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Abstract

Parallel manipulation is relatively a new field in robotics. The development in this
field intensified during the last two decades; however, there are still unsolved problems to be
investigated in this field. These problems include kinematic modeling and synthesis of new
parallel architectures and singularity analysis. The solution of the forward kinematics of a
general 6 DOF fully parallel manipulator is only three years old and the first example of a
general 6 DOF fully parallel manipulator with 40 real solutions is only one year old. Although
during the last decade there were many attempts for implementation of parallel robots, the full
merits of these architectures were not fully understood and exploited.

Robot assisted surgery is also a new trend of development in surgery. Assimilating a
robotic assistant in the surgical arena as an additional smart and precise tool bears numerous
advantages. These advantages include broadening the capabilities of the surgeon in
performing precise procedures and uplifting the burden of routine tasks. The intrinsic
characteristics of parallel robots are discussed in this work and shown to suit the requirements
of a robotic assistant better than the characteristics of serial robots.

Based on these facts, we aim our work towards developing a mini parallel robot for
medical applications and exploring new parallel architectures. The work presents a task-
oriented synthesis and design of a mini parallel robot for medical applications. Two robotic
architectures (the RSPR and the USR robots), which are modifications of known structures,
are presented in detail and compared in terms of required actuator forces, minimal
dimensions, workspace, and practical design considerations. The work includes type and
dimensional synthesis for the suggested architectures, Jacobian formulation, and singularity
analysis for a class of non-fully parallels robots.

The Jacobian formulation presented in this work provides a method for classifying the
non-fully parallel robots and grouping several architectures in families with common Jacobian
formulation and singularity analysis. In particular, the formulation presented here groups 14
non-fully parallel robots into one family. This formulation also shows that all these 14
manipulators share the same parallel singularities due to a tripod mechanism common to all
these manipulators. The singularity analysis and Jacobian formulation are based on
geometrical understanding of the system, thus, providing easy method for physical
interpretation of singularities and deducing conclusions regarding possible elimination of

singularities by altering the geometrical characteristics of the robots.
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The comparison between the USR and the RSPR robots shows that the RSPR robot
better suits the procedure in hand than the USR robot in terms of smaller required actuator
forces. The singularity analysis highlights an additional advantage of the RSPR over the USR
robot in terms of having less singular configurations.

Based on the results of the comparison and the dimensional synthesis we constructed a
prototype of a medical robotic assistant. We also implemented position control and wrote the
control program that allows activating the prototype in a Master-Slave mode. This prototype
features a new parallel architecture based on the RSPR concept, low weight, compactness,
and accuracy. These characteristics promise successful future implementation of this

prototype for laparoscope manipulation and knee surgery.



List of Symbols

Font setting

Throughout the entire work, we use small bold letter font setting for vectors, capital

bold letters for matrices, and capital or small letters for scalars.

General symbols

PPi:

Epi:

€.

Epi:

An index indicating a specific kinematic chain, i =1, 2, 3.

Center point of the moving platform.

Radius of the moving platform.

Position vector of the center of the moving platform.

Position vector of the upper extremity of the i’th kinematic chain.

Position vector of the upper extremity of the i’th kinematic chain in the central
platform-attached coordinate system.

An angle measured from the x-axis of the central platform-attached coordinate system,
Xp, to ppiaccording to the right-hand rule about z,,.

Position vector of the lower extremity of the 1’th kinematic chain.

The eccentricity measure (equal to the Euclidean norm of e;).

An angle measured from the x-axis of the world coordinate system, X, to e; according
to the right-hand rule about z.

Position vector of the spherical joint of the i’th kinematic chain.

A unit vector normal to the moving platform.

A unit vector along the axis of the upper revolute joint in the 1’th kinematic chain.

A vector specifying the height of the 1’th kinematic chain upper extremity relative to

the base plane.

: Rotation matrix transforming vectors from the central platform-attached coordinate

system to world coordinate system.

: Rotation matrix form the C; coordinate system to the central platform-attached

coordinate system.
A vector from the i’th joint located on the base platform to the spherical joint of the

1’th kinematic chain.
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Six-dimensional vector of the position and orientation variables of the output link.
Six-dimensional vector of the linear/angular velocities of the output link.
Six-dimensional vector of the active joints values.

Six-dimensional vector of the active joints’ speeds.

The link of the i’th kinematic chain, which is connected to the moving platform.
The link of the i’th kinematic chain, which is connected to the base platform and to
link A,.

A unit vector along link A;.

A vector from the spherical joint center to the upper extremity of the i’th
kinematic chain along link A;.

A unit vector through the center of the spherical joint of the i’th kinematic

chain and parallel to the axis of the upper revolute joint T; .

The magnitude of the force transmitted along link A;.

The magnitude of force acting on the tripod link, A;, along §,;.

Three-dimensional vector of the force intensities fj;.

Three-dimensional vector of the force intensities f;.

The resultant external force applied by the moving platform on its environment.
The resultant external moment applied by the moving platform on its environment.
Six-dimensional vector of the external wrench applied by the moving platform

on its environment.

Six-dimensional vector of the active joints’ force/torque intensities.

Instantaneous direct kinematics matrix.

Instantaneous inverse kinematics matrix.

Jacobian matrix of the tripod mechanism.

Jacobian matrix of the serial chains.

Jacobian matrix of a complete manipulator.

A unit vector along the yaw rotation axis of link B;.

A unit vector along the pitch rotation axis of link B;.
Torque intensity of the yaw actuators.

Torque intensity of the pitch actuators.

Initial height parameter.

The plane defined by the normal, n, and point p;, i=1,2,3.
The plane defined by points p;, i=1,2,3.



BO:
(I, m):
Pik:

Note:

The tripod base plane, which is defined by points by, i=1,2,3.

Mutual moment operator defined in Eq. 9.12.

Plucker ray coordinate of a line. j, ke {(4, 1), (4, 2), (4, 3), (2, 3), (3, 1), (1, 2)}, Eq.
(9.4).

A flat pencil generated by lines I and L. k, je {1,2,3,4,5,6}, k=#j.

A flat pencil generated by lines I; and I, that belongs to category of flat pencils X.

: The plane defined by a flat pencil Xj.

.- The center point of flat pencil Xiy.

The line defined by points p; and py.

A line of the Jacobian, J , of the tripod mechanism. j = 1..6.

The complete group of Jacobian lines. I' = {1, I, I3, 14, Is, I¢}.
The group of Jacobian lines other than the Jacobian lines I; and 1.

Ci= {la: Lhel, n#j, n#k}.

All the vectors, unless otherwise noted, are expressed in world coordinate system and

treated as column vectors.

Symbols used for the RSPR robot only

I'p:

The length of the rotating links.

The angle between the normal, n, and the normal to the base plane.

The line of intersection between the plane P; and the base plane.

The plane in which the i’th extensible link rotates about the revolute joint, T
The rotation the i’th rotating link.

The length of the i’th extensible link.

Symbols used for the USR robot only

(04N

Bi:
lili

The yaw angle of the lower rotating link, B;.
The pitch angle of the lower rotating link, B;

A vector pointing from the center of the active Hook’s joint to the center of the

spherical joint.



lip: A vector pointing from the center of the spherical joint to the upper extremity
of the kinematic chain.

1;: The length of the lower rigid links in the kinematic chains.

I, The length of the upper rigid links in the kinematic chains.

tri: Torque intensity of the pitch actuators.

Oni: The yaw angle of link B;.

0,i: The pitch angle of link B;.

Y @i Angular velocity of link B; relative to world coordinate system.

Yol Angular velocity of the moving platform relative to world coordinate system.
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Chapter 1
Introduction to Parallel Manipulators

1.1 Three robotic architectures

This chapter presents the three basic architectures for robot manipulators. These
architectures are characterized by the type of the kinematic chains connecting the output link
of the manipulator to the base link. The three basic robot architectures are:
a)  Serial architecture
b)  Parallel architecture

c)  Hybrid architecture.

The serial architecture

This is the classical anthropomorphic architecture for robot manipulators, Fig. 1.1. In
this architecture, the output link is connected to the base link by a single open loop kinematic
chain. The kinematic chain is composed from a group of rigid links where each pair of

adjacent links are interconnected by an active kinematic pair (controlled joint).

Open kinematic chain

@) < .. Output link

Active joint ~_
Base link

Figure 1.1: Serial manipulator
J710 18219710 :1.1 11X

Serial manipulators feature a large work volume and high dexterity, but suffer from
several inherent disadvantages. These disadvantages include low precision, poor force
exertion capability and low payload-to-weight ratio, motors that are not located at the base,
large number of moving parts leading to high inertia.

The low precision of these robots stems from cumulative joint errors and deflections in
the links. The low payload-to-weight ratio stems form the fact that every actuator supports the
weight of the successor links. The high inertia is due to the large number of moving parts that

are connected in series, thus, forming long beams with high inertia.
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Another disadvantage of serial manipulators is the existence of multiple solutions to
the inverse kinematics problem. The inverse kinematics problem is defined as finding the
required values of the active joints that correspond to a desired position and orientation of the
output link. The solution of the inverse kinematic problem is a basic control algorithm in
robotics; therefore, the existence of multiple solutions to the inverse kinematics problem
complicates the control algorithm. The direct kinematics problem of serial manipulators has
simple and single-valued solution. However, this solution is not required for control purposes.
The direct kinematics problem is defined as calculating the position and orientation of the
output link for a given set of active joints’ values.

The low precision and payload-to-weigh ratio lead to expensive serial robots utilizing
extremely accurate gears and powerful motors. The high inertia disadvantage prevents the use
of serial robots for applications requiring high accelerations and agility, such as flight

simulation and very fast pick and place tasks.

The parallel architecture

This non-anthropomorphic architecture for robot manipulators, although known for a
century, was developed mainly during the last two decades. This architecture is composed of
an output link connected to a base link by several kinematic chains, Fig 1.2. Motion of the
output link is achieved by simultaneous actuation of the kinematic chains’ extremities.
Similarly, the load carried by the output link is supported by the various kinematic chains;
therefore, this architecture is referred to as parallel architecture. In contrast with the open-
chain serial manipulator, the parallel architecture is composed of closed kinematic chains only
and every kinematic chain includes both active and passive kinematic pairs.

Parallel manipulators exhibit several advantages and disadvantages. The disadvantages
of the parallel manipulators are limited work volume, low dexterity, complicated direct
kinematics solution, and singularities that occur both inside and on the envelope of the work
volume. However, the parallel architecture provides high rigidity and high payload-to-weight
ratio, high accuracy, low inertia of moving parts, high agility, and simple solution for the
inverse kinematics problem. The fact that the load is shared by several kinematic chains
results in high payload-to-weight ratio and rigidity. The high accuracy stems from sharing, not
accumulating, joint errors.

Based on the advantages and disadvantages of parallel robots it can be concluded that

the best suitable implementations for such robots include requirements for limited workspace,
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high accuracy, high agility, and a lightweight and a compact robot. These ideal

implementations exploit both the disadvantages and advantages of the parallel architecture.

Closed kinematic chain Output link

Base link

Figure 1.2: Parallel manipulator

12712PN 11021970 :1.2 1R

The hybrid architecture

The combination of both open and closed kinematic chains in a mechanism leads to a
third architecture, which is referred to as the hybrid architecture. This architecture combines
both advantages and disadvantages of the serial and parallel mechanisms. Fig. 1.3 presents an
example of a hybrid manipulator constructed from two parallel manipulators connected in

series.

“— Output link

Base link

Parallel manipulators

Figure 1.3: Hybrid manipulator.
71270 11021970 01,3 TR

Fig. 1.4 presents a hybrid manipulator with six degrees of freedom [Shahinpoor,
1992]. The parallel sub-manipulators are connected in series. The manipulator is actuated by
six extensible links. Fig 1.5 presents the 5 DOF ASEA industrial robot, which uses both open
and closed kinematic chains. The main closed kinematic chain is a two DOF five-bar linkage,
which moves the center of the wrist in a vertical plane relative to the ground. Tilt and turn
motions of the wrist are achieved by two closed loop parallelogram linkages that transmit the
motion from the motors located on the base to the wrist. The use of these linkages allowed the

designers of this robot to locate the motors on the base.
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Figure 1.4: A hybrid manipulator [Shainpoor, 1992].
.[Shahinpoor, 1992] "7"12™1 V1211 :1.4 1"R

TILT (BEND), t

_—_ /
o C TURN, v

WRIST
¥UPPER ARM
) LOWER ARM

BODY

PEDESTAL

SCREW ¢
UNIT

SCREW
UNIT

TURN DRIVE
UNIT, v
TILT DRIVE
UNIT, t

8 DRIVE
UNIT

« DRIVE
UNIT

____ UDRIVE
UNIT

Figure 1.5: The ASEA industrial robot as an example of a hybrid architecture.
JT7121 812177 a1 ASEA 100 "M wDnia u1211i :1.5 11
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1.2 Fully parallel and non-fully parallel manipulators
There are two major categories of parallel robots. These categories are the fully
parallel robots, and the non-fully parallel robots. The distinction between these categories is

based on the following definition. This definition is the same as the one presented in [Chablat

and Wenger, 1998].

Definition: Fully parallel manipulator

A fully parallel manipulator is a parallel mechanism satisfying the following
conditions:

1) The number of elementary kinematic chains equals the relative mobility

(connectivity) between the base and the moving platform.

2) Every kinematic chain possesses only one active joint.

3) All the links in the kinematic chains are binary links, i.e. no segment of an

elementary kinematic chain can be linked to more than two bodies.

Based on the solution multiplicity of the inverse kinematics problem this limiting
definition can be summarized as follows. A fully parallel manipulator has one and only one
solution to the inverse kinematics problem. Any parallel manipulator with multiple solutions
for the inverse kinematics problem is a non-fully parallel manipulator. This will be shown
mathematically in chapters 7 and 10 in terms of Jacobian matrix formulation and in terms of
loss or gain of freedom in singular configurations.

Table 1.1 specifies the physical characteristics of serial and parallel manipulators. The
table also briefly presents the differences between fully parallel and non-fully parallel

manipulators.

Table 1.1: Comparison between Serial and Parallel manipulators.

077272pPN1 010 011021971 172 ARN1WA 1.1 1220

Parallel manipulators

Property Serial manipulator Non-fully

Fully parallel
parallel

Type of Kinematic ‘ ‘ ‘ _ . .
) Open kinematic chain Closed kinematic chains
chains
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Table 1.1: Comparison between Serial and Parallel manipulators — continued.

JWni —07272pNn1 0110 0119219710 171 AR1W (1.1 1720

Parallel manipulators

Property Serial manipulator Non-fully
Fully parallel
parallel
Type of Joints Used Active joints Active and Passive Joints

The role of active

Twist applicators

Wrench applicators

joints
‘ ‘ ‘ ‘ _ Complicated Complicated, but
Direct kinematics Simple and single-valued . .
' with up to 40 with less
problem solution . '
solutions solutions
_ ' ' _ Simple and Simple with
Inverse kinematics | Complicated with ‘ ‘
_ ‘ single-valued multiple
problem multiple solutions ‘ ‘
solution solutions

Joint errors Cumulative Non-cumulative
Positional accuracy Poor Average
Payload-to-weight )
i Low Very high
ratio
_ ' ‘ Gain and loss of
Singularity Loss of freedoms Gain of freedoms

freedoms

Singularity domain

On the envelope of the

workspace

Both inside and on the envelope of

the workspace.

Jacobian mapping

Maps joint speeds to end

effector linear/angular

Maps the end effector linear/angular

velocity to active joints’ speeds

velocity
Work volume Large Small
Inertia of moving ‘
High Low

parts
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Chapter 2
Parallel Robots in Research and Industry:

A Brief Review of the Literature

This chapter presents a brief summary of the implementation of parallel robots. The
review of the literature in this chapter is limited to presenting examples of parallel robots in
industry and research. A more detailed literature review is given at the beginning of the
following chapters.

The first implementation of a parallel architecture by [Gough and Whitehall, 1962]
presented a six degrees of freedom tire test machine with base and moving platforms
interconnected by six extensible screw jacks. In 1965, Stewart presented a parallel robot for a
six-degrees of freedom flight simulator [Stewart, 1965], Fig. 2.1. This robot was composed of
a base and a triangular moving platform with three extensible links connecting the moving
platform to the base. These three extensible links were connected to the base platform by
Hooke’s joints with one actuated axis. Rotations of the active axes of the Hooke’s joints were
achieved by additional three extensible links. Later, all platform-based manipulators were

called Stewart-Gough platforms or, in short mistakenly, Stewart platforms.

Figure 2.1: The original flight simulator concept presented by [Stewart, 1965].
[Stewart, 1965] *T" 2D 1X%111 70X 100 71021 0?7 1PN VIVNPI 2.1 11"
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It is possible to construct many Stewart platforms by altering the number of the
connecting points on the moving and the base platforms. Therefore, a widely accepted coding
system for sorting different Stewart platforms is the M-m code, which distinguishes between
different Stewart platforms by the number of connecting points on the base and the moving
platforms. Since this coding system does not fully define the topology of the parallel
manipulator, Innocenti and Parenti-Castelli [1994] suggested an unambiguous coding system
for distinguishing between topologically distinct Stewart platforms. Using this unambiguous
coding system, they identified 17 topologically different Stewart platforms with single and/or
double spherical pairs and four Stewart platforms with one triple spherical pair.

For instance, the Stewart platform of type 6-6 is a fully parallel robot with a moving
platform connected to the base by six extensible links connected at six distinct points, both on
the moving and the base platforms Fig. 2.2 (a). The Stewart 6-3 is a robot with six connecting

points on the base and three connecting points on the moving platform, Fig. 2.2 (b).

(a) (b)

Figure 2.2: Two common types of the Stewart platform. The 6-6 type (a) and
the 6-3 type (b).
.6-3 11111n (b) 6-6 111N (a) .Stewart platform 2W 0*221PN 010 0 :2.2 11"R

Based on the definition of a fully parallel manipulator [Chablat and Wenger, 1998]
one concludes that all the Stewart platforms are fully parallel manipulators. This fact indicates
that these manipulators have a single solution to the inverse kinematics problem, but a rather
limited workspace.

Fichter [Fichter, 1986] investigated the 6-3 Stewart parallel architecture, performed
analysis of the workspace, and revealed two singular configurations of this structure.
Innocenti and Parenti-Castelli [1994] performed an exhaustive enumeration of Stewart
platforms and provided a listing of known Stewart platforms and their corresponding number
of solutions for the direct kinematics problem. Later, many researchers investigated new

parallel structures and did not limit their search for only fully parallel manipulators. Among
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these researchers, Tsai and Tahmasebi [1993] and Ben-Horin and Shoham [1996] presented
parallel robots featuring three kinematic chains with rigid links, Fig. 2.3 and 2.4 respectively.
The lower extremities of the rigid links move in the plane of the base platform by planar
motors or equivalent mechanisms. These robots feature large workspace because of the
motion on the base plane. Merkle, of Xerox corporation, presented a parallel manipulator
utilizing two tripods manipulating an output link and providing larger work volume than the

Stewart platform [Merkle, 1997], Fig. 2.5.

Figure 2.3: The parallel robot presented by Tsai and Tahmasebi [1993].
.Tsai and Tahmasebi [1993] "D 1¥171 WX "272PNi V12171 @ 2.3 "R

Moveable
platform

Spherical
joint

Fix-length
link

Revolute
joint

Stationary platform Planar motor

Figure 2.4: The parallel robot presented by Ben-Horin and Shoham [1996].
.Ben-Horin and Shoham [1996] "D 1X11 70X 22PNl V12171 :2.4 11X

Several researchers employ two parallel sub-mechanisms to achieve uncoupled
rotation and translation movements of the moving platform [Lallemand et al., 1997; Lee,

1995], but this leads to a rather mechanically complicated architectures incorporating many
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moving parts. Fig. 2.6 presents the 2-Delta uncoupled robot [Lallemand et al., 1997]. Simaan,
Glozman, and Soham [1998], and Brodski, Glozman, and Shoham [1998] were inspired by
the planar mechanism presented by Daniali, Zsombar-Murray, and Angeles [1993] and
presented a six degrees of freedom parallel robot that incorporates two identical planar sub-

mechanisms, Fig. 2.7.

Screw collar

Figure 2.5: The Double-Tripod [Merkle, 1997].
[Merkle, 1997] Double-Tripod 81217 :2.5 11"R

Figure 2.6: The uncoupled 6-Dof 2-Delta robot.

. 2-Delta TIN"X ®?27 WIIN N1I1T 6 V1217 :2.6 11X
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Figure 2.7: The Double Circular Triangular robot [Brodski, Glozman, and Shoham,
1998].
[Brodski, Glozman, and "D 1X1i1 1uxr Double Circular triangular 91217 :2.7 711"R
Shoham, 1998]

Few works present innovative architectures providing simple closed form solution to
the direct kinematics problem [Daniali, Zsombar-Murray, and Anjeles, 1993; Brodski,
Glozman, and Shoham 1998; Ceccarelli 1996; Ceccarelli 1997; Soreli, et al., 1997; Byun and
Cho, 1997]. All these works implement passive sliders in the kinematic chains of each
suggested robot, thus simplifying the direct kinematics problem.

Several researchers investigated parallel mechanisms with only rotational active joints
in order to simplify actuation [Simaan, Glozman and Shoham, 1998; Cleary and Uebel, 1994;
Zanganehe, Sinatra, and Angeles, 1997].

The implementations of parallel robots for industrial use developed during the last few
years. The possible benefit from the structural rigidity and dynamical agility of parallel
architectures motivated the development of grinding machines based on parallel architectures.
The three examples for grinding machines are the six axis machine tool by Giddings-Lewis
Corporation [Sheldon, 1995], the Hexaglide milling machine [Honegger, et al., 1997] and the
octahedral machine by Ingersoll-Rand Corporation [Lindem, 1995]. Another study for a novel

grinding machine featuring uncoupled motion was presented in [Lee, 1995].
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There are other applications that benefit from the high motion agility of parallel
architectures and employ this feature, for example, in flight simulation [Stewart, 1965].
Kawasaki Heavy Industries Ltd. presented a six degrees of freedom flight simulator based on
the 6-6 Stewart platform architecture with hydraulic actuation [Nakashima, 1994]. Dunlop in
[Dunlop, Jones, and Lintott, 1994; Dunlop and Jones, 1997] presented a 3 DOF Parallel
manipulator based on the double tripod mechanism, which was presented by Hunt as a
constant velocity joint [Hunt, 1978]. A 2 DOF version based on this mechanism was used for
satellite tracking in order to overcome the tracking keyhole problem that arises when using
conventional active Hooke’s joint. Toyota R. & D. labs presented a 6-DOF Parallel
mechanism for evaluating human motion sensation based on three five-bar mechanisms
[Mimura and Funahashi, 1995].

The field of tele-opration takes advantage of the parallel architectures for developing
six DOF master that provides effective force feedback in a compact form [Slutski, 1998].
Using this advantage, Collins and Long [1995(a)] presented a hand controller (master) for
force reflection, which had a parallel architecture utilizing three pantograph mechanisms.

Finally, we refer the reader to Merlet’s web page [Merlet, web page], which includes a
comprehensive list of parallel robots and related bibliography. In this web page, the different
robots are categorized based on their number of degrees of freedom and based on the type of

kinematic chains.
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Chapter 3
Robots for Medical Applications

3.1 Medical robots and parallel robots in medical applications

Robotic—assisted surgery is a new trend in medicine, which aims to help the surgeon
by taking advantage of robots’ high accuracy and accessibility. Introducing a robotic assistant
as an integral part of the surgical tool array provides the surgeon with several advantages.
These advantages include off-loading of the routine tasks and reduction of the number of
human assistants in the operating room. In addition, by using the capabilities of the robot, the
surgeon can complement his own skills with the accuracy, motion steadiness, and
repeatability of the robot. The experimental comparison, presented in [Kavoussi, et al., 1996],
compared the performance of a human assistant and a robotic assistant in manipulating a
laparoscope. The results of this comparison emphasized the superiority of the robot in terms
of motion steadiness. Another work [Kazanzides, et al., 1995] presented experimental results
comparing the cross sections of a manually broached implant cavities and cross sections of
robot milled cavities for hip replacement surgery. The comparison resulted in clear
preeminence of the robot in performing accurate milling of the implant cavities. Noticing
these features of the robot, several researchers invested efforts in assimilating the robot in the
surgical arena [Taylor, et al., 1995; Ho, et al., 1995; Kienzle, et al., 1995; Harris, et al., 1997;
Jensen, et al., 1994].

The approaches to robot assisted surgery divide into three main approaches. These
approaches are the active execution approach, the semi-active approach, and the passive
approach. In the active execution approach, the robot actively performs surgical procedures
such as bone cutting and milling as in the works presented by [Kazanzides, et al., 1995;
Brandt, et al., 1997]. In the first example, a serial robot performed milling of the femur bone
to suite the implant in a knee surgery, and in the second one, a Stewart platform robot is used
for hip surgery. In the semi-active execution approach, the robot is used as an aiding tool
during surgery for tasks such as precise guidance of the surgical cuts without actually
performing them. In this mode of operation, the robot holds the surgical tool while the
surgeon moves the tool. The task of the robot is to prevent the surgeon from moving the tool
out of the desired regions. Examples for this semi-active approach were presented in [Harris,
et al., 1997; Ho, et al., 1995; Kienzel, et al., 1996] in total knee replacement surgery. Other

works present systems that support both active and semi-active approaches, for example
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[Brandt, et al., 1997]. In the third approach, the passive approach, the robot is merely a tool
moved directly by the surgeon in remote manipulation mode as in [Grace, et al., 1993; Jensen,
et al., 1994] that used a parallel six degrees of freedom robot in the field of ophthalmic
surgery.

Most of the works listed above use serial robots. Some use special purpose serial
robots like in [Taylor, et al., 1995]. Other works use industrial serial robots [Kienzle, et al.,
1995; Kazanzides, et al., 1995]. These robots suffer from all the disadvantages of the serial
architectures; thus, these designs result in large and heavy robots. The drawbacks of these
serial robots motivate the research in the field of robot assisted surgery for a continuous
search of task oriented robot architectures that best fit a specific group of medical
applications. Among the vast array of robotic structures, the parallel structure seems
promising because of its advantages that fit medical applications. Therefore, some
investigators focused on exploring the capabilities of parallel robots in medical applications
[Grace, et al., 1993; Brandt, et al., 1995]. The main advantages of the parallel architecture
point toward it as being a better candidate than the serial one for use in surgery. Before listing
those advantages we will first formulate the requirements from a medical robot and compare

the parallel architecture with the serial one in terms of adequacy for medical applications.

3.2 The fundamental requirements from a medical robot

The following discussion is limited to formulating the fundamental requirements from
the robotic architecture only. This section disregards the requirements from the data
acquisition and registration systems or the pre-operative computer-based system. Some of the
requirements were presented in [Khodabandehloo, et al., 1996] and implied in [Brandt, et al.,
1997].

In order to insure the success of a medical robot, four fundamental requirements must
be fulfilled. The first and most crucial requirement is safety. The following seven criteria
constitute the safety requirement.

1)  Effective control: The robot must allow, in all configurations, effective control of
the tool with both speed and force control schemes implemented.

2)  Limited Workspace: The robot must have limited workspace in order to prevent
hazardous collisions between its moving parts and the medical staff or the patient.

3) Limited Forces or Force feedback: In applications where the robot is active in

performing surgical procedures that include tactile tasks, the force applied by the
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tool must be limited. Alternatively, in applications where the robot acts as a slave,
the robot must convey a maximum amount of data to the surgeon about the forces
exerted on the tool. This requirement is essential in the process of bone cutting
where different levels of force are required during different stages of the cut
[Harris, et al., 1997].

4)  Immunity against magnetic interference of other surgical tools.

5)  Full control option: In applications where the robot performs automated tasks, the
control program must allow the surgeon, in any stage in the task, to interrupt the
automatic execution process and take over the control to his hands.

6)  Fail safe features: The most reliable systems will inevitably fail in some stage of
their service. Based on this premise the robot must support a fail-safe mode. This
includes keeping the position of the tool when the power supply is lost, electrical
limiting of the end effector’s speed and force even when the control program fails.

7)  Safe behavior near singular configurations: The path planing of the robot should
avoid passing near singular configurations. However, in the cases where the robot
acts as a slave, the surgeon might manipulate it into singular configurations.
Therefore, the architecture of the robot must provide signals for the surgeon that
warn him from approaching singularity.

The second requirement from a medical robot is compactness in size and lightness.

This ensures that the robot does not consume a large amount of essential space in the

operating room and facilitates the relocation of the robot in different positions for different

tasks. The third requirement is simple operation in order to improve the learning curve of new
surgeons. The last, but not least important, requirement is the requirement for easy
sterilization. This requirement is critical since any tool in the operating room must either be
sterilized or covered with sterile drapes in order to prevent infections. To summarize the

fundamental requirements of a medical robot we present figure 3.1.

3.3 Advantages of parallel robots in medical applications

From the two robot architectures, i.e., the serial and parallel ones, the one most
compliant with the fundamental requirements is the parallel architecture. In contrast with the
bulky serial architecture, the compact and lightweight parallel architectures simplify the
relocation of the robot in the operating room, save necessary space, and allow easy

sterilization by covering the robot with a closed drape. The relatively small work volume of
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the parallel robots, if correctly designed, can introduce an important safety feature. In
addition, parallel robots behave safely near singularity. When the robot traces a path towards
a singular configuration, the required forces from the actuators reach high values.
Consequently, monitoring the electrical current of the actuator motors gives a reliable warning
against approaching singular configurations. In serial robots, singular configurations are
associated with very high values of joint velocities and this introduces a hazardous element.
The parallel robots provide accuracy with lower price when compared to similar serial robots
with the same accuracy level. Some accuracy levels may not be achieved with serial robots.
These high levels of accuracy are important for eye surgery [Jensen, et al., 1994]. Based on
the above arguments, we may conclude that the parallel architecture is better than the serial

one for medical applications that require a suitable workspace for reasonable robot design.

The fundamental requirements from a medical robot

Simple Safety Easy Compactness in
. sterilization size and low
operation B

Immunity

C against Limited forces
& £° Wle magnetic or force
Quiro interference feedback

Limited Full Control
yvorkspace Onption

Safe behavior
near singular
configurations

Figure 3.1: The fundamental requirements from a medical robot.
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Chapter 4

Formulation of the Design Problem

This chapter presents the design requirements from a medical robot aimed for use in
minimally invasive laparoscopic surgery. Minimally invasive surgery aims to overcome the
disadvantages of open surgery by minimizing the number of openings performed during
surgery; thus, reducing the patient’s pain, shortening the recovery time and minimizing the
esthetic damage to the patient’s body. Laparoscopic surgery is an important procedure in
minimally invasive surgery, in which, the surgeon performs several incisions in the abdominal
wall and introduces the necessary surgical tools through these incisions. In the common mode
of operation in laparoscopic surgery, the surgeon holds in his right hand the laparoscope and

in his left hand the surgical tool, Fig. 4.1. In some cases, the surgeon works with a human

N

Figure 4.1: Laser beam laparoscopic surgery.
772 MATYA "91R0197 TN 4.1 11°R

assistant who holds the laparoscopic camera in a desired orientation. This arrangement is far
from being satisfactory because of the fact that one of the surgeon’s hands is occupied in
manipulating the laparoscope. In addition, the requirement for steadily holding the
laparoscope for long time is physically demanding, thus, consuming unnecessary effort from

the surgeon.
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The motivation behind this work stems from the fact that in a laparoscopic surgery the
robot can effectively play the role of a human assistant by manipulating the camera during the
surgery. This allows the assistant to attend to other tasks, promises better stability of the
camera, and bears possible future implementation in laser endoscopic surgery. The
comparison between a human assistant manipulating a camera during a laparoscopic surgery
and a robot performing the same task was presented in [Kavoussi, et al., 1996]. This
experimental work resulted in a conclusion that a robot holds the camera significantly more
steady without adversely affecting the total time of the surgical procedure. [Faraz and
Payandