pairs with all the theorems regarding 

planes by interchanging the words point and plane. In plane geometry, the line and the point 

are the dual of each other. To summarize, table 9.1 lists the dualities in space and plane 

geometry. 
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Table 9.1: Duality of geometric basic elements 

 .דואליות של אלמנטים גיאומטריים בסיסיים: 9.1טבלה 

Dimension Homogeneous equation Duality 

Space geometry: 0xaxaxaxa 44332211 =+++  Point ⇔ Plane. 

Plane geometry: 0xaxaxa 332211 =++  Point ⇔ Line. 

 

9.2.4 Homogeneous coordinates of a line  

Either two distinct points or two planes define a line in space. Based on this fact, 

Julius Plucker introduced the homogeneous coordinates of a line, l, as the ordered six 

coordinates defined by Eq. (9.4)                                                    

                                         l = [p41, p42, p43, p23, p31, p12]                                            (9.4) 

Where pjk  is defined by Eq. (9.5).  

                                        pjk = xj yk – xk yj             j, k = 1,2,3,4. j≠k.                        (9.5) 

One can notice that Eq. (9.5) defines twelve entities, which only six of them are 

linearly independent. This is due to the fact that pij = -pji. If x and y represent homogeneous 

coordinates of two distinct points, then Eq. (9.4) is referred to as the Plucker homogeneous 

ray coordinates of a line. If x and y represent homogeneous coordinates of two distinct planes 

then Eq. (9.4) is referred to as the Plucker axis coordinates of a line. 

The Plucker coordinates of a line can be represented in a compact form by using the 

homogeneous coordinates of two points, x and y, located on it. Eq. (9.6) presents a 2x4 matrix 

used to compute the pjk Plucker coordinate by computing the determinant of a 2x2 matrix 

constructed from the j and the k columns.  

                                                 








4321

4321
yyyy
xxxx

                                                 (9.6)   

Let l be a line defined by the points x = [x1, x2, x3, x4] and y = [y1, y2, y3, y4]. If we 

associate with this line an intensity of force acting along it, then the first three ray coordinates 

of line l represent the vector of the force and the last three coordinates represent the moment 

of the force about the origin. For instance, the Plucker coordinate p12 represents the intensity 

of the moment of a force along line l about the z-axis, Fig 9.1. The expression for p12 in Eq. 

(9.5) is manipulated to have the following form in Eq. (9.7).    

                                   p12 = x1 y2 – x2 y1 = x1(y2 - x2) - x2(y1-x1)                                (9.7) 
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If we draw the line, l, in scale as in Fig. 9.1, then its length is proportional to its intensity. 

Therefore, Eq. (9.7) gives the moment of a force along line l about the z-axis. Similarly p23 

and p31 represent the intensity of the moment of a force along line l about the x and y axes, 

respectively. The first three Plucker line coordinates p41, p42, and p43 are the direction numbers 

of the force vector along line l.     

Based on the above explanation, the Plucker coordinate set [0, 0, 0, p23, p31, p12] 

represents a line on the plane at infinity, which is perpendicular to a line with the direction 

numbers [p23, p31, p12]. This result is obtained by substituting two point coordinates x and y in 

Eq. (9.5) with x4 = 0 and y4 = 0. For example, A line with the Plucker line coordinates [0, 0, 0, 

1, 0, 0] is located in a plane at infinity, which is perpendicular to the x axis and has only a 

moment about the x axis. This reasoning, presented in [Hunt, 1978], helps to understand the 

following relation between the Plucker coordinates of a line: 

                                         0pppppp 234142314312 =++                                          (9.8) 

Eq. (9.8) represents the perpendicularity between the moment of a line about the origin 

and the line itself. This equation is a quadric surface in a five dimensional space and every 

point on it represents a sextuple [a1, a2, a3, a4, a5, a6] which satisfies the condition for being 

a legal set of homogeneous line coordinates [Graustein, 1930]. Therefore, every point on this 

quadric is a line in the 3-dimensional space. This equation is referred to as the Grassmannian 

or the Plucker quadric [Merlet, 1989]. 
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Figure 9.1: Physical interpretation of the Plucker coordinates. 

 . Plucker פירוש פיזיקלי של קורדינטות: 9.1איור 
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9.3 The basic geometric forms 
This section deals with the questions related to the minimal number of 

points/planes/lines required to define the space.  

Two distinct points, x and y, define a range of points such that all the points, z, 

belonging to this range of points, fulfill the following equation. 

                                                          yxz ba +=                                                       (9.9) 

All these points, i.e., the points that fulfill Eq. (9.9), are collinear with x and y.  

Three points, x, y and z, can either be collinear, or not. If the three points are collinear 

they belong to the same range of points. If they are non-collinear they define a plane of points. 

All the points lying on this plane, w, are linear combination of the three points.  

                                                     zyxw cba ++=                                                 (9.10)   

Four distinct points u, v, w, z may either be collinear, coplanar, or non-coplanar. If the 

four points are collinear they obey Eq. (9.9) and, therefore, they are linearly dependent. If the 

four points are coplanar then they are linearly dependent and fulfill Eq. (9.10). If the four 

points are non-coplanar, then they define all the points in space, s, as a linear combination: 

                                                     zwvus dcba +++=                                          (9.11) 

Based on these facts, any group of more than four points is linearly dependent.  

To summarize, points define three basic geometric forms, i.e., the range of points (or 

pencil of points), the plane of points, and the space.  

We can now consider planes and use the point-plane dualities to deduce the following 

results: Two planes having the homogeneous plane coordinates, x = [x1, x2, x3, x4], and y = 

[y1, y2, y3, y4], define a pencil of planes such that every plane, z, fulfills Eq. (9.9), where x and 

y in this equation are plane coordinates. Three copunctal planes define a plane sheaf, or in 

other words, a bundle of planes. All the planes, w, in this bundle of planes, fulfill Eq. (9.9), 

where x, y, z, are plane coordinates. Four non-copunctal planes define the totality of planes in 

space, such that every plane in the space, s, fulfills the plane version of Eq. (9.11). Therefore, 

by using the duality principle, we concluded that the plane defines three basic geometric 

forms, namely, the pencil of planes, the bundle of planes, and the space.  

Two distinct lines, l and m, may be either skew or copunctal. If the lines are copunctal 

then the two pairs of points [x1, x2]∈l and [y1, y2]∈m are coplanar; thus, they are linearly 

dependent, i.e., |x1 x2 y1 y2| = 0, or by implementing the definition of Plucker line coordinates     

(l,m) = 0. Where the operator (l,m) is defined for six-dimensional vectors l = [l1, l2, l3, l4 l5, l6] 

and m = [m1, m2, m3, m4 m5, m6] according to Eq. (9.12).    
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                  (l,m) ≡ l1 m4 + l2 m5 +l3 m6 + l4 m1 + l5 m2 + l6 m3                         (9.12) 

If l and m are two Plucker coordinate vectors of two lines, then writing Eq. (9.12) in 

terms of the Plucker ray coordinates of the lines results in: 

      (l,m) = l41 m23 + l42 m31 + l43 m12 + l23 m41 + l31 m42 + l12 m43                    (9.13) 

The equation (a,a) = 0, when a is a Plucker ray coordinate vector, is the same as the 

expression for the Grassmannian in Eq. (9.8). Therefore, the equation (a,a) = 0 is the 

necessary condition for a given six-dimensional vector, a, to be an admissible ray coordinate 

vector. Furthermore, we will show that the operator (l,m) based on Eq. (9.13) for two lines, l 

and m, represents the mutual moment of the lines.  

 To explain Eq. (9.13) we consider two lines l and m having Plucker ray coordinates l 

= [lv, l0]t and m =[mv, m0]. Where lv and mv are the unit vectors of lines l and m and l0, m0 are 

the moment vectors of lines l and m about the origin, respectively. The expression for the 

moment intensity, Q, of a unit force acting along the line l about the line m is given by Eq. 

(9.14).  

                                                             ( ) v
t

vQ mld×=                                                        (9.14) 

The vector d is a vector from a point on line m to a point on line l, Fig 9.2. Let rl and rm 

represent two vectors from the origin to an arbitrary point on lines l and m, respectively. The 

vector d is given by Eq. (9.15)       

                                                       d = rl – rm                                                          (9.15) 

Substituting Eq. (9.15) in Eq. (9.14) and performing some algebraic manipulation 

leads to the result in Eq. (9.16). 

l 

mrm 

rl d

Figure 9.2: Mutual moment of two lines. 
 . מומנט הדדי בין שני קווים: 9.2איור 
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                                 ( ) ( ) ( )vm
t

vv
t

vlv
t

vQ mrlmlrmld ×+×=×=                           (9.16) 

The expressions ( )vl lr ×  and ( )vm mr ×  are the moment vectors of lines l and m about 

the origin, respectively. Therefore, we showed that the result in Eq. (9.16) is the same as the 

one in Eq. (9.13).   

Two intersecting lines, x and y, define a pencil of lines, such that every line in this 

pencil of lines, z, fulfills the line version of Eq. (9.9). Three copunctal, but non-coplanar, lines 

define a bundle of lines, such that every line in this bundle, w, fulfills Eq. (9.10). Three 

coplanar, but non-copunctal, lines define a plane of lines and every line in this plane obeys the 

line version of Eq. (9.10).      

Consider the two planes x-z and y-z of a Cartesian coordinate system. Each of these 

two planes is defined by the point of origin and another two points on each plane, Fig 9.3. 

Therefore, every point on each of these planes fulfills Eq. (9.10) with only two independent 

variables. Consequently, every line in space is defined by four independent variables that 

correspond with the two pairs of variables that define its piercing points, p1 and p2, with 

planes x-z and y-z. Hence, there are ∞4 lines in space. Based on this fact lines are equivalently 

defined by the slope-intersect method, which depends on only four parameters of the slope 

and intersect variables of two of its projected lines on planes x-y and x-z  [Roth, 1984].      

We now come to answering the question: how many lines define the space? This 

question is legal since we know that the six Plucker coordinates of a line are connected by the 

Grassmannian and the norm of a unit vector along the line. Since a line in space is dependent 

only on four parameters, one might think that four lines are sufficient to define all the lines in 

x 
y 

z 

p1

p2

Figure 9.3: Four parameters define every line in space.  
 .ארבע משתנים מגדירים כל קו במרחב: 9.3איור 
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space. However, since the two relations of the direction numbers with the Grassmannian and 

the norm of a unit vector along a line are nonlinear equations, then all the six Plucker 

coordinates are linearly independent. Therefore, six independent lines define all the lines in 

space. Another synthetic method to prove this, which was not presented in any of the above-

mentioned references, is presented hereafter.  

The proof relies on the previous conclusions regarding the number of points and 

planes to define the space. Fig. 9.4 (a) presents the complete quadrangle, which is defined by 

four non-coplanar points x, u, v, w. Since these four points are non-coplanar, they are linearly 

independent and they span the space. Similarly, these points define four non-copunctal planes, 

therefore, these planes are independent and span the whole planes in the space. We note that 

every three lines that correspond to the edges of a facet define every facet plane of the 

quadrangle.  Therefore, every three adjacent lines, along the edges of a tetrahedron facet, span 

all the lines in the plane of the facet. Accordingly, the required number of lines to span all the 

lines in space is six. 

 In the general case, it is possible to find six independent skew lines 1’, 2’, 3’, 4’, 5’, 6’ 

that span the space. We use the notations l ∈ Plane(x, y, z) and l ∈ Bundle(x, y, z) to indicate 

the fact that a line, l, belongs to a plane of lines or a bundle of lines that are defined by lines x, 

y, and z, according to Eq. (9.10), respectively. Fig. 9.4 (b) shows six independent lines 1’, 2’, 

3’, 4’, 5’, and 6’. These lines depend on the edges of the quadrangle in Fig. 9.4 (a) as 

indicated in table 9.2. 

v

x 

u 

1 

2 

3 
4 

5 

6 

w 

Figure 9.4: Six independent lines span the space. 
 . ששה קווים בלתי תלויים פורשים את המרחב: 9.4איור 
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Table 9.2: Linear dependence relations between the lines in Fig. 9.4 (a) and the lines in 

Fig. 9.4 (b). 

  .(b) 9.4 והקווים בציור (a) 9.4קשרים של תלות ליניארית בין הקווים באיור : 9.2טבלה 

1’ ∈ Plane(1, 2, 3). 2’ ∈ Plane(1, 4, 5). 3’ ∈ Plane(3, 5, 6). 

4’ ∈ Plane(2, 4, 6). 5’ ∈ Bundle(1, 2, 4). 6’ ∈ Bundle(2, 3, 6). 

Writing Eq. (9.10) six times according to the relations in table 9.2 results in six linear 

equations represented in matrix form in Eq. (9.17).  

                                [1, 2, 3, 4, 5, 6] B = [1’, 2’, 3’, 4’, 5’, 6’]                                (9.17) 

Where B is a 6x6 matrix, in which, every column includes the coefficients of the equation in 

the form of Eq. (9.10) that corresponds to line 1’, through 6’. Based on Eq. (9.17), If matrix B 

is non-singular then the lines 1’, 2’, 3’, 4’, 5’, 6’ are linearly independent and they span all the 

lines in space. The objective of the following section is to determine the necessary geometric 

conditions that render a group of six lines to be linearly independent.    

 

9.4 Line families and linear dependence of lines 

In general, there are 4∞  lines in space. If we impose on the homogeneous coordinates 

of a line, p, a set of homogeneous linear constraints in the form of Eq. (9.18), then we define 

families of lines.   

                                                          (a,p) = 0                                                         (9.18) 

Every family of lines includes all the lines that satisfy a given set of constraints. 

Imposing one linear equation as a constraint creates a family of 3∞  lines. This family is called 

the linear complex. Similarly, imposing two constraints defines a family of 2∞  lines, which is 

called the linear congruence. Three constraints define a third family of lines, which is referred 

to as the reguli. Four constraints define a finite number of lines in space. 

 

9.4.1 The linear complex 

We know that the condition for a given sextuple, a, for being a legal set of line 

coordinates is given by (a,a) = 0. Accordingly, we consider two cases, the first is when (a,a) = 

0, and the second when (a,a) ≠0. 
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The special complex 

 If (a,a) = 0, then a represents a line and p in Eq. (9.18) represents all the lines that 

intersect the line a. This is due to the fact that all such lines, p, have zero moment intensity 

about line a, Fig. 9.5.  Therefore, the lines of the complex are all the lines which intersect a 

given line, including the given line itself. The family of these lines is referred to as the special 

complex. All the lines in space that intersect the axis of the special complex, a, are linearly 

depend on any five lines of the special complex.  

The general complex 

If (a,a) ≠ 0, then the number sextuple in a does not represent Plucker coordinates of a 

line and Eq. (9.18) is interpreted according to the definition in Eq. (9.12). We first substitute 

the definition of the Plucker coordinates of line p, based on two points, x and y, as given in 

Eq. (9.5). The resulting equation is Eq. (9.19). Therefore, Eq. (9.18) can now be interpreted in 

the following way.    

                                  
( )

( ) )]3,4,6(),2,4,5(),1,4,4(),2,1,3(),1,3,2(),3,2,1[(kj,n,
0yxyxa jkkjn

∈
=−∑                      (9.19)                  

This equation, i.e., Eq. (9.19), is linear and homogeneous in the coordinates of point x; 

therefore, it represents the equation of a plane on which point x moves. This means that all the 

lines of the linear complex pass through a given point, y, and another point, x, which moves in 

a plane. Consequently, all the lines of the complex form a flat pencil of lines through y. A 

linear complex of this kind is called a general linear complex or non-special complex. The 

above analysis of a general linear complex is presented in the following theorem.   

Theorem 1: A general linear complex has a pencil of lines in every plane and a pencil of lines 

through every point in space. [Graustein, 1930].  

Based on theorem 1, we deduce that every flat pencil through any point in space 

defines a sub-group of a general linear complex, which is associated with it. Therefore, every 

a 

Figure 9.5: The special complex. 

 . special complexתיאור ה : 9.5איור 
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line that depends on the generators of the flat pencil depends also on the generators of the 

associated general complex.  

Another theorem regarding the general linear complex was presented in [Veblen and 

Young, 1910]. This theorem states the following.  

Theorem 2: A linear complex consists of all lines linearly dependent on the edges of a simple 

skew pentagon. The proof for this theorem is presented in detail in [Veblen and Young, 

1910]. 

  

9.4.2 The linear congruence 

Two equations in the form of Eq. (9.18) define two linear complexes. The linear 

congruence is a family of lines with 2∞  lines that belong to two complexes. Eq. (9.20) 

represents the homogeneous linear equations associated with the linear congruence, where a 

and b are sextuples of constants not all zero, and p is the Plucker coordinate vector of a line in 

the linear congruence.       

                                          (a,p) = 0            (b,p) = 0                                               (9.20)                  

Eq. (9.20) states that the congruence is the intersection of two complexes. Any line, p, 

which belongs to the linear congruence, fulfills Eq. (9.15), where k and l are arbitrary 

constants. Equation  (9.21) represents a flat pencil of linear complexes.                     

                                               k(a,p) + l(b,p) = 0                                                     (9.21) 

The flat pencil of complexes, in Eq. (9.21), includes special complexes and the lines of the 

congruence intersect the axes of all the special linear complexes that are defined by this 

equation. The axes of these special complexes are called the directrices of the congruence. All 

the lines in a linear congruence intersect all the directrices of the congruence. 

The condition for a complex, defined by Eq. (9.21), to be a special complex is given 

by Eq. (9.22).  

                   (ka + lb,ka + lb) = 0    ⇒  k2(a,a) + kl(a,b) + l2(b,b) = 0                   (9.22) 

If we suppose that the complexes defined by a and b are special, then (b,b) = 0 and (a,a) = 0, 

but (a,b) ≠ 0  because a and b are not allowed to intersect. Consequently, the two directrices 

of the general linear congruence are two skew lines. A linear congruence, with two skew 

directrices, is called a non-parabolic congruence [Graustein, 1930] or a hyperbolic 

congruence [Veblen and Young, 1910].  
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a 

b 

Figure 9.6: The hyperbolic congruence.  

 .hyperbolic congruenceתיאור ה : 9.6איור 

The hyperbolic congruence is defined by four lines concurrent with two skew 

directrices. These four lines are called the generators of the hyperbolic congruence. Any line 

that is also concurrent with the directrices belongs to the congruence and linearly depends on 

the four generators of the congruence.  

If the directrices of the linear complex, in Eq. (9.21), are concurrent, then it has one 

(doubly counting) directrix, q, and this directrix is a line in a flat pencil of a general complex. 

In this case the linear complexes defined by a and b are identical and general; therefore, there 

is only one directrix. This directrix is a line of one of the flat pencils of the general pentagon 

defining the linear complex. Figure 9.7 shows a simple spatial pentagon defining a linear 

complex.  

If we consider a directrix, q, which belongs to the flat pencil defined by lines 1 and 2, 

then the flat pencil [4,5] has a line 6, which intersects the directrix. Similarly, the flat pencil 

[3,4] has a line 7 that intersects the directrix. Hence, all the lines defined by the three flat 

pencils [6,q] [7,q] and [2,q] belong to the linear complex and constitute a linear congruence. 

This type of linear congruence is called a parabolic congruence. All the lines, which belong 

to one of the three flat pencils of the parabolic congruence, linearly depend on the lines q, 2, 

1 

2 

3 
4 

5 

6 
7 

q

Figure 9.7: The Parabolic congruence as a subset of lines of the General complex. 

 .General complexאשר מוגדר כתת קבוצה של ה  Parabolic congruenceה : 9.7איור 
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6, and 7.      

If there is a group of four lines, with three coplanar lines 1, 2, 3, defining a plane π, 

and a fourth line, 4, piercing π, then a Degenerate congruence [Veblen and Young, 1910] or a 

special congruence [Graustein, 1930] forms. The three coplanar lines define all the lines in π; 

therefore, they define a flat pencil of lines with a center at the point in which line 4 pierces π. 

Any line, q, in this flat pencil is a directrix of the degenerate congruence. Figure 9.8 presents 

the simple pentagon associated with the degenerate congruence. Obviously, all the lines of the 

degenerate congruence belong to its associated general complex, which is defined by the 

simple pentagon 1, 2, 3, 4’, 5’. The lines that linearly depend on lines 1, 2, 3, and 4 are all the 

lines in the plane π and all the lines through the center of the flat pencil of directrices. 

The elliptic congruence has imaginary directrices and it is constituted from four 

mutually skew and linearly independent lines. A line quadruple contains three line triplets. If 

all the lines in a line quadruple are mutually skew, then every line triplet defines a ruled 

surface called a regulus. The lines that depend on the four generators of the elliptic 

congruence are the lines that depend on each one of the three reguli.   

 

9.4.3 The reguls 

This family of lines has 1∞  lines that belong to three linear complexes. There are four 

types of reguli, the first is called the regulus and the other three are called degenerate reguli. 

The regulus is formed by three mutually skew directrices a, b, and c, and it is defined by all 

the lines that intersect these three directrices. The lines that intersect all the directrices are 

called the rulers of the regulus, for they define the ruled surface of the regulus.  The points of 

the regulus lie on a single sheet hyperboloid. The totality of the ruling lines of this ruled 

1 2 

3 
q 

4 

1 2 

3 
q 

4’
5’

Figure 9.8: The degenerate congruence and its associated general complex. 

 .  המתאיםgeneral complexו degenerate congruence ה : 9.8איור 
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Ruler 

Directrix

Figure 9.9: The regulus and the conjugate regulus.

 . הצמודregulus וה regulusתיאור ה : 9.9איור 

surface is called a regulus. No pair of the regulus rulers is allowed to intersect, for if two 

rulers intersect, then two of the directrices are coplanar. Fig. 9.9 presents the regulus. 

The rulers of a given regulus 

intersect its three directrices. 

Similarly, the directrices of the 

regulus are the rulers of a conjugate 

regulus and any three rulers of the 

regulus are the directrices of the 

conjugate regulus. Hence, the regulus 

is a doubly ruled surface for both the 

regulus and the conjugate regulus 

define the same ruled surface. All the 

lines that belong to a regulus linearly 

depend on any three of its rulers.  
 
The other three degenerate reguli, in Fig. 9.10, are the bundle of lines, the plane of 

lines, and the union. The first two degenerate reguli, i.e., the bundle of lines and the plane of 

lines are two basic geometric forms, which we already presented. The union is defined by two 

distinct flat pencils having one line in common.  

All the lines that pass through the center of the bundle of lines linearly depend on any 

three lines of the bundle. All the coplanar lines linearly depend on any three distinct and non-

copunctal lines in this plane. All the lines that belong to any of the two flat pencils of the 

union linearly depend on the three generators of the union. In Fig. 9.10 the thick lines indicate 

the independent lines and the thin lines indicate a linearly dependent line.    

 

Bundle of lines Plane of lines Union 

Figure 9.10: The three types of degenerate reguli. 

 degenerate reguli.שלושת סוגי ה : 9.10איור 
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9.5 Line varieties 
A set of lines is a variety if all the lines in the set linearly depend on the base of the set 

and no line outside the set linearly depends on the base of the set. Six line varieties are 

defined based on the dimension of the base of the variety. All the lines in space depend on a 

six-dimensional base of six independent lines; thus, all the lines in the space belong to the 

most general space variety. The set of lines that linearly depend on five-dimensional base is 

the lines of the linear complex; therefore, the line variety of rank five is the linear complex 

variety. The variety of rank four is the linear congruence. The variety of rank three is the 

planes variety. The variety of rank two is the lines variety. Finally, the variety of rank one is 

the point variety.  

The point variety includes only one line in space, the line in the base of this variety. 

The lines variety has a two dimensional base. If the lines of the base are skew then these lines 

are the only lines of the variety, i.e., no other lines in space depend upon these lines. If the 

lines of the base intersect, then the variety includes all the lines in the flat pencil of the base.  

Tables 9.3, 9.4, and 9.5 are reproduced from [Dandurand, 1984]. These tables are 

synthetic tables, i.e., they provide a logical tool for determining the geometric conditions for 

linear dependence between lines. The tables are a summary of the subject of linear 

dependence of lines and do not present the mathematical background of the subject. 

Therefore, we wrote this chapter in order to present the mathematical background of the 

subject.  

Table 9.3 presents the line varieties and each variety is divided into several cases. 

Each case is indicated by a number denoting the rank of the variety, and a letter specifying the 

specific case in the variety. This method of indicating a specific case of a variety is common 

among the researchers in the field of line geometry. Table 9.4 presents the result of adding 

lines one by one starting with single line and ending with a six-dimensional base of the space 

variety. Table 9.5 shows equivalent cases, which are combinatorially distinct figures of lines, 

and belong to one of the cases presented in table 9.3.        
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Table 9.3: Synthetic representation of the six line varieties reproduced from [Dandurand, 

1984]. 

 .[Dandurand, 1984] בייצוג סינתטי על פי line varietiesששת ה : 9.3טבלה 
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Table 9.4: All possible ways of adding an independent line to a group of one to five lines. 

[Dandurand, 1984].   
כל האפשריות להוספת קו בלתי תלוי לחבורות המכילות קו אחד עד חמישה קווים : 9.4טבלה 

[Dandurand, 1984]. 



Chapter 9: Introduction to Line Geometry 

 - 95 -

 

Table 9.5: Combanitorially equivalent cases. [Dandurand, 1984].  

 . [Dandurand, 1984]מקרים אקוויוולנטיים על פי : 9.5טבלא 
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Chapter 10 

Singularity Analysis 
10.1 Introduction 

Singularity analysis of parallel robots is a subject of extreme importance for control 

and synthesis of robot mechanisms. Many researchers, [Merlet, 1989; Gosselin and Angeles, 

1990; Ma and Angeles, 1992; Hunt, Samuel, and McAree, 1991; Zlatanov et al., 1995; Basu 

and Ghosal, 1996; Xu, Kholi, and Weng, 1992; Ben Horin, 1997], invested immense efforts in 

solving this problem. 

A general non-redundant mechanism can be considered as an input-output device, with 

the input variables being the generalized coordinates variables, and the output variables being 

the posture variables of the output link. The term posture refers to the six variables, position 

and orientation, required to fully describe the location and orientation of a rigid body in space. 

 Singular configurations are defined as configurations, in which, the relation between 

the input variables and the output variables is not fully defined. For serial mechanisms, with n 

degrees of freedom, a configuration is regarded singular when the instantaneous input-output 

map x =J q  is singular. Where x  denotes an nx1 vector of the output link linear/angular 

velocities, q  denotes an nx1 actuator velocities vector, and the matrix J is the system 

Jacobian. Unlike with serial mechanisms, for parallel mechanisms a configuration, q, is 

regarded singular when the input-output map q =J x  is singular [Zlatanov, et al., 1995]. 

For a general mechanism, with n degrees of freedom, the relation between the input 

output variables takes the form: 

                                                        qBxA =                                                           (10.1)                  

 Where A and B are nxn matrices. This relation stems from differentiating all the loop 

closure equations and the kinematic constrain equations in each loop with respect to time. For 

fully parallel manipulators the matrix B is diagonal and its inversion is always possible [Ma 

and Angeles, 1992]. Therefore, the common definition for the Jacobian matrix for parallel 

manipulators takes the form J= B−1 A and the instantaneous inverse kinematics problem is 

define by q =J x . The matrices A and B are referred to as the direct kinematics and the 

inverse kinematics matrices, respectively [Chablat and Wenger 1998]. This notation stems 

from the facts that singularity of the matrix A leads to an undefined forward instantaneous 

kinematics problem and singularity of the matrix B leads to undefined inverse instantaneous 

kinematics problem. Based on rank-deficiency of the matrices A and B Gosselin and Angeles  
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[1990] divided the singular configurations into three cases: the first, when only A is singular; 

the second one, when only B is singular; and the third, when both A and B are singular. We 

adopt the terminology in [Chablat and Wenger 1998] and refer to the singular configurations 

associated with singularities of the direct kinematics matrix, A, and the inverse kinematics 

matrix, B, as parallel singularities and serial singularities, respectively.  

Hunt, Samuel, and McAree [1991] discussed the singular configurations in serial, 

parallel, and composite serial and in-parallel robots, by using motion and action screws. The 

main observation of this work is presented in the statement that in a serial manipulator the 

actuators are twist applicators, and in a fully parallel robot the actuators are wrench 

applicators. Moreover, the authors use the reciprocity principle to deduce results from the 

space of constraints and interpret them in the space of freedoms. The reciprocity principle 

states that any screw taken from the space of freedom, i.e., motion screw is reciprocal to any 

screw taken from the space of constraint, i.e., action screw. The authors proved that a work-

piece grasped by a serial chain can only loose degrees of freedom (or reciprocally, gain 

constraint); while a work-piece grasped by fully in parallel manipulator can only gain degrees 

of freedom (or reciprocally, lose constraint) in configurations inside its workspace domain. A 

non-fully parallel manipulator can either loose or gain degrees of freedom. 

 This result, regarding loss or gain of freedoms, can be explained by inspecting Eq. 

(10.1) as follows: if the direct kinematics matrix is singular (parallel singularity), then the 

linear equation system B−1 A x = q  has a non-trivial solution x ≠0 for q =0. Therefore, the 

moving platform gains degrees of freedom and performs movements in the direction of x  that 

belong to the nullspace of the Jacobian matrix J. If a serial singularity occurs, i.e., B is 

singular, then the linear system of equations x = A −1 B q  has a non-trivial solution q≠0 for 

x =0. Therefore, the moving platform loses degrees of freedom.  

While serial singularities occur on the boundary of the workspace of a parallel 

manipulator, parallel singularities may occur inside the workspace of the manipulator. Serial 

singularities are associated with sets of configurations where different branches of the inverse 

kinematic problem meet, and parallel singularities are associated with sets of configurations 

where different branches of the direct kinematic problem meet [Gosselin and Angeles, 1990]. 

In both cases, i.e. serial and parallel singularities, control of the robot is lost. In serial 

singularities, the actuated joints velocities reach extreme values, and in parallel singularities, 

the moving platform loses one or more constraints and falls along a path of singular 

configurations. Parallel singularities are hazardous to the mechanical assembly of the robot 
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and may lead to mechanical failure. The relation between the actuator forces vector and the 

wrench acting on the moving platform is given in equation (10.2):    

                                                      fAB
11 tt −−

=τ                                                    (10.2) 

Where 
1t−B and 

1t−A  are the inverse transpose of B and A.   

In parallel singularities A is singular and the system of equations in Eq. (10.2) has a 

non-trivial solution τ≠0 for f=0. Thus, near singularity the actuators forces reach extreme 

values and the joints undergo high stresses, especially if the kinematic chains include passive 

revolute joints transmitting moments. In serial singularities, the system of equations in Eq. 

(10.2) has a non-trivial solution f≠0 for zero actuator forces τ=0. Consequently, in serial 

singular configurations, the wrench acting on the moving platform does not affect one or more 

actuator forces. 

Zlatanov, et al. [1995] proposed a general velocity equation for interpreting the 

singularities of a general manipulator by considering the singularities of the instantaneous 

direct and inverse kinematics matrices and the matrix defining the relation between the 

actuated joint velocities and the passive joint velocities. Based on singularity of these 

matrices, this method allows physical interpretation of the singular configurations. 

 Ma and Angeles [1992] proposed classifying the singularities of parallel manipulators 

into three categories. The first category is called architecture singularities, the second 

category is called configuration singularities, and the third category is the formulation 

singularities. Architecture singularities are singularities that depend on the architecture of the 

robot. Such singularities exist for all configurations inside a considerable part of, or the entire 

workspace of the manipulator. Configuration singularity is caused by a particular 

configuration of the manipulator. Formulation singularity is a singularity caused by the 

mathematical model due to failure in representing the system at a particular configuration. 

Burton [1979] referred to architecture singularities as permanent critical forms, and to 

configuration singularities as instantaneous critical forms. Architecture singularities are of 

particular importance in stages of conceptual design of new parallel manipulators since the 

designer must assure that the suggested architecture is not architecturally singular. Ma and 

Angeles [1992] proved, by analyzing the rank of the Jacobian matrix, that a 6-6 Stewart 

platform is architecture singular if the moving and the base platform are similar polygons. In 

addition, they proved that if the moving and base platforms are similar irregular polygons, 

then the manipulator is singular throughout a considerable part of it’s workspace. Karger 
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[1998] investigated the spatial architectures for parallel robots which are architecture singular, 

and presented a list of all degenerated parallel manipulators.    

 Dandurand [1984] addressed the problem of rigidity conditions of compound spatial 

grids by using line geometry. Parallel singularities were solved by line geometry by Merlet 

[1989] for a 3-6 Stewart platform. Ben-Horin [1997] implemented the method of line 

geometry for many fully-parallel manipulators. He showed that for fully-parallel manipulator 

the Jacobian matrix consists of Plucker coordinates of the lines along the prismatic actuators. 

Therefore, he based the singularity analysis on finding geometrical conditions for linear 

dependence between these lines. Collins and Long [1995(a)] used the line geometry method 

for analyzing the singularities of the hand controller in Fig. 5.9. Notash [1998] used line 

geometry to investigate redundant three-branch platform manipulators and their preferable 

actuation distribution in order to eliminate singularities. Hao and McCarthy [1998] discussed 

the conditions on the joint arrangements that ensure line-based singularities in platform 

manipulators. They showed that in order to have line-based singularities the platform must 

connect to the kinematic chains by spherical joints or equivalent joint arrangements. In our 

work, the USR and the RSPR robots do not fulfill this requirement, but thanks to the use of 

the instantaneous direct and inverse kinematics matrices, we overcome this obstacle.        

A fully parallel manipulator has only one solution for the inverse kinematics problem; 

therefore, the associated inverse instantaneous kinematics matrix, B, is diagonal and non-

singular for all the cases where the linear actuator’s lengths is not zero. In contrast with fully-

parallel manipulators, non-fully parallel manipulators use compound kinematic chains that 

allow more than one solution for the inverse kinematic problem. Consequently, for non-fully 

parallel manipulators, singularity of both matrices A and B should be considered for complete 

analysis of singular configurations. Singularity of the matrix B indicates a loss of degrees of 

freedom in one of the kinematic chains.  

Based on the singularities of matrices A and B we divide the singularity analysis into 

two stages. In section 10.2, we analyze parallel singularities by using line geometry method. 

This provides the analysis of parallel singularities for a class of non-fully parallel 

manipulators that share the same direct instantaneous kinematics matrix A. This class of non-

fully parallel manipulators includes 14 different architectures already listed in Fig. 5.14. In 

section 10.3, we inspect the matrix B for serial singularities and we apply the analysis for the 

RSPR and the USR robots shown in Fig. 5.16 and 5.15.    
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10.2 Analysis of Parallel singularities for a class of non-fully parallel 

manipulators 
 

10.2.1 The method of analysis 

This section presents configuration singularity analysis of the tripod part of the RSPR 

and USR robots. The Jacobian matrix ~J  presented in Eq. (7.14) corresponds to this tripod 

mechanism. Furthermore, the Jacobian matrix, ~J , is common for a class of non-fully parallel 

manipulators that share an identical tripod mechanism to the one appearing in the RSPR and 

the USR robots. This class of manipulators was presented in Fig. 5.14. In Chapter 7, we 

showed that the Jacobian matrix ~J  of the tripod mechanism in Fig. 7.1 is the direct 

kinematics matrix of a complete parallel manipulator with such tripod mechanism. Therefore, 

the singularity analysis of ~J  reveals all the parallel singularities associated with the 

aforementioned class of non-fully parallel manipulators in Fig. 5.14 (including the RSPR and 

USR robots).   

The method of analysis is based on line geometry and synthetic proofs. The emphasis 

is placed on the geometric interpretation of each singular configuration rather than on 

developing the determinants describing the singularity from algebraic point of view. The 

analysis starts with low-rank line varieties and ends with the linear complex variety. For each 

case in Fig. 9.3, we inspect the conditions for having n+1 lines belonging to a variety of rank 

n, n=1..6. In cases where we consider singularity of flat pencils, we assume that the tested line 

triplet forms such a flat pencil and we write the geometric conditions for such singularity.          

   

10.2.2 Preliminary definitions 

When utilizing line geometry method in singularity analysis, it is a preliminary task to 

notice all the relations between lines, planes, and locus of points. First, we begin by setting up 

the relevant nomenclature for this section. Then we register a list of useful geometric relations 

upon which we will base all following geometrical proofs.  

Fig. 10.1 presents a geometric interpretation of the Jacobian matrix ~J  associated with 

the tripod part of the RSPR robot. In chapter 7 we showed that the rows of the Jacobian 

matrix ~J  are the Plucker ray coordinates of the lines in Fig. 7.3. We will use the symbols lk  

k=1..6 to refer to row number k in the tripod’s Jacobian matrix ~J . Hence, the Plucker ray 

coordinates of lines l1, l2, l3, l4, l5, and l6 in Fig. 10.1 are the rows of the tripod Jacobian matrix 
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~J . Singularity of ~J  stems from linear dependence of its rows l1, l2, l3, l4, l5, and l6; therefore, 

we use line geometry to find all the configurations in which these lines are linearly dependent.  

Nomenclature: 

The following symbols facilitate the formulation of the geometrical proofs in this 

chapter. All the symbols are explained herein and shown in Fig. 10.1. 

pi: center points of the revolute joints on the moving platform. i=1,2,3.  

ri: vectors of the revolute joints’ axes on the moving platform. i=1,2,3. 

bi: Center points of the spherical joints. i=1,2,3. 

op: The center point of the moving platform.  

n: Normal to the moving platform that passes through op. 

Pi: The plane defined by n and a point pi, i=1,2,3. 

P0: The plane defined by points pi, i=1,2,3. 

B0: The plane defined by points bi, i=1,2,3. This plane is hereafter referred to as the tripod 

base plane. 

jk: A flat pencil generated by lines lj and lk.  k, j∈{1,2,3,4,5,6}, k≠j. 

Xjk: A flat pencil generated by lines lj and lk that belongs to category of flat pencils X. The 

expression Xjk represents the same flat pencil as Xkj (Xjk = Xkj).    

jk
p X : The plane associated with flat pencil jkX . 

jk
c X : The center point of flat pencil Xjk.  

pjpk: the line defined by points pj and pk. 

Γ: the complete group of the Jacobian lines. Γ = {l1, l2, l3, l4, l5, l6}.  

Cjk: the group of Jacobian lines other than the Jacobian lines lj and lk.  

Cjk = {ln: ln∈Γ, n≠j, n≠k}.  

We regard lines and planes as sets of points. Therefore, the symbols ∩ and ∈ have the 

same interpretation for groups of points. Accordingly, the expression a ∩ b indicates the 

intersection of two lines, a and b, in a common point, or the intersection of two planes, a and 

b, along a common intersection line, or a line a piercing a plane b. The expression a∈b 

indicates that a point, a, is on the line/plane, b; or that a line, a, lies in the plane b.  
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Geometric relations: 

The tripod mechanism in Fig. 10.1 determines the following geometric relations. 

These geometric relations are self-evident and stem directly from the architecture of the tripod 

in Fig 10.1.  

Geometric relation A1: Points pi are not collinear. i=1,2,3. 

Geometric relation A2: b1∈P1, b2∈P2, b3∈P3.  

Geometric relation A3: r1∈P0, r2∈P0, r3∈P0. 

Geometric relation A4: l4||r1, l5||r2, l6||r3. 

Geometric relation A5: r1⊥P1, r2⊥P2, r3⊥P3. 

Geometric relation A6: pi∉rj, i, j=1,2,3, i≠j. 

Corollaries:  

The following corollaries result from geometric relations A1..A5. Each corollary is 

followed by brackets enclosing a list of the geometric relations used to prove it.  

Corollary Cr1 [A2]: l1∈P1, l2∈P2, l3∈P3. 

Corollary Cr2 [A3, A4]: l4||P0, l5||P0, l6||P0. 

Corollary Cr3 [A4, A5]: l4⊥P1, l5⊥P2, l6⊥P3. 

Corollary Cr4 [A2, A4, A5]: l4⊥l1, l5⊥l2, l6⊥l3. 

Figure 10.1: Geometrical interpretation of ~J  and its associated lines l1..l6.  

פירוש גיאומטרי למטריצה : 10.1איור 
~J והקווים l1..l6ים למטריצה זו השייכ . 
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Next, the singularity of the tripod mechanism is presented. We refer to each case in the 

line varieties according to the nomenclature in Fig. 9.3.  

 

10.2.3 Point singularities (1a) 

Singularity of the point variety in which two lines are coincident is not possible. This 

is because lines l1, l2, and l3 belong to three distinct planes P1, P2, and P3, respectively. They 

Also pass through three distinct points p1, p2, and p3, therefore no couple from these lines can 

be simultaneously concurrent with the intersection line of the three planes P1, P2, and P3. 

Lines l4, l5, l6 move such that each one is perpendicular to the planes P1, P2, P3, respectively. 

Therefore, concurrence of a couple of lines form this group is not possible.  

 

10.2.4 Flat pencil singularities (2b)  

We seek to find singularities which stem from subsets of lines l1..l6 that include more 

than two lines in one common flat pencil, therefore, we inspect all the cases with three lines in 

one flat pencil.    

A group of n lines in space can form ( ) 2/1nn −  different flat pencils. Fig. 10.2 

registers all possible flat pencils for the case n=6. Each point on the circle circumference 

represents a line and each line connecting two points on the circumference of the circle 

represents a flat pencil. For example, the point 1 on the circumference of the circle represents 

line ll and the line connecting between point 1 and point 2 on the circumference of the circle 

represents the flat pencil defined by lines ll and l2. 

Figure 10.3 lists all 15 distinct flat pencils formed by lines l1..l6. Each two-digit 

number, jk, in the diagram represents a flat pencil formed by lines lj and lk. The figure 

presents four different categories of flat pencils: T, R, S, and F categories. Each category 

includes three or six flat pencils. Flat pencils in each category are similar in a sense that it is 

sufficient to analyze the singularity of one category member and to apply a similar analysis to 

all other members of the same category. This process of flat pencil grouping is possible due to 

similarity of all the kinematic chains of the tripod. The kinematic chain similarity induces 

cyclic analogy between flat pencil category members; for example 12T , 23T , and 31T  are 

analogous because each one is formed by adjacent prismatic actuator axes. We refer to a 

category member that is subjected to our singularity analysis as a category representing flat 

pencil.  
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We distinguish between constant flat pencils and temporary flat pencils. While a 

temporary flat pencil is a configuration-dependent flat pencil, i.e., it forms under certain 

conditions on the configuration variables; a constant flat pencil is configuration independent 

or, in other words, it is architecture dependent. Hence, we refer to constant flat pencils as 

architectural flat pencils.  

We notice that the F category includes architectural flat pencils and the remaining 

categories include temporary flat pencils only.   

The four categories of flat pencils are: 

The T category: T = {T12, T23, T13}. 

The F category: F = {F14, F25, F36}. 

The S category: S = {S45, S46, S56}. 

The R category: R = {R15, R16, R24, R25, R34, R35}. 

The flat pencils are divided into four categories. These categories are tested for 

singularities by testing a category representing flat pencil and considering the geometrical 

conditions that lead to singularity. There are four cases; each case corresponds to a different 

category.  

In the following sections, we consider a category representing flat pencil in each 

category. For every category representing flat pencil defined by lines lj and lk (lj, lk ∈ Γ) we 

test all the lines in the complementary group Cjk. For every line ln in the complementary group 

(ln∈Cjk) we determine the geometric relations that render or prohibit it from belonging to the 

flat pencil of lines lj and lk.  

 

Case 1 line ln∈Tjk. j, k = 1,2,3. j ≠ k. ln∈Cjk:  

1 
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2: 15 flat pencils defined by six 

lines in space. 

י " אשר מוגדרים עflat pencils 15: 10.2איור 

 .שש קווים במרחב

Figure 10.3: Flat pencil groups. 

 . flat pencilsקבוצות של : 10.3איור 
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Let T12 be a category representing flat pencil. We inspect all cases where T12 spans a 

line ln∈C12. Based on the symmetry of the tripod, there are three distinct cases: ln = l3, ln = l4, 

and ln = l6. The case ln = l5 is equivalent to case ln = l4 due to symmetry considerations. 

Case 1.1 ln = l3: 

The following proof shows that l3∈ T12 only if the tripod reduces to the planar case, 

i.e., the moving platform lies in the tripod base plane B0. 

Proof:  

1) Points pi and bi define line li, i=1, 2, 3. 

2) Points pi define the moving platform plane, P0.  

3) Points bi define the base plane B0. 

4) In the case where line l3∈T12 all the points pi and bi (i = 1, 2, 3) belong to the same 

plane, i.e., pi ∈ 12
p T , bi ∈ 12

p T . Therefore, the moving platform lies in the base plane 

P0 = B0 = 12
p T . 

This case is shown in Fig 10.4. We refer to this singular configuration as singular 

configuration S1. The geometric conditions of this singular configuration are: 

Singular configuration S1: B0 = P0 ⇒ ln∈Tjk.                 

 j, k, n =1, 2, 3. j≠k≠n. 

  Since we showed that the configuration in Fig 10.4 is singular, we will henceforth 

exclude the possibility that the moving platform lies in the tripod base plane.  

 

Case 1.2 ln = l4 (equivalent to ln=l5): 

This case leads to a singular configuration S2. 

l6 

b1 

b2 

b3 

Figure 10.4: Singular configuration S1. 

 .S1קונפיגורציה סינגולרית : 10.4איור 
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Proof:   

1) Line l4 passes through point b1 (b1∈ l4). 

2) l1∈P1, l2∈P2 and n is the intersection line of P1 with P2; therefore, 12
c T  is located 

along n.    

3) In a singular configuration, line l4 passes through 12
c T . Point b1 fulfills b1∈P1, 

b1∈B0 and line l4 is perpendicular to P1 (4⊥P1). Hence, line l4 intersects n only 

when point b1 coincides with the piercing point of n with plane B0, i.e., 

0B1 ∩= nb . 

 4) Lines l1 and l4 define 14F  and lines l1 and l2 define T12 such that line l1 is the 

intersection line of the two planes (l1= 12
p T ∩ 14

p F ).  

5) In a singular configuration, line l4 lies in 12
p T . Since line l4 is not the intersection 

line of 14
p F  with 12

p T  it lies in 12
p T  only if 14

p
12

p FT = . 

6) Points b1, p1, and p2 define 12
p T . Line r1 and point b1 define 14

p F . Since points 

b1∈l1, p1∈l1 and l1∈ 12
p T ⇒ b1∈ 12

p T and p1∈ 12
p T ; therefore, the only condition for 

fulfilling 14
p

12
p FT =  is p2∈ 14

p F . 

7) Based on geometric relation A6, line r1 and point p2 define the plane of the moving 

platform P0. 

8) Line r1 is the intersection line of the planes P0 and 14
p F . Since point p2 is not on r1 

(p2∉r1) then p2∈ pF14  is fulfilled only when 14
p F =P0, i.e., in this configuration 

12
p T = 14

p F =P0. 

9) 0B1 ∩= nb  and b1∈P0; therefore, point b1 is the center point of the moving 

platform op, (b1=op). 

10) Singular Configuration S2 is defined such that 12
p T =P0 and b1=op. This singular 

configuration is shown in Fig. 10.5. 

Singular configuration S2: jk
p T = P0, bj = op⇒ ln∈ jkT  

                                         (j, k, n)∈{(1, 2, 4), (2, 1, 5), (2, 3, 5), (3, 2, 6), (3, 1, 6), (1, 3, 4)}. 
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Case 1.3 ln = l6: 

This case leads to two singular configurations S3 and S4. In these singular 

configurations, line l6 belongs to T12. 

Proof: 

1) Line l6 passes through b3 (b3∈6). 

2) Line l6 fulfills l6||r3. 

3) If the geometry of the moving platform fulfills r3||p1p2, then l6||p1p2. 

4) p1∈ l1, p2∈ l2 ⇒ p1p2∈ 12
p T .  

5) l6||p1p2, p1p2∈ 12
p T ⇒ l6|| 12

p T  

6) In a singular configuration, line l6 fulfills l6∈T12. Since l6|| 12
p T  the condition 

b3∈ 12
p T  is a sufficient condition to fulfill l6∈ 12

p T . 

7) l1∈P1, l2∈P2 and n is the intersection line of P1 with P2; therefore, the center of 

T12, i.e. 12
c T ,  is located along n.    

8) In a singular configuration, line l6 passes through the center of T12. Point b3 fulfills 

b3∈P3, b3∈B0 and line l6 is perpendicular to P3 (l6⊥P3). Hence, line l6 intersects n 

only when point b3 coincides with the piercing point of n with plane B0, i.e., 

0B3 ∩= nb .   

 9) There are two cases: in the first, 12
c T  is located along n above the moving 

platform, and in the second, 12
c T  is located along n beneath the moving platform.  

Figure 10.5: Singular configuration S2. 

 .S2 קונפיגורציה סינגולרית: 10.5איור 
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Singular configuration S3 ( 12
c T  located beneath the moving platform): Since b3∈B0, 

then singular case S3 occurs when point 12
c T ∈B0 and b3 is concurrent with it. Therefore, In a 

singular configuration 12
cT0B3 =∩= nb . In this singular configuration points b1, b2, and b3 

are copunctal. Fig. 10.6 illustrates this singular configuration. 

The geometric conditions of this singular configuration are: 

Singular configuration S3: b1=b2=b3. ri||pjpk ⇒ ln∈Tjk.  

                                           (j, k, n)∈{(1, 2, 6), (2, 3, 4), (3, 1, 5)}. i, j, k=1,2,3. i≠j≠k. 

Singular configuration S4 ( 12
c T  located above the moving platform): In this singular 

configuration 0BT12
c

3 ∈=b , l1∈T12, l2∈T12, b1∈T12, b2∈T12; therefore 0BT12
p = . This 

singular configuration is illustrated in Fig. 10.7.  

Singular configuration S4: jk
p T =B0. ri||pjpk. bi = jk

c T ⇒ ln∈Tjk. 

                                     (j, k, n)∈{(1, 2, 6), (2, 3, 4), (3, 1, 5)}. i, j, k=1,2,3. i≠j≠k. 

 

Case 2 line ln∈Fjk. (j, k)∈{(1, 4), (2, 5), (3, 6)}. ln∈Cjk:  

Let F14 be a category representing flat pencil. We look for a line ln∈C14, which is 

linearly dependent with the generators of F14. Based on the symmetry of the tripod, we 

consider only two cases: ln = l2 (equivalent to ln = l3), and ln = l5 (equivalent to ln = l6).  

Case 2.1 ln = l2 (equivalent to ln = l3): This case is identical to case 1.2 ln = l4.  

 

 

Figure 10.6: Singular configuration S3. 
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Case 2.2 ln = l5 (equivalent to ln = l6): 

This case leads to a new singular configuration S5. In a singular configuration line l5 

belongs to flat pencil F14 therefore, the flat pencil S45 also exists.  

Proof: 

1) l4||P0 , l5||P0 [corollary Cr2] ; therefore 45
p S ||P0. 

2) If  45
p S ≠ 14

p F , then l4 is the intersection line of 45
p S  with 14

p F . 

3) If 45
p S ≠ 14

p F , then l5 can not simultaneously fulfill l5∈ 45
p S  and l5∈ 14

p F ; 

consequently, both conditions are simultaneously fulfilled only if 45
p S = 14

p F . Thus, 

in a singular configuration, l5∈ 45
p S  and l5∈ 14

p F ; Thus, 45
pS = 14

p F .  

4) If 45
pS = 14

p F , then 14
p F ||P0, but since p1∈ 14

p F  and p1∈P0 we conclude that in a 

singular configuration 45
p S = 14

pF =P0. 

5) Point b2 is on line l5 (b2∈l5). Point b1 is the center of 14F (b1= 14
c F ). 

6) In a singular configuration l5∈F14; hence, b1∈ l5.  

7) b1∈B0, b2∈B0 ⇒ l5∈B0. 

8) r2|| l5 and in a singular configuration l5∈B0, therefore, r2||B0.  

 

 

 

Figure 10.7: Singular configuration S4. 
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The singular configuration S5 is illustrated in Fig. 10.8 and Fig. 10.9. This singular 

configuration is defined as follows:  

Singular Configuration S5:  

 First set: jk
p F = P0, bj+1∈P0 ⇒ ln∈Fjk. 

  (j, k, n)∈{(1, 4, 5), (2, 5, 6), (3, 6, 4)}. 

 Second set: jk
p F = P0, bj-1∈P0 ⇒ ln∈Fjk. 

  (j, k, n)∈{(1, 4, 6), (2, 5, 4), (3, 6, 5)}. 

Note: index j follows a cyclic order such that for j = 3 ⇒ j+1 = 1 and for j = 1 ⇒ j-1 = 3 .   

  
 

Case 3 line ln∈Sjk. (j, k)∈{(4, 5), (4, 6), (5, 6)}. ln∈Cjk:  

b1 (b2) b3 

B0 

Moving Platform 

p1 (p3) 

p2 

Figure 10.8: Side view of singular configuration S5.  

 .S5מבט צד לקונפיגורציה סינגולרית : 10.8איור 

Figure 10.9: Singular configuration S5. 
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We choose S45 as a category representing flat pencil. In a singular configuration flat 

pencil S45 exists and it spans a line ln∈C45. There are three distinct cases to be considered. The 

three cases are ln = l1  (analogous to ln = l2), ln = l3, and ln = l6.  

Case 3.1 ln = l1 (equivalent to ln = l2):  

This case is the same as case 2.2.  

Case 3.2 ln= l3: 

This case leads to a singular configuration, which is special case of architectural 

singular case S1.  

Proof:  

1) l4||P0 l5||P0 [corollary Cr2] therefore 45
pS ||P0. 

2) Point p3 satisfies: p3∈P0, p3∈l3.  

3) In a singular configuration l3∈ 45
pS , therefore, p3∈ 45

pS . Consequently, in a 

singular configuration 45
pS =P0. 

4) Point b3 lies on l3, i.e. b3∈ l3, and in a singular configuration b3∈ 45
pS . 

5) Points b1 and b2 satisfy: b1∈l4, b2∈l5; hence b1∈ 45
pS  and b2∈ 45

pS . 

6) We showed that b1, b2, and b3 belong to 45
pS ; therefore, B0= 45

pS =P0.  

 

Case 3.3 ln = l6: 

The following proof shows that this case leads to singular configurations S6 and S7. In 

these singular configurations the moving platform is parallel to the tripod base plane.  

Proof: 

1) l4||P0 l5||P0 [corollary Cr2] therefore 45
pS ||P0. 

2) In a singular configuration l6∈ 45
pS  and 45

cS  lies on l6.  

3) b1∈l4, b2∈l5 and b3∈l6; therefore b1∈ 45
pS , b2∈ 45

pS , b3∈ 45
pS  and B0 = 45

pS . 

Therefore, B0||P0. 

Singular configurations S6 and S7 are illustrated in Fig. 10.10 and Fig. 10.11.  

Singular configurations S6, S7: B0||P0. ln∈Sjk. 

                                                   j, k, n = 4, 5, 6. j≠k≠n.  
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Case 4 ln∈Rjk. (j, k)∈{(1, 5), (1, 6), (2, 4), (2, 5), (3, 4), (3, 5)}. ln∈Cjk:  

Let R15 be a category representing flat pencil. This case leads to for four cases that we 

already dealt with.  

Case 4.1 ln = l2: This case is the same as case 1.2.  

Case 4.2 ln = l3: This case is equivalent to case 1.3 and leads to similar singularity. 

Case 4.3 ln = l4: This case is the same like case 2.2 and leads to same singular configurations. 

Case 4.4 ln = l6: This case is equivalent to case 3.2 and leads to singular configuration S1. 

 

 

 

 

B0 

b1 

b2 

b3 

l2 

l3 
l1 

l5 

l4 l6 

Figure 10.10: Singular configuration S6. 

 .S6קונפיגורציה סינגולרית : 10.10איור 

b1 

b3 

b2 

l1 

l3 

12 l4 

l5 

l6 

B0 

Figure 10.11: Singular configuration S7. 

 .S7קונפיגורציה סינגולרית : 10.11איור 
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10.2.5 Planes singularities 

This section presents the singular configurations that belong to a rank three system.  

Therefore, we inspect all the cases, in which, four lines belong to the planes variety. 

Regulus Singularities (3A): 

The group of lines, Γ={l1..l6}, includes three permanent flat pencils F14, F25, and F36. 

Consequently, the maximum number of skew lines in Γ is three. We recall that all lines in the 

same regulus are skew and intersect all the lines in the conjugate regulus [Veblen, 1910]. 

Based on this fact, if we suppose that lines l1, l2, l3 form a regulus, then lines l4, l5, and l6 can 

not belong to this regulus because line l4 intersects l1, l5 intersects l2, and l6 intersects l3. 

Therefore, no group of more than three lines can belong to the same regulus and singularity of 

type (3A) is not possible. 

Union singularities (3B): 

The lines that depend on the generators of a union are all the lines that depend on each 

of its two flat pencils. Therefore, we need not consider this case since we already considered 

all the singularities that stem from flat pencil singularities.    

Bundle singularities (3C): 

A singular bundle includes more than three lines intersecting in a common point. In 

order to find all singular bundles we register all possible line quadruplets in Γ and we divide 

them into four different line quadruplet groups.  

Table 10.1 lists all the 15 line quadruplets. A singular bundle forms if all the lines in 

one of these line quadruplets are copunctal. The process of line quadruplet grouping is 

possible due to the kinematic chain symmetry of the tripod. This table also presents four 

different quadruplet groups, namely, groups Q1, Q2, Q3 and Q4. 

Table 10.1: 15 line quadruplets and their separation into four categories.  
 . ארבע קווים ופירוט חלוקתם לקבוצות חבורות של 15: 10.1טבלה 

Physical meaning of quadruplet category Quadruplet category members 

Q1: All the quadruplets that include all 

prismatic actuator axes and one of the lines l4, 

l5, l6.  
Q1 = {(l1 l2 l3 l4), (l1 l2 l3 l5), (l1 l2 l3 l6)}  

Q2: All the quadruplets that include lines 

associated with adjacent kinematic chains.  Q2 = {(l1 l2 l4 l5), (l1 l3 l4 l6), (l2 l3 l5 l6)}  
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Table 10.1: 15 line quadruplets and their separation into four categories – continued. 

 . המשך–בע קווים ופירוט חלוקתם לקבוצות  חבורות של אר15: 10.1טבלה 

Q3: Any line quadruplet including two lines 

associated with a first kinematic chain, one 

prismatic actuator axis associated with a 

second kinematic chain, and one line from {l4, 

l5, l6} that belongs to a third kinematic chain.  

Q3 = {(l1 l2 l4 l6), (l1 l3 l4 l5), (l2 l3 l4 l5), 

(l1 l2 l5 l6), (l1 l3 l5 l6), (l2 l3 l4 l6)}.   

Q4: All line quadruplets including a constant 

flat pencil from one kinematic chain, and two 

other lines from l4, l5, l6 such that each line 

belongs to either a second or a third kinematic 

chain.   

Q4 = {(l1 l4 l5 l6), (l2 l5 l4 l6), 

           (l3 l6 l4 l5)} 

 

Case 1 Singularities of Q1 line quadruplets: 

Let (l1 l2 l3 l6) be a category representing line quadruplet. This case leads to singular 

configurations that are the general cases of singular configurations S3 and S4 in which the 

geometry of the moving platform does not fulfill l6 || p1p2.   

Proof: 

1) Point b3 fulfills b3=l3∩l6, i.e., b3= 36
c F . 

2) In a singular configuration, lines l1, l2, l3, and l6 intersect in one common point. 

3) Since b3 = l3∩l6 and l3 ≠ l6 the only possible common point of intersection for lines 

l1, l2, l3, and l6 is b3. 

4) b3∈ l3, l3∈P3, l2∈P2, and l1∈P1; therefore, the intersection is possible only along 

P3P2P1 ∩∩=n , i.e., b3∈n.  

5) b3∈B0 and in a singular configuration b3∈n; therefore b3 = n∩B0, namely, b3 is the 

piercing point of n with the tripod base plane B0. 

6) In a singular configuration 336
c

12
c FT b== . Therefore, there are two possibilities. 

The first is when 12
c T  is located above the moving platform, and the second is 

when 12
c T  is located beneath the moving platform.  

7) If 12
c T  is beneath the moving platform it means that b1= b2= b3; therefore, this is 

the singular configuration S3.   
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8) If 12
c T  is above the moving platform then in this configuration l1 = b1b3 and l2=b2 

b3, therefore, l1∈B0, l2∈B0.  This singular configuration was already presented in 

Fig. 10.7. This is the general case of singular configuration S4. 

Case 2 Singularities of Q2 line quadruplets: 

Let (l1 l2 l4 l5) be a category representing line quadruplet. This line quadruplet forms a 

singular bundle if a pair of spherical joints coincides. We designate this singular configuration 

as S8. Fig. 10.12 illustrates this singular configuration.  

Proof: 

1) b1= l1∩ l4, b2= l2∩ l5; therefore the only possible intersection point for the four 

distinct lines is b1= b2.  

2) b1∈P1, b2∈P2; consequently, the intersection point b1=b2 is located along  

P2P1∩=n .  

3) b1∈B0, b2∈B0; therefore, in a singular configuration b1=b2=n∩B0, i.e., the 

spherical joints coincide at the piercing point of n with the tripod base plane, B0.  

Singular configuration S8: bj = bk.  j,k=1,2,3. j≠k. 

 

Case 3 Singularities of Q3 lines quadruplets: 

All the line quadruplets in this category lead to singular configuration S8. We choose 

(l1 l2 l4 l6) as a category representing quadruplet and present the following proof. 

 

b1=b2 

b3 

l6 

l3 l2 

B0 

l1 

l4 

l5 

n 

Figure 10.12: Singular configuration S8. 
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Proof: 

1) Point b1 fulfills b1∈B0, b1=l1∩4; therefore, in a singular configuration all distinct 

lines l1, l2, l4, and l6 intersect in point b1. 

2) l1∈P1, l2∈P2; thus, the intersection points of these lines is located along 

P2P1∩=n .   

3) In a singular configuration line l2 intersects l1 in point b1. Therefore, b1= 12
c T . 

4) b2=l2∩B0, i.e., b2 is the piercing point of l2 with the tripod base plane. This means 

that b1=b2= 12
c T . Consequently, this configuration is singular configuration S8 

shown in Fig. 10.12. 

Case 4 Singularities of Q4 lines quadruplets: 

This case leads to two singular configurations which are special cases of singular 

configurations S6 and S7. To prove this we select (l1 l4 l5 l6) to be a category representing 

quadruplet.  

Proof: 

1) b1=l1∩l4; therefore, in a singular configuration, b1 is the common intersection point 

of all lines in the quadruplet.  

2) l6||P0, l5||P0 [corollary Cr2]; thus, 56
pS ||P0.  

3) b1∈B0 and in a singular configuration b1= 56
cS ; therefore 56

cS ∈B0. 

4) Points b2, b3 and 56
cS  define 56

pS . Since all these points belong to B0 we conclude 

that in a singular configuration B0||P0, i.e., the tripod base plane and the moving 

platform are parallel. Fig. 10.13 and 10.14 present the two special cases of singular 

configurations S6 and S7. 

b1 

b2 
l1 

l3 l2 

l4 

l6 

l5 

B0 

P0||B0 

Figure 10.13: Special case of singular configuration S7. 

 .S7 מצב פרטי של קונפיגורציה סינגולרית: 10.13איור 
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Plane singularities (3D): 

Singularities of type 3D are characterized by having more than three coplanar lines in 

the group Γ={l1, l2, l3, l4, l5, l6}. Therefore, we inpect all the line quadruplets to determine the 

singularities that stem from this case. 

There are four line quadruplet groups as we already presented in table 10.1. We 

consider the cases, in which, a category representing line quadruplet is coplanar. 

Case 1 Q1 coplanar line quadruplet:  

All lines in this category are coplanar only if the moving platform lies in the tripod 

base plane. We choose (l1 l2 l3 l4) as a category representing line quadruplet.  

Proof:     

1) Lines l1, l2 and l3 pierce the plane of the moving platform, P0, in points p1, p2, and, 

p3 respectively. Since these points are not collinear, [geometric relation A1], then 

these lines lie in one plane only if this plane is the plane of the moving platform P0.    

2) Line l4 is parallel to the moving platform; therefore, if lines l1, l2, and l3 lie in the 

plane of the moving platform, then also l4 lies in this plane. 

3) Points b1, b2, and b3 lie on lines l1, 2, and 3, respectively; therefore, they belong to 

P0 and the moving platform lies in the tripod base plane.        

Case 2 Q2 coplanar line quadruplet:      

The quadruplets in Q2 lie in one plane if two of the prismatic actuator axes lie in the 

plane of the moving platform. We choose (l1 l2 l4 l5) as a category representing line 

quadruplet.  

l4 
l5 l6 

b3 

b2 

b1 

B0 

l1 

l2 

l3 

P0||B0 

Figure 10.14: Special Case of Singular configuration S6. 

 .S6מקרה פרטי של קונפיגורציה סינגולרית : 10.14איור 
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Proof: 

1) Lines l4 and l5 are parallel to the moving platform. l4||r1, l5||r2, [geometric relation 

A4]. The plane they define, 45
pS , is parallel to P0.  

2) Points b1 and b2 lie on both planes 45
pS  and 12

p T , therefore line b1b2 is the 

intersection line of these two planes.  

3) Points b1 and p1 define line l1. Similarly, points b2 and p2 define line l2. 

4) p1∈P0, p2∈P0.Points p1 and p2 lie on the plane 45
pS  only if 45

pS =P0.  

Figure 10.15 presents singular configuration S9. This singular configuration occurs 

when two lines out of  l1, l2, l3 lie in the plane of the moving platform. 

Singular configuration S9: lj∈P0, lk∈P0. j, k = 1,2,3. j≠k. 

 

Case 3 Q3 coplanar line quadruplet:  

All line quadruplets in this category are coplanar only if the tripod reduces to the 

planar case. We choose (l1 l2 l4 l6) as a category representing line quadruplet and present the 

following proof.  

Proof:  

1) Line r1 fulfills: r1∈P0, r1||l4; therefore r1 is the intersection line of plane P0 and 

14
p F , (r1=P0∩ 14

p F ).    

b1 

b2 

b3 

l1 

l4 

l5 

l6 

l2 

l3 

B0 

Figure 10.15: Singular configuration S9. 
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2) Line l2 pierces P0 in point p2. In singular configuration line l2 lies in 14
p F ; 

therefore, point p2 lies in the plane 14
p F . 

3) Point p2 does not lie on r1, (p2∉r1); therefore it lies in 14
p F  only if 14

p F =P0. 

Therefore, Point b1 fulfills b1∈P0.    

4) In this case Line l2 lies in P0 if b2∈P0. 

5) Line l6 is parallel to r3 and r3 lies in P0; therefore, it is parallel to P0. l6||P0. 

6) b3∈l6 and l6||P0, thus, line l6 lies in P0 only when point b3 lies in P0. Therefore, the 

moving platform lies in the tripod base plane.  

Case 4 Q4 coplanar line quadruplet: 

Let (l1 l4 l5 l6) be a category-representing line quadruplet. The following proof shows 

that all line quadruplets in this category lie in one plane only if the moving platform lies in the 

tripod base plane.  

Proof:  

1) b1∈l4, b2∈l5, b3∈l6. 

2) l4||r1, l5||r2, l6||r3; therefore, in a singular configuration, these lines define a plane 

parallel to the plane P0 and this plane is the tripod base plane, B0.     

3) Line l1 pierces P0 in point p1. It also pierces the plane B0 in point b1; therefore, line 

l1 lies in B0 if point p1 lies in B0. Because B0||P0 then p1∈B0 only if B0=P0.           

 

10.2.6 Linear Congruence singularities 

This section presents the singularities that stem from having five lines in one linear 

congruence.  

 

Elliptic congruence (4A): 

Four skew lines in space form three distinct reguli and a fifth line is linearly dependent 

with them if it belongs to one of these reguli. Elliptic congruence singularities are not possible 

in our case since there are no four lines in the same regulus (see case 3A). 

 

Hyperbolic congruence (4B): 

Four lines concurrent with two other skew lines form a hyperbolic congruence. Any 

fifth line concurrent with the same two skew lines is linearly dependent with the four lines.  
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A group of six lines contains six line quintuplets. These line quintuplets are (l1 l2 l3 l4 

l5), (l1 l2 l3 l4 l6), (l1 l2 l3 l5 l6), (l1 l2 l4 l5 l6), (l1 l3 l4 l5 l6), and (l2 l3 l4 l5 l6). We notice that all 

these groups contain two constant flat pencils of type F.  In a singular configuration all the 

lines in one of these groups are concurrent with two skew lines, la and lb. Since each group has 

two constant flat pencils of type F the line la is defined by the centers of these flat pencils. We 

notice that there are two distinct categories of line quintuplets; therefore, we define F1 and F2 

quintuplet categories as follows: 

F1={(l1 l2 l3 l4 l5), (l1 l2 l3 l4 l6), (l1 l2 l3 l5 l6)}.    

F2={(l1 l2 l4 l5 l6), (l1 l3 l4 l5 l6), (l2 l3 l4 l5 l6)}. 

Case 1 F1 line quintuplets:  

 Let (l1 l2 l3 l4 l5) be a category-representing line quintuplet. This line quintuplet 

contains the architecture constant flat pencils F14 and F25.  Two skew lines la and lb that 

intersect the lines l1, l2, l4, and l5 are defined such that la= 25
c

14
c FF  and line lb is the 

intersection line between the planes defined by these flat pencils, i.e., 25
p

14
p

b FF ∩=l . We look 

for a fifth line, l3, which intersects lines la and lb. The following proof presents a new singular 

configuration S10. 

Proof: 

1) 25
c

14
c

a FF=l , 25
p

14
p

b FF ∩=l . 

2) b1= 14
c F . b2= 25

c F ; therefore la∈B0.  

3) Line l3 rotates in the plane P3, i.e., l3∈P3. 

4) Let i1 be the piercing point of line lb with the plane P3, i.e., i1= lb∩P3. If line l3 

intersects la and passes through point i1, then a singular configuration of type 4B 

forms. In particular, if the intersection line lb lies in plane P3, then line l3 will 

always intersect it.   

5) b3∈B0 and la∈B0. There are two possibilities for line l3 to intersect la: in the first, 

line l3 does not lie in the tripod base plane, therefore, it intersects la only if point b3 

lies on la. In this case, a singular special complex forms; therefore, this case will be 

presented under the special complex singularities. The second possibility is l3∈B0, 

i.e., line l3 lies in the base plane; therefore, it intersects la.     

6) If l3∈B0 then singularity occurs if point i1 lies along line l3. Figure 10.16 presents 

this singular configuration. 
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Singular configuration S10: ln∈B0, n3k,k
p

3j,j
p 0BFF l∈∩∩ ++  

j, k, n = 1, 2, 3. j≠k≠n. 

 

Case 2 F2 category: 

Let (l1 l2 l4 l5 l6) be a category-representing group. Like in case 1, la and lb are defined 

such that 25
c

14
c

a FF=l , 25
p

14
p

b FF ∩=l . We define points i1 and i2 such that i1 is the 

intersection point of line l1 with 25
p F  and i2 the intersection point of l4 with 25

p F . 

Additionally, we define point i3 as the intersection point of lb with the base plane.  This case 

introduces new singular configuration S11. In this singular configuration lines l1, l2, l4, l5, and 

l6 are concurrent with two skew lines la and lb. 

Proof: 

1) b3∈B0 and line l6 passes through b3. 

2) In a singular configuration, line l6 intersects la.  

3) la∈B0 , therefore, excluding the case where b3∈la, in a singular configuration line l6 

lies in the tripod base plane.  

4) line lb is defined by points i1 and i2. 

5) if l6 passes through point i3, then all the five lines l1, l2, l4, l5, and l6 are concurrent 

with la and lb .  

Figure 10.17 presents singular configuration S11. 

b1 

b2 

b3 

l2 

l1 
l5 

l4 

B0 l6 

la 

lb l3 

i1 

Figure 10.16: Singular configuration S10. 

 .S10יה סינגולרית קונפיגורצ: 10.16איור 
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Singular configuration S11: ln∈B0, n3k,k
p

3j,j
p 0BFF l∈∩∩ ++ . 

(j, k, n)∈{(1, 2, 6), (2, 3, 4), (3, 1, 5)}.  

 

Parabolic congruence (4C):  

This case unifies all flat pencil singularities related with one or more flat pencils of the 

parabolic congruence, therefore, it does not add new singular configurations. 
 

Degenerate congruence (4D): 

The lines that dependent on the four generators of a degenerate congruence are the 

lines of a plane (3D) and the lines that pierce this plane in a common point. Accordingly, we 

have to inspect the case, in which there are two lines piercing in a common point the plane 

defined by the other three lines.  

A group of six lines has 20 line triplets. Table 10.2 lists all these line triplets and 

presents six groups of them, U1..U6. We consider all the cases in which these line triplets are 

coplanar and two other lines intersect their plane in a common point. 

b1 

i

b2 

b3 

l1 
l2 

l3 

l4 
l5 

l6 

pF25
i1 

i2 

i3 

Figure 10.17: Singular configuration S11. 
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Case 1 U1 line triplets: 

This category includes only one line triplet. The lines in the triplet (l1, l2, l3) are 

coplanar only when the moving platform lies in the tripod base plane. This was already 

proved in flat pencil singularities (2B) in case 1.1.  

Table 10.2: Complete listing of all 20 line-triplets and their separation into six groups. 
 .  שלישיות הקווים וחלוקתם לשש קבוצות20רישום כל : 10.2טבלה 

U1 = {(l1 l2 l3)} 

U2 = {(l1 l3 l5), (l2 l3 l4), (l1 l2  l6)} 

U3 = {(l1 l2 l4), (l1 l2  l5), (l1 l3 l5), (l1 l3 l6), (l2 l3 l5), (l2 l3 l6)} 

U4 ={(l1 l4 l5), (l1 l4 l6), (l2 l5 l6), (l3 l5 l6), (l3 l4 l6), (l2 l4 l5)} 

U5 = {(l1 l5 l6), (l2 l4 l6), (l3 l4 l5)} 

U6 ={(l4 l5 l6)} 

 

Case 2 U2 line triplets: 

Let (l1 l3 l5) be a category-representing triplet. We assume that lines (l1 l3 l5) are 

coplanar. Therefore, lines l1 and l3 define the flat pencil 13
p T . There are two cases to be 

considered. In the first, lines l4 and l6 intersect 13
p T  in a single point, and in the second, lines 

l2 and l6 intersect 13
p T  in one point.  

Case 2.1 lines l4 and l6 intersect 13
p T  in one point: 

13
p T  is defined by lines l1 and l3. Lines l4 and l6 pierce 13

p T  in points b1 and b3, 

respectively. Therefore, these lines intersect 13
p T  in one point only if b1=b3. This is the 

singular case S8. 

Case 2.2 lines l2 and l6 intersect 13
p T  in one point: 

This case also leads to singular configuration S8.  

Proof: 

1) Line l2 rotates in the plane P2, l2∈P2. 

2) The center of  T13 lies along the normal, 13
c T ∈n. 

3) b3 is the intersection point of line l6 with 13
p T , b3= l6∩ 13

p T . 

4) If line l2 and l6 intersect 13
p T  in one point, then this point must be b3. 

5) b3∈P3 and l2∈P2, therefore, line l2 may pass through b3 only if b3∈n. 
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6) If b3∈n then since lines l1 and l3 define flat pencil 13T  then b3= 13
c T . 

Therefore b1=b3∈ 13
p T  and this is singular configuration S8.  

 

Case 3 U3 line triplets: 

All the line triplets in this category include one flat pencil of type F. Let (l1 l2 l4) be a 

category-representing line triplet. Based on the proof in flat pencil singularity (2B) case 1.2, 

the lines in this line triplet are coplanar only if lines l1 and l2 lie in the moving platform plane, 

P0. In this case line l5 also lies in the moving platform plane, therefore this case leads to 

singular configuration S9 in Fig. 10.15.  

Case 4 U4 line triplets:  

We examine the line triplet (l1, l4, l5) as a category representing one. In flat pencil 

singularity analysis, case 2.2, we proved that the lines of this triplet are coplanar only if they 

lie in the moving platform plane, P0. In this case also line l2 lies in P0 since it is defined by 

point b2∈l5 and p2∈P0. Therefore, this is singular configuration S9 in Fig. 10.15.  

Case 5 U5 line triplets: 

This case leads to singular configuration S1. We already proved in flat pencil 

singularity analysis, case 3.2, that the lines in the category representing line triplet (l3, l4, l5) 

are coplanar only if the moving platform lies in the tripod base plane.  

Case 6 U6 line triplets:  

Based on flat pencil singularity analysis, case 3.3, the lines (l4, l5, l6) are coplanar if the 

moving platform and the tripod base plane are parallel. Two lines from the group (l1, l2, l3) 

intersect the tripod base plane in a common point only if two of the spherical joints coincide. 

This leads to a special case of singular configuration S8 in Fig. 10.12.   

 

10.2.7 Linear complex singularities  

A group of six lines degenerates from the space variety to the linear complex variety 

in two ways.  If all the six lines belong to a general spatial linear pentagon, then singularity of 

the general complex occurs. If all the six lines intersect one common line, then a singularity of 

the special complex occurs. 

Case 1 Six lines in a general complex (5A): 

Table 9.5 presents eight equivalent cases to the general complex. We note that all 

the line quintuplets include two architecture constant flat pencils. Therefore, the equivalent 

case in the table is the third case, i.e., case 5A-(3).  
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There are six line quintuplets in Γ={l1..l6}. All these line quintuplets include two 

architecture constant flat pencils. We define lines l7, l8, and l9 as the intersection lines of the 

flat pencils F14, F25, F36 with the base plane B0, respectively (Fig. 10.18). 

                                  0BF0BF0BF 36
p

925
p

814
p

7 ∩=∩=∩= lll  

Lines l7, l8, and l9 are linearly dependent with the flat pencil generators of F14, F25, 

F36 and, vise versa, lines l1, l2, and l3 are linearly dependent with the flat pencils generated 

by the line pairs (l4 l7), (l5 l8), and (l6 l9). Similarly, lines l4, l5 and l6 are linearly dependent 

with the flat pencils generated by the line pairs (l1 l7), (l2 l8), and (l3 l9).   

Based on theorem 1 of chapter 9 we prove that the condition for having all the six 

lines of Γ in one general complex is that lines l7, l8, and l9 intersect in one common point 

and belong to the same flat pencil. For convenience, we recall theorem 1 of chapter 9: 

Theorem 1: A general linear complex has a pencil of lines in every plane and a 

pencil of lines through every point in space. [Graustein, 1930].  

Based on this theorem every plane is associated with a flat pencil. Accordingly, the 

tripod base plane, B0, is associated with a flat pencil of lines residing in it. To demonstrate 

the proof we consider the general complex of lines generated by the two architectural flat 

pencils F14 and F25 and either line l3 or line l6. Lines l7 and l8 belong to this general complex 

because of their linear dependence with the generators of F14 and F25. Lines l7 and l8 lie in 

the base plane B0 and define a flat pencil of lines of the general complex. Therefore, if line 

l9 is not in this flat pencil then the flat pencils defined by (l3 l9) and (l6 l9) do not belong to 

b1 

b2 b3 

l1 
l2 l3 

l4 

l7 

l8 
l9 

l5 

l6 
B0 

Figure 10.18: The lines of Γ belong to the same general complex if and only if lines l7, 

l8, and l9 belong to a common flat pencil. 

 l7 ,l8 ,l9 אם ורק אם הקווים general complexת לאותו  שייכΓקבוצת הקווים : 10.18איור 

.  flat pencilשייכים לאותו 
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this general complex and the possibility of having all six lines of Γ in this general complex 

is ruled out.  

Consider the general complex defined by F14, F25 and line l3. If line l9 belongs to the 

flat pencil of lines l7 and l8 then the flat pencil (l3 l9) belongs to this general complex and it 

follows that line l6 also belongs to this general complex since it lies in the flat pencil (l3 l9). 

In a similar way line l3 belongs to the general complex defined by F14, F25 and line l6 only if 

line l9 belongs to the flat pencil of lines l7 and l8. 

When lines l7, l8, and l9 intersect in one point all the four planes 14
p F , 25

p F , 36
p F , 

and B0 intersect in a common point. Therefore, the condition for this singularity is: 

Singular configuration S12: 0BFFF 36
p

25
p

14
p ∩∩∩ ≠ ∅ 

We note that the condition for this singularity is easily expressed as the condition for 

having the four planes 14
p F , 25

p F , 36
p F , and B0 in one planar bundle, therefore, any one of 

these planes is linearly dependent on the other three planes. 

We resort to a simple case study to show that this singularity is possible even for 

configurations with points b1 ≠ b2 ≠ b3. This example is simple and it is solved using a 

geometric approach. The objective of this example is to answer the question whether this 

singularity is local or it is a full-cycle singularity. In local singularity we mean that in the 

singular configuration the general mobility of the mechanism is different than the full cycle 

mobility only in local neighborhood of the singular configuration. In local parallel 

singularity the moving platform performs undesirable infinitesimal motions relative to its 

singular position. Another objective of this simple example is to answer the question 

regarding possible methods for eliminating this singularity.     

 Consider the tripod in Fig. 10.19. This tripod has two fixed angles, β1 and β2, 

between links A1 and A2 and the tripod platform, respectively. It has also two rigid links, A1 

and A2, having the same length.  

b1 
b2 b3 

β2 
β1 

B0 

Figure 10.19: A simplified case study.  
 .  הדוגמה המפושטת: 10.19איור 

A2 A1 
A3 
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Imagine that we rotate the platform of the tripod together with links A1 and A2 about 

line b1b2 such that the angles β1 and β2 are kept constant. We start from a configuration in 

which lines l4 and l5 lie in B0 and we rotate the platform and links A1 and A2 about b1b2 as a 

rigid body until lines l1 and l2 lie in plane B0. In the initial configuration lines l7 and l8 are 

the same as lines l4 and l5, respectively Fig. 10.20. In the final configuration (i.e. line l1 and 

l2 lie in B0) lines l7 and l8 are the same as lines l1 and l2, respectively. This means that 

during the process of rotation the intersection lines l7 and l8 of planes 14
p F  and 25

p F with 

plane B0 lie in angular sectors as shown in Fig. 10.20. Performing the same operation in the 

opposite direction results in two other angular sectors of lines l7 and l8 . 

Because of the symmetry in this example every two homothetic lines in these 

angular sectors intersect along the normal bisector of b1b2. Also because of the symmetry of 

the equilateral platform this normal bisector is the intersection line of P3 with B0. Therefore 

if we keep the two links and the platform in a given position, we can alter the position of 

point b3 such that is copunctal with an intersection point of such two lines. In such 

configuration lines l7, l8, and l9 belong to one flat pencil with a center at b3. We note that any 

movement relative to this singular configuration changes lines l7 and l8 therefore this 

singularity is local.  

 

l7 = l4 
l8 = l5 

b1 b2 

b3 l6 

i1 

Figure 10.20: Top view of the initial configuration (a) and the sectors of lines l7 and l8 (b).

 .l8 (b) וקו  l7 והגזרות של קו (a)מבט על של הקונפיגורציה ההתחלתית : 10.20 איור 

b1 b2 

b3 B0 

B0 
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Case 2 Six lines in a special linear complex (5B): 

A group of six lines includes three permanent flat pencils of type F. All the lines in Γ 

intersect a common line if this line is the line of intersection of planes 14
p F , 25

p F , and 36
p F  or 

if points b1, b2, and b3 are collinear. Because of the geometry of the moving platform the 

planes 14
p F , 25

p F , and 36
p F  do not have a common intersection line. Therefore, the only 

possible singular configuration occurs when points b1, b2, and b3 are collinear, Fig. 10.21.  

 

Singular configuration S13: Ab1 + Bb2 + Cb3 = 0 

                                             A, B, C ∈ℜ . (A, B, C) ≠ (0, 0, 0) 

 

10.2.8 Concluding remarks  

The analysis of the parallel singularities led to 13 singular configurations. However, 

not all these singular configuration are independent. This is because the method of analysis 

increases the number of lines in a variety. Hence, some singular configurations are special 

cases of the others. Table 10.3 presents the independent singular configurations: 

Table 10.3: Summary of parallel singular configurations.  
 . סיכום מצבים סינגולריים מקביליים: 10.3טבלה 

Singular 

configuration  
Geometric description figure Dependency  

S1 
B0 = P0⇒ ln∈Tjk.  

j, k, n =1, 2, 3. j≠k≠n. 
10.4 Independent 

 

b1 

b2 

b3 

l1 

l4 

l5 

l6 

l3 
l2 

Figure 10.21: Singular configuration S13. 

 .S13קונפיגורציה סינגולרית : 10.21איור 
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S2 jk
p T = P0, bj = op⇒ ln∈ jkT  

(j, k, n)∈{(1, 2, 4), (2, 1, 5), (2, 3, 5), (3, 

2, 6), (3, 1, 6), (1, 3, 4)} 

10.5 Special case of S9 

S3 

b1=b2=b3. ri||pjpk ⇒ ln∈Tjk  

(j, k, n)∈{(1, 2, 6), (2, 3, 4), (3, 1, 5)}.  i, 

j, k=1,2,3. i≠j≠k 

10.6 Special case of S13

S4 

jk
p T =B0. ri||pjpk. bi = jk

c T ⇒ ln∈Tjk. (j, 

k, n)∈{(1, 2, 6), (2, 3, 4), (3, 1, 5)}. i, j, 

k=1,2,3. i≠j≠k. 

10.7 Special case of S12

S5 

First set: jk
p F = P0, bj+1∈P0 ⇒ ln∈Fjk. 

  (j, k, n)∈{(1, 4, 5), (2, 5, 6), (3, 6, 4)}. 

Second set: jk
p F = P0, bj-1∈P0 ⇒ ln∈Fjk. 

    (j, k, n)∈{(1, 4, 6), (2, 5, 4), (3, 6, 5)}. 

Note: index j follows a cyclic order such 

that for j = 3 ⇒ j+1 = 1 and for j = 

1 ⇒ j-1 = 3.  

10.8 

 

10.9 

Special case of S9 

S6, S7 B0||P0. ln∈Sjk. j, k, n = 4, 5, 6. j≠k≠n. 
10.10 

10.11 
Special case of S12

S8 bj = bk.  j,k=1,2,3. j≠k.   10.12 Special case of S13

S9 lj∈P0, lk∈P0. j, k = 1,2,3. j≠k. 10.15 Independent 

S10 
ln∈B0, n3k,k

p
3j,j

p 0BFF l∈∩∩ ++   

j, k, n = 1, 2, 3. j≠k≠n. 10.16 Special case of S12

S11 
ln∈B0, n3k,k

p
3j,j

p 0BFF l∈∩∩ ++ . 

(j, k, n)∈{(1, 2, 6), (2, 3, 4), (3, 1, 5)}. 
 10.17 Special case of S12

S12 0BFFF 36
p

25
p

14
p ∩∩∩ ≠ ∅  10.19 Independent 

S13 
Ab1 + Bb2 + Cb3 = 0 

A, B, C ∈ℜ .  (A, B, C) ≠ (0, 0, 0) 
10.21 Independent 
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We note that there are four independent singular configurations. One of the advantages 

of this tripod structure reflects in the fact that this architecture does not have the famous 

Hunt’s singularity, which was presented in [Fichter, 1986] and [Merlet, 1989].   

 

10.2.9 Design guidelines for minimizing parallel singularities 

A successful design of a parallel robot provides a minimal number of singular 

configurations inside the physical workspace of the robot. The term physical workspace refers 

to the resulting workspace of the robot when we take into account joint limits, collisions 

between moving parts, and only one assembly mode. In general, the design should not permit 

assembly mode transitions because each transition is associated with a singular configuration. 

These simple guidelines are of great importance when designing the class of parallel 

robots to which the USR and the RSPR robots belong. Table 10.4 presents all six independent 

singular configurations and the design guidelines, which prevent reaching these singular 

configurations.  

 

Table 10.4. Design guidelines for minimizing parallel singularities 
 . שיקולי תכן למינימיזציה של מספר המצבים הסינגולריים: 10.4טבלה 

Singular 

case 

Geometrical condition for preventing 

singularity. 

Suggested method for preventing 

singularity.  

S1 
Prevent the lines 1,2,3 from lying in 

the tripod base plane.  

Limit the spherical joint range, or 

limit the revolute joint range. 

S9 
Prevent lines i, j from simultaneously 

lying in the moving platform’s plane. 

i,j∈1,2,3.  

Limit the lengths of lines i, j and 

pick suitable paths for points bi, bj.  

S12 Prevent the planes 14
p F  25

p F 36
p F and 

B0 from intersecting in one point.  

Perform simulations to determine 

the required limits on βi in order to 

prevent this singular configuration.  

S13 Prevent points bi  from being 

collinear.  

Choose correct paths for points bi. 
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10.3 Analysis of serial singularities for the RSPR and USR robots  
All the robots listed in Fig. 5.14 share the same parallel singularities, but differ in 

terms of their serial singularities. This is because every robot architecture has a distinct 

instantaneous inverse kinematics matrix B. 

 

10.3.1 Serial singularities of the RSPR robot 

The instantaneous inverse kinematics matrix, B, of the RSPR robot is given by Eq.  

(7.21) and it is rewritten in Eq. (10.3). 

                                                    







=

2

1

Cn0
CnI

B                                                  (10.3) 

1Cn  and 2Cn are 3x3 diagonal matrices. The elements on the main diagonals of these 

matrices were given in Eq. (7.19). 

                                        ( ) bi
t

nii1i1 ˆˆCn lss ×=      i=1,2,3.                                       (10.4)           

                                        ( ) bi
t

nii2i2 ˆˆCn lss ×=     i=1,2,3.                                       (10.5)  

Where ŝ1i is the unit vector along the i’th tripod link Ai. ŝ2i is a unit vector through the center 

of the spherical joint of the i’th kinematic chain and parallel to the axis of the upper revolute 

joint  îr . lbi is the vector from the center of rotation of link Bi to the center of the i’th spherical 

joint. ŝni is a unit vector along the rotation axis of link Bi, see Fig. 7.3 and Fig. 7.4.  

It is obvious from inspecting the matrix B that it is singular whenever one of the 

scalars Cn2i is zero; Therefore, the condition for serial singularity of the RSPR robot is given 

by Eq. (10.6).  

                                     ( ) 0ˆˆCn bi
t

nii2i2 =×= lss      i=1,2,3                                 (10.6)  

Singularity of matrix B indicates serial singularity of one of the kinematic chains. This 

singularity is characterized by loss of a degree of freedom. The singularity of the matrix B is 

not sufficient to indicate singularity of the whole robot. This is because we must keep in mind 

that the singularity of B indicates singularity of one or more kinematic chains and we must 

verify that this singular configuration is allowed by the selected assembly mode. Therefore, 

the serial singularities must be given geometric interpretation in addition to the mathematical 

analysis.         

Rewriting Eq. (10.6) in the form of Eq. (10.7) indicates that it is satisfied in four cases. 

                    ( ) ( ) ( ) i2
t

binini
t

i2bibi
t

nii2i2 ˆˆˆˆˆˆCn slsssllss ×=×=×=            i=1, 2, 3.           (10.7) 
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The four cases are: 

Case a: ŝ2i lies in the plane of lbi and ŝni. 

Case b: ŝ2i || ŝni. 

Case c: lbi || ŝ2i. 

Case d: lbi || ŝni.  

Case d is not possible for the RSPR robot since ŝni is the rotation axis of lbi. Case a is 

the general case and it includes cases b and c. Cases a, b, and c are demonstrated in Fig. 

10.22.  

In case a, the actuator of rotating link can not apply force in the direction of ŝ2i. In case 

b, the actuators can not produce any motion of the kinematic chain extremity in a direction 

normal to the base platform. In case c, the prismatic actuator lies in a plane tangent to the 

circle of the rotating link and the two solutions of the inverse kinematics meet. In all these 

cases any force acting on the kinematic chain extremity in the direction of the upper revolute 

joint produces zero force/moment in the actuators.     

 
 
 

Figure 10.22: Serial singularities of the RSPR robot – cases a..c.   

 .a..c מקרים - RSPRסינגולריות טוריות של רובוט : 10.22איור 

(a) (b) 

ŝni 
ŝ2i 

ŝ1i 

lbi 

(c) 

ŝ2i||lbi 

ŝni 
lbi ŝ2i 

ŝ1i 
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10.3.2 Serial singularities of the USR robot 

The instantaneous inverse kinematics matrix B of the USR robot was given in Eq. 

(7.31) and it is rewritten in Eq. (10.8). 

                                                                
6622

11

rn
rn

×








=

CC
CC

B                                                            (10.8) 

Cn1, Cn2, Cr1, and Cr2 are 3 by 3 diagonal matrices given in Eq. (7.32) and Eq. (7.33) 

with the following elements on the main diagonal: 

                              ( ) bi
t

ni1i1i ˆˆCn lss ×=               ( ) bi
t

ni2i2i ˆˆCn lss ×=                            (10.9) 

                              ( ) bi
t

ri1i1i ˆˆCr lss ×=                ( ) bi
t

ri2i2i ˆˆCr lss ×=                            (10.10) 

Where ŝ1i is the unit vector along the i’th tripod link Ai. ŝ2i is a unit vector through the center 

of the spherical joint of the i’th kinematic chain and parallel to the axis of the upper revolute 

joint îr . lbi is the vector from the center of the universal joint to the center of the spherical 

joint of link Bi. ŝni, ŝri are unit vectors along the yaw/pitch axes of the universal joint of link 

Bi, see Fig. 7.3 and Fig. 7.5.  

The USR robot has a three-diagonal instantaneous inverse kinematics matrix, B, and it 

is singular whenever one of its rows/columns is zero, or when a pair of its rows/columns is 

proportional. In a similar way to the analysis of Eq. (10.7) of the RSPR robot we register all 

the cases in which one of the elements in Cn1, Cn2, Cr1, and Cr2 is zero. Each one of these 

cases, i.e., Cn1i=0, Cn2i=0, Cr1i=0, and Cr2i=0 is separated into four cases like the cases a..d of 

Cn2i=0 for the RSPR robot. The conditions for separately fulfilling Cn1i=0, Cn2i=0, Cr1i=0, 

and Cr2i=0 are registered in table 10.4.  

10.5: The cases in which Cn1i=0, Cn2i=0, Cr1i=0, Cr2i=0 are fulfilled separately. 

  .Cn1i=0, Cn2i=0, Cr1i=0, Cr2i=0המקרים בהם מתקיימים לחוד : 10.5טבלה 

Condition Cn1i=0 Cn2i=0 Cr1i=0 Cr2i=0 

a ŝ1i lies in the 

plane of lbi and ŝni

ŝ2i lies in the 

plane of lbi and ŝni

ŝ1i lies in the 

plane of lbi and ŝri 

ŝ2i lies in the 

plane of lbi and ŝri

b ŝ1i || ŝni. ŝ2i || ŝni. ŝ1i || ŝri. ŝ2i || ŝri. 

c lbi || ŝ1i. lbi || ŝ2i. lbi || ŝ1i. lbi || ŝ2i. 

d lbi || ŝni. lbi || ŝni. lbi || ŝri. lbi || ŝri. 
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To find serial singularities of the USR robot we inspect the intersection of the 

conditions in table 10.4 that lead to zeroing of a row or a column in B. We produce four 

Carnot maps to register all the cases in which a row or a column is zero. The four Carnot 

maps are shown in Fig. 10.23. Theoretically, there are 64 possible intersections in these 

tables, but we exclude the cases that do not fulfill the geometrical constraints. In these maps, 

the cells with dark background represent impossible configurations because of the geometry 

of the universal joint, Fig. 10.24, and because ŝ1i is perpendicular to ŝ2i. From this figure, it is 

clear that ŝni is perpendicular to ŝri and that ŝri is perpendicular to lbi. We inspect the cases for 

dependence and we find that there are only five independent configurations. These 

configurations are indicated in the maps by letters A..E. All the empty cells in these maps 

represent configurations that are dependent on configurations A..E.   

 

 

 

D 

a 

b 

c 

d 

a b c d 
Cn1i 

Cn2i 

A 

B 

a 

b 

c 

d 

a b c d 
Cn2i 

Cr2i 

a 

b 

c 

d 

a b c d 
Cr1i 

Cr2i 

E 

Figure 10.23: Carnot maps for registering the configurations in which B is singular. 

 .סינגולרית Bמפות קרנו לרישום הקונפיגורציות בהן מטריצה : 10.23איור 

a 

b 

c 

d 

Cr1i 

C 

a b c d 
Cn1i 
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The serial singularities of the USR robot in which a row or a column of the 

instantaneous matrix, B, is zero are: 

Configuration A: both ŝ1i and ŝ2i lie in the plane of ŝni and lbi, Fig. 10.25-(A).  

Configuration B: lbi || ŝni, i.e., the lower link is coincident with the yaw axis 

of the Hooke’s joint, Fig. 10.25-(B).  

Configuration C: ŝ1i coincides with lbi, Fig. 10.25-(C).  

Configuration D: ŝ2i coincides with lbi, Fig. 10.25-(D).  

Configuration E: both ŝ1i and ŝ2i lie in the plane of ŝri and lbi, Fig. 10.22-(E). 

In configurations A and B Cn1i=Cn2i=0 and the corresponding column out of columns 

1..3 in B is zero. In configurations E Cr1i=Cr2i=0 and the corresponding column out of 

columns 4..6 in B is zero. In configurations C the corresponding row out of rows 1..3 in B is 

zero. In configuration D Cr2i=Cn2i=0 and the corresponding row out of rows 4..6 in B is zero.  

In configuration D, the two branches of the solution to the inverse kinematics problem 

meet. In case B the lower rotating link coincides with the yaw axis of the active Hooke’s joint 

and the motor of this axis can not move the tip of this link. In cases A and E the forces of the 

upper rotating link produce zero moment in one of the axes of the Hooke’s joint. In case C the 

two links of the singular kinematic chain are collinear.   

 

Pitch axis ŝri 

lbi 

ŝ1i 

ŝ2i 

Base platform 

Universal joint 

Spherical joint 

Yaw axis ŝni 

Figure 10.24: The universal joint of the USR robot and its associated geometric constraints.
 . והמגבלות הגיאומטריות שלוUSRהמפרק האוניברסלי של רובוט : 10.24איור 

Link Bi 
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In addition to the serial singularities in Fig. 10.25 there is an additional singularity that 

occurs when two columns of B are proportional, Eq. (10.11).  

Configuration F:             

                                                  Cn1i Cr2i - Cr1i Cn2i = 0                                                (10.11) 

The condition in Eq. (10.11) is the general condition for singularity of one of the 

kinematic chains, therefore in includes all the singular configurations A..E in Fig. 10.25.  

 

10.4 Conclusions 
In this chapter, we analyzed the parallel singularities of the manipulators in Fig. 5.14. 

We found thirteen parallel singularities for all these manipulators out of which only four are 

independent.  We analyzed the serial singularities of the USR and the RSPR robots and we 

showed that the RSPR has less serial singularities than the USR robot. We formulated the 

conditions for the serial and parallel singularities. These conditions can be used for designing 

a robot without singularities.     

 

ŝni 

ŝri 

ŝ2i 

lbi 

ŝ1i 

ŝni 

ŝri 

ŝ2i 
ŝ1i 

lbi 

ŝri 

ŝni 

lbi 
ŝni 

ŝri 

ŝ1i 

lbi ŝ2i 

ŝni 

ŝri 
ŝ2i 

ŝ1i 

lbi 

(A) (B) (C) 

(D) (E) 

Figure 10.25: The five serial singularities of the USR robot. 

 . USRחמשת הקונפיגורציות הסינגולריות טורית עבור רובוט : 10.25איור 
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Chapter 11 

The RSPR Prototype Robot 
11.1 Introduction 

This chapter presents the experimental setup and the control method of the RSPR 

prototype robot that was built according to the characteristic dimensions of chapter 8. We will 

show that the prototype fulfills the objectives of the design task that were presented in chapter 

4. The technical drawings of the prototype are in a separate appendix to this work§. 

 

11.2 The RSPR prototype robot – design characteristics and specifications 
 The RSPR prototype robot is based on the selected robot in table 8.2. For convenience, 

the characteristic dimensions of this robot are re-listed in Table 11.1. Table 11.1 lists the 

height range of the prototype robot based on the kinematic model (without taking into account 

the additional parts below the base platform). The design of the robot included design of 

customized linear actuators to achieve the desired minimal length and stroke. To reduce the 

weight of the robot unnecessary material was removed by milling holes in the aluminum base 

platform. This resulted in 30% weight reduction in the weight of the base platform. Figure 

11.1 presents the RSPR prototype holding a medical tool for demonstration purposes. Figure 

11.2 presents a top view of the RSPR robot showing the details of the base platform. 

Table 11.1: Characteristic dimensions of the RSPR prototype. 

 . RSPRמידות אופייניות של רובוט אב הטיפוס מסוג : 11.1טבלה 

Eccentricity-e 20 mm 
Minimal actuator 

length-Lmin.  
144 mm 

Rotating link 

length- rb 
90 mm 

Minimal height 

(kinematic model) 
130.9 mm 

Radius of the 

moving platform - 

rp.  

50 mm 
Maximal height 

(kinematic model)   
201.2 mm 

 

   

§  Robotics Laboratory - Technion. 
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Figure 11.1: The RSPR prototype robot demonstrating surgical tool positioning. 

  .  מדגים מיקום כלי ניתוחיRSPRרובוט אב טיפוס : 11.1איור 
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Figure 11.2: Top view of the RSPR prototype robot showing weight reduction voids in the 

base platform.  

 . המראה את פלטפורמת הבסיס עם המגרעות להורדת משקלRSPRמבט על לרובוט : 11.2איור 
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11.3 Mechanical properties of the prototype 
 The prototype robot has the physical properties listed in table 11.2. To achieve 

maximal accuracy we use anti-backlash gearing for the linear actuators and high precision 

gears for the rotating links. We use low friction PTFE coated lead screws for the linear 

actuators to reduce the friction in the system. The backlash of the linear actuators limits the 

accuracy of the robot, but replacing the lead screws with preloaded ball screws can easily 

solve this problem.     

Table 11.2: Physical properties of the RSPR prototype 

 . RSPRתכונות פיסיקליות של רובוט אב טיפוס מסוג : 11.2טבלה 

Weight 3           [Kg] 

Physical dimensions of enveloping 

cylinder (diameter, height).  
250, 200 [mm] 

Maximal continuos torque of the rotating 

links at the gear output  
0.5         [Nm] 

Maximal force of linear actuators in 

continuos operation 
220         [N] 

Resolution of the optical encoders.  500         [encoder counts/revolution] 

Resolution of the linear actuators 0.0015    [mm/encoder count] 

Resolution of the rotating links 0.005      [degree/encoder count] 

Linear actuator backlash 0.08-0.2 [mm] 

Rotating links backlash 20’’         

 

11.4 Experimental setup 
 The motion of the prototype robot is controlled in a Master-Slave mode. Our 

experimental system includes the computer control program in its core, a 12 bit 8 channel 

digital to analogue D/A converter, input output I/O card, six power amplifiers, the power 

supply unit, and the robot, Fig. 11.3. 

The computer program reads the desired position/orientation of the moving platform 

as an input signal initiated by the user (the Master). The control program calculates the 

positional error and uses a PID control algorithm to compute the control signal, which is in 

turn converted by the D/A card to an analogue signal. This analogue signal is feeded to the 

power amplifiers and translated into a PWM signal for the DC motors M1 .. M6 .  
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The control program also checks the inverse kinematics solution and determines 

whether an actuation limit has been reached. Additionally, the program prevents collision 

between the linear actuators and the centrally located motors. This is achieved by computing 

the piercing points of the linear actuator axes with an imaginary plane that is perpendicular to 

the motors and defined by the upper extremities of the three central motors, Fig. 11.4. We 

define an imaginary safety circle that lies in this plane. This imaginary circle has a radius 

larger than the actual radius of the cylinder that envelops the three central motors. If the 

piercing point of a linear actuator axis lies inside this imaginary circle this means that the 

linear actuator collides with the upper extremity of one of the three centrally located motors. 

This approximation is appropriate because the linear actuators retain an inclination towards 

the centrally located motors and the inclination angle of the actuators does not reach high 

values. Therefore, this method is a sufficient and a fast method for solving the collision 

problem. We determined the required imaginary radius experimentally by manipulating the 

robot in many positions that bring the linear actuators into collision with one of the centrally 

located motors and we registered the upper limit of the result of the imaginary circle. 

  

Figure 11.3: A block diagram of the robot’s control units. 
 .   דיאגרמת בלוקים של יחידות  בקרת הרובוט :11.3איור 

D/A card Power 
amplifiers

I/O card Encoder data lines 

Motor power lines Power 
Supply 

unit 

Master unit 
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11.5 Future work and experimentation  
The prototype robot will be tested in the future in medical tasks such as 

manipulating a laparoscope and an orthroscope in Orthroscopic knee surgery. To achieve this 

goal we need a convenient means to translate the commands of the surgeon to the robotic 

assistant. One possible method for manipulating the robot is by integrating a six degrees of 

freedom hand controller that enables easy scaling of the motions performed by the surgeon. 

The prototype also has not been exactly calibrated and in final stages of experimental setup 

we need exact calibration of the robot. Additional work should be invested in designing an 

extension mechanism that holds the tool. 

 

11.6 Conclusion  
The RSPR prototype was successfully designed, constructed, and controlled to meet 

the design goals. The final dimensions and weight of the robot promise good portability, 

which is an advantage in the operating room. The accuracy of the robot exceeds the accuracy 

Rotating link 

Imaginary safety circle 
Imaginary plane 

Linear actuator 

Central motors 

Piercing 
point 

Figure 11.4: The imaginary circle for collision detection between the linear actuators and 

the centrally mounted motors. 
המעגל הדמיוני המשמש לבדיקת התנגשות המפעילים הליניאריים עם המנועים : 11.4איור 

 .במרכז

Base platform 
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achieved by manual manipulation of surgical tools. This points out the potential embedded in 

this robot for medical applications.       
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Chapter 12 

Conclusions 
 

12.1 perspective overview of the work 
This work incorporated two new fields of research: the field of robotic assisted 

surgery, and the subject of parallel manipulation. The requirements of a robotic assistant were 

formulated according to evaluations of the required workspace for laparoscopic surgery. 

Based on these requirements we sought the best robotic architecture for our design task. We 

first compared the serial architecture with the parallel one and based on the architecture-

inherent characteristics of both architectures we concluded that the parallel architecture better 

suits the requirements of a medical robot. Then we searched for new parallel manipulators 

that fit the task. The synthesis process led to a family of 14 distinct parallel robots, with 

common kinematic features. Based on design guidelines we chose two possible candidate 

robots, the USR and the RSPR robots, for dimensional synthesis. The dimensional synthesis 

phase included scanning a vast array of manipulators with different characteristic dimensions 

and resulted in 22 possible RSPR robots and 95 admissible USR robots. Although the 

dimensions of the USR admissible robots were smaller than for the RSPR robots, we chose 

the RSPR robot because of two reasons. The first reason was that the RSPR robot requires 

less actuator effort. The second reason was based on design guidelines regarding mechanical 

simplicity and feasibility. Another important advantage of the RSPR robot over the USR 

robot was revealed in the phase of singularity analysis.  

The dimensional synthesis simulations were based on the inverse kinematics solutions 

and the static Jacobian formulations for the USR and the RSPR robots. The aforementioned 

family of 14 manipulators was shown to have a common Jacobian matrix formulation with the 

same instantaneous direct kinematics matrix. This matrix was shown to be determined solely 

by the common tripod mechanism.  

The line-based formulation of the tripod mechanism Jacobian allowed the analysis of 

the uncertainty configurations (parallel singularities) of all the 14 manipulators using line 

geometry method. The analysis of parallel singularities of this family of manipulators showed 

that these manipulators have 13 parallel singularities of which only 6 are independent and 

general. The use of line-based singularity analysis provided the geometrical insight, which 

allowed deducing design guidelines for minimizing the parallel singularities of these 

manipulators by altering the design variables.       
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The analysis of serial singularities of the RSPR and the USR robots showed that the 

RSPR robot has less serial singularities than the USR robot.  

The design phase of a medical robotic assistant was based on the results of the 

dimensional synthesis of the RSPR robot. Based on actuator size and spherical joint limits we 

built a compact RSPR parallel robot prototype (over all weight less than 3 kg) which allows 

good portability in the surgery room.  

After the prototype was successfully designed and constructed, we wrote a control 

program that allows activating it in a Master-Slave mode. The mechanical and architectural 

characteristics of the prototype indicate that this prototype is more accurate than a human 

hand. These features of the parallel robot prototype highlight its embedded potential for 

implementation in Laparoscopic and certain Orthroscopic surgeries.   

 

12.2 Future work 
The RSPR parallel robot prototype is currently an efficient tool, but it needs future 

adaptations before entering the experimental phase. Before commencing with surgical 

experiments, an exact calibration of the robot must be performed and an efficient interface 

and hand controller is necessary. The development of an efficient hand controller or an 

alternative solution for conveying the commands of the surgeon to the robot is a key 

prerequisite for ensuring the success of the medical robotic assistant. For surgical procedures 

incorporating tactile tasks, an efficient force-feedback system must be designed in order to 

convey information to the surgeon regarding the tactile forces exerted by the robot on the 

patient’s body.      
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Abstract

This paper describes the structure of three ~pes of

parallel robots and compares their performances in the
sense of size and static forces. The motivation for this

investigation is to construct a robot that best ~ts a given
medical application. The requirements are to cover a

given work volume with a given orientation and to
maintain the robot within the smallest cube possible.

Among the structures examined, three are presented since

two are modi~cations of known stmctures and the third is

a new one.

1 Introduction

The exponential growth of publimtion on parallel
robots in the last five years points to the potential
embedded in this structure that has not yet been ftdly
exploited. A survey of papers whose title includes the
word robots, reveals that the number of papers dealing in
particular with parallel structure has gone up fkom 170 in
1985 to 9’%. in 1996. This clearly indicates the trend of
the research in the field. A iy-pical example is the
manufacturing area. The r~ntly introduced parallel

structured machine tools by Ingersoll-Rand [7] and

Giddings-Lewis [11] opens the door for much research on
the application of parallel robots in manufacturing as

appears for example in the 1997 CIRP Annals.
Numerous investigation were aimed at new structures

of parallel robots. We refer the reader to Merlet’s
comprehensive study where he collected and grouped
dMerent parallel structures by their Degrees Of Freedom

(DOF’) (see Merlet - web page [9]). In the six DOF
sectio% different structures are grouped by their types of

joints e.g. RRPS, RRRS, etc. (where R stands for
Revolute, P for Prismatic ~d S for Spherical joint). The

ones not falling within these categories are collected
under the title of “ro&sts with various kinematic chains”.

Some structures use flexible members thus reducing
their mechanical complexity by saving joints (e.g. [6,10]).
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The three structures presented here are not included in
the above mentioned list. Two structures are
motilcations of the USR and RSPR robots (where U

stands for a Universal joint), and the third is a new
structure which utilizes double planar robots. The idea of

this structure stems from Merkle’s [8] and Daniali’s [5]
works.

The structures of the new parallel robots are presented
next. In Section 3 the Jacobian matrices of the three
presented robots are derived. These matrices were used to

derive the static forces and examine singulti~. Section 4
presents simulation results from which
dimensions and actuating forces of each robot
needed to achice the given task are derived.

2 Kinematic structure of the robots

minimal
structure

In this seetion the kinematic structures of the three
suggested robots are given. The kinematic chains are
described by abbreviations of the joint types, starting from
the base platform and ending at the moving platform. All
letters denoting joint types are encircled and shown in
figures corresponding to each robot.
2.3).

2.1 USR robot

The USR rolxt consists of three

(see Figs. 2.1, 2.2,

identical kinematic’
chains connecting the base and the moving platform, each
one has two links. One link is connected to the base
platform by a U joint, the other link is connected to the
moving platform by an R join~ and the two links are
conneeted in between by an S joint. The lower link of

each kinematic chain is oriented in space by a differential
drive, controlling its yaw and pitch angles relative to the
base platform.(Fig. 2.1)

This structure is a variation of the structure described

by Cleary [4] which uses URS joint cobmination for each



kinematical chain, controlling the pitch and roll of the
lower links. The structure we e.xarnined has, however, a
reverse order of joints - a revolute joint comecting the
links to the moving plaifosm, and a spherical joint
between tie links. This moMlcation prevents collision
behveen links.

Moving Platfor

A

H

w

Stationary Base ~
,1

Figure 2.1: USR parallel robot

2.2 RSPR robot

This structure consists of three identical kinematic
chains connecting the base and the moving platform.
Each chain contains a lower link rotating around a pivot
perpendicular to the base platform , and is offset placed
from the center of the base. At the other end of the lower
link a prismatic actuator is attached by a spherical joint.
The upper end of the prismatic actuator is connected to
the moving platform by a revohlte joint. The revolute
joints axes constitute an equilateral triangle in the plane

of the moving platform (see Fig. 2.2).
This structure is distinguished by the location of the

lower link revolute axes being placed offset from the

center of the base platiorm. Comparison between RSPR

structure and the structure suggested by Alizade [1]
which uses RILE%kinematic chains, shows that due to the
different order of joints, RSPR robot overcomes certain

singularities (90° rotation about a vertical axis) that exist
in RRPS arrangemen~ and reduces actuator forces as will

be shown in section 4. On the other hand it should be
noticed that the work volume of the RRPS is larger. Using
the swept volume anaIysis [12] reveals that when
eccentricity is eliminated in RSPR robot then both RSPR
and RRPS have the same swept volume of the kinematic
chains’ upper extremities. Since RSPR robot has an R
joint at the end of each kinematic chain, which imposes
additional prependics.darity constrains, it results in a

smaller vertex space and work volume than RRPS robot.
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Base , ,.

Fsgure2.2 RSPR parallel rokot

2.3 Double circular-triangular robot

This new structure is composedof hvo 3 DOF planar

mechanisms. The= planar mechanisms are different from
the planar” mechanism suggested by Daniali [5] since they

use a circular-tiangular combination rather than
triangular- trian=@sr one, thus providing much higher

orientation capability (theoretically unlimited). The robot
(shown in Fig. 2.3) has two similar planar mechanisms
each one consists of a stationary circle and a moving
triangle which is comected to the circle by three passive
sliders pivoted on axes. The active joints actuate the
location of these three pivot a..es along the circumference
of the stationary circle.-
Passive ~. End effecter

%

Slider ~
. Bo

Active ~ivot
Slider

a

Triangular
Frames

H

Figure 2.3: Double circle-triangle robot

Two sets of this structure are used to construct a six-
DOF robot. Each structure contributes three-DOF,
namely, moves the triangle in a plane and rotates the

triangle about an axis normal to this plane. With two such
sets, a line connecting the triangle’s centers is actuated in
four-DOF. The output link is located along this line and

the additional rwo-DOFs are obtained by controlling the



rotatioml motion of the moveable triangles. Each
triangle’s center contains a I-Jjoint and is connected to the
output link at one triangle’s center through a prismatic
joint and at the other through a helical joint (nut and a
lead screw). Rotational motion of the output link about
the line connecting the centers is achieved by rotating the
first movable triangle (the prismatic joint) while motion
along the line is achieved by rotating both triangles at
diiYerent angles. Unlike the planar mechanism suggested
by Daniali [5], which allows ~ximum 60° rotation, the
planar circle-triangle based mechanism allows fidl
rotation and therefore practical use of the lead screw.

3 Robot performances

In the present research we aim at designing a robot for
accurate remote maniptiation of a Iaparoscopic laser
dissection tool. Laparoscopic surgery has gained
increasing popularity in recent years ad many operative
procedures are nowadays performed by this minimally
invasive approach, requiring fine dexterity and accurate
micro surgical technique. Utilizing laser for cutting
operations is a highly demanding task since it requires
the surgeon to manipulate the bu~ apparatus of
laparoscope, camem and laser guiding system in a
constrained environment with high accuracy.
Manipulating the laparoscope with an accurate robotic
manipulator controlled remotely by the surgeon is
therefore, an attractive approach. A parallel robot
structure better fits these medical requirements. This
robot structure is much more compact then the commonly
used serial one, more rigid and accurate and its inherent
limitation of small work volume is an advantage in
medical applications where the required motion is small
and stiely is of utmost importance.

We examined the different parallel robots
performances from several aspects: the ability to access a
given work volume with a given onentatio~ the required
forces/torques at the active joints and limitations due to
singularities and spherical joints mechanical limitation.
To check for robot’s work volume we used the trivial
inverse kinematics solution, We avoid the singularity
where the Plucker coordinates of the lines stemming from
the Jacobian matrices are four in a plane and hence
dependent. This is the only singularity observed in the
neighborhood of the work volume we examined (For a
detailed singularity analysis of a series of parallel robots
using line geome~, see [2]). For the static forces/torques
analysis we used the Jacobiw matrices the derivation of

which are given below.

The Jacobian matrix transforms forces exerted by the

moving platform into active joint’s forces/torques.
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For parallel rotxxs the equation :

7= JT15e (1)

determines the relation behveen the actuators gene~ized

forces 6X1 vector, z, and the external wrench, se, exerted

by the moving platform on the environment. This
equation is used next to determine the Jacobian matrices
of the three structures.

For both USR and RSPR robots the upper part is

identical, therefor we derive Jacobian matrix ~ of this
common part.

Fig. 3.1 shows only one kinematic chain out of
identical three. The moving platform is comected to a

link Ai via a revolute joint. The moving platform exerts

a wrench se on the environment, the lower end of the

link is connected to another link Bi by a spherical joint.
Moving Revolute

platform

‘e

Join t

~/

Figure 3.1: Common part of USR and

RSPR robot structures

We will use the following symbols in our discussion:
● A> - unit vector.

3U - unit vector along link .4i.

F - unit vector along revolute joint ~xis.

;zj - tit vector parallel to ; passing through the .

~herical joint S.

R - rotation matrix from the moving platform to world
coordinate system.

Pi - vector from moving platform’s center to ‘i’th

revolute joint.

Since Link Ai is comected to link Bi by a spherical

joint and to the movingplatform by a revolutejoint, it is
capable of exerting force in the direction of ~liand

rnornenl in the direction of F x i IIon the moving

platform. Link Bi can exert on link Ai forces of

magnitudeFti in the direction of 3 li and F2i in the

direction of ~li .



After some algebraic manipulation one obtains :

~=[pll, P12, p13tP21, p22,P~]T ‘=1.2,3 (2)

where p li and p Zi are 6X1 plucker coordinates of lines

3Ii and ii2i, respectively, mitten relative to point ‘o’

and represented in world coordinates by:

3.1 Jacobian matrix of USR robot

Let Tni and Tq be scalar qwntities representing the

magnitudes of the moments applied by the active U joint

on link Bi along :ni , iri respectively (see Fig. 2. 1),
.A

where sni , sri are unit vectors along the rotation axes

of the U joint. Let Ibi denote a vector representing the

lower link B, from the U to the S joint.

Static equilibrium at point U yields:

‘ni = (]bi x (F1i~li + ‘2i~2i ))” Sni i = 1,2,3 (4.1)

‘ri = (]bi x (Fli$li + ‘2i~2i ))-~ri i = 1,2,3 (4.2)

Using Eqs. (l),(2) one obtains:

[1‘Ii = ~T-lse
‘F2i

i = 12,3 (5)

Define’ vi as a 1 x 6 vector having 1 at the i’th

column and zeroes othenvise, then:
-1

Fti = VijT Se i = 1,2,3 (6.1)

-T-l
F2i = Vi+3J se i = 1,2,3 (6.2)

Substituting in Eqs. (4. 1),(4.2) yields:

i.~~

after some algebraic manipulation one obtains:

[1Tq

T+ =
and the inverse transpose of the Jacobian matrix of the

USR robot is given by-the matix in the right hand side.
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3.2 Jacobian matrix of RSPR robot

Since the upper part of this robot is identical to the
previous one, Eq. (6) is used and substituted in the
expression of the moments at the lower link.

The moments at the lower rotating links are:

Tni = (’lbi x (F1i31i + F2i~2i )).ini [a),,
‘ i“= 12,3 {~)

Following the same steps as for the USR robot one
obtains the inverse transpose of the Jacobian matrix, on
the right hand side of the following equation:

F:l=~(i,ix,ti).,bi”,::,ti).,,ivi+3]3r’] ‘e “0)

i = 1J,3

3.3 Jacobian matrix of the double
circular-triangular robot

This robot has two similar planar mechanisms at its
upper and lower parts hence it is usefid to derive the
Jacobian matrix for the planar robot and utiiize this
matrix to derive the Jacobian matrix of the spatkd robot.

Moving

itz

*

ft
Ot tl

$’r2 ~2 p
ic

0= t

(
it3

Stationw ~9

circular -
fkame
Figure 3.2: Planar circular-triangular robot

The following additional symbols will be used in this
section:

~ - Jacobian matrix of the planar robot.
oc, ot - center points of the base circle and the moving

triangle respectively.
p 1- position vector from of tO 0=.

ii- active sliders position vectors i = 1,2,3.

se - external force and torque exerted by the robot on the

environment.
ff - force applied by the planar robot in the plane of the

moving triangle.
~ - magnitude of torque applied by the planar robot,
perpendicular to the moving triangle.



O

]R
I - rotation matrix, transforming vectors from i to j

coordinate system.

gj - ~ction which relates between input moment and

the output moment of the U joint ( ~n = gj *TOW ).

1- screw lead with a right handed helix.
q- effciency of lead screw.

From static equilibrium the Jacobian matrix of the
planar robot is obtained as:

The relation between actuator forces and exerted

forces/moments by the moving triangle y~, ~ is given by:

Zo /’

i
se

~e
Xe

A 2!!!‘P

io ‘P
h

‘h
IS

‘b

For the spatial robot we will use indices p and b to
refer to the upper and the lower planar robots.

First we decompose the exerted forceltorque in end
effecters coordinate system (see Fig. 2.3). From static

equilibrium for the lead screw oneobtains:
rp = M~e rb = M~e

r~s~~~~l;Mb=rf(’~z~~~l(13)

Mp. O’ (~) O-X 0’0

[1

f.
t

(12)

Figure 3.3: Parameters of lead screw

Where rP and rb are forces applied by the upper and

lower planar robots on the screw, written in end effecter
attached system.

Using Eqs. (12-14) one obtains:
133
7

where matrices N ~ and ~b are given by Eq. (15), and

vector vl is a 16 row vector with 1 at the i’th Colum

and zeroesothemise.

Defining generalized

;~b=

VlOReMb

v20ReM~ (15)

F>O>*>
forces as [rP, r~ ]r we find the

4 Simulation goal and results

1

inverse transpose of the Jacobian matrix, given in the
right hand side of the following equation:

jpT-lN
I 1-[J%p_

P se (16)
L‘b ~bT-lNb

The goal of this investigation was to design a robot
that can manipulate surgical tools within a given work
volume, with a given force and accuracy, to minimize its
size and to obtain a robot which can be realized from
design point of xiew.

The desired work volume is a 40x40x20 MM cube.
The robot has to reach all points within this cube with an
orientation of up to 20°. The robot should fit into a cube
smaller than 200x200X200 mm.

All simulations use the inverse kinematic solution of
each structure to check for accesibili~ while different
robot dimensions, such as: base radius, moving platform
radius and initial heigh~ were examined. The simulations
e.xluded robots which contain singular points within the
desired work volume, and robots. which exceed the
limitation of 30° spherical joint inclination angle.

The dimensions of the smallest robot of each structure
are shown in table 4.1. All dimensions are in millimeters
and correspond to figures at section 2. Smaller robots
were also fou.n~ but design considerations such as joint
and motor sizes and mechanical feasibility e.xluded them
from the final list.

In initial position the platforms are parallel at a
distance H, and the center of the moving platform
coincides with the center of the workspace cube.

Forces for each robot were computed along a diagonal
linear path from the lower comer of the workspace cube,
(pint [-20,-20,-10]) to the upper comer of the cube (point
[20,20, 10]), while keeping the moving platform with an
orientation of 20° rotation about [1,1,1] axis.
1



The results are shown in Figs. 4.1 to 4.4, The external

wrench applied by the robots is se= [7,7,7 N ,0.7,0 .7,0.7

Nm]. 4
I Table 4.1 I
I USR I RSPR I Double nlanar I.

RII I 30 RI.I ‘1 50 Rb, RD!199.138
AZ 130 Rb I 90 Lb~p 1460.320
H 80 H 160 H 60
L1 60 AX 20 Lead 25
L2 80 —- — Bo 50

Fig. 4.4 shows a comu~son ~tween RSPR and
RRPS-robot [1] with MpR ~aving zero eccentricity. This
,figure with Fig. 4.2 shows that placingtheRjoints on the

moving platform reqtir~ less torques at the active R
joints (about 37%) while the linear actuator forces in both
robots are almost the same.

1 USR Actuator Moments
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Figs. 4.5 to 4.7 show models of each robot (The USR
robot in this figure is in a singular position as one of the

links is coplanar with the moving platform).
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5 Conclusions

The goal of this investigation was to construct a robot
that best fi~ a @en medical application. bong several
structures that were investigated three parallel robots are
presented. The Double circular-tianguh.r Robot is a
novel structure with a considerably different structure
than the GouglL Stewart platform. The RSPR robot is a
variation of a known structure with a different location
and order of joints that reduces required actuator forces
and reduces singular positions. By changing the order of
the joints the USR robot enhances the performances of a
known structure

Jacobian matrices of all three robots were derived.

Simulation resul~ compare the three structures from
desired work voh.rne and active joints forces/torques
points of view.

Among the three presented robots, the RSPR robot

best fits the required task. This robot has the simplest
design and the largest work volume. The USR robot has

2



one practical limitation at the spherical joints because of

large inclination angles and the use of differential drive.

The Double-Planar robot exceeds the task limitations with

its enveloping volume and requires large actuator forces.

‘\.\ Figure 4.5: USR robot
./;

“1.-
../”””’

‘——- “-

‘=.
‘\,

,)
Figure 4.6 : RSPR robot

.

Figure 4.8: Double circular-triangular robot
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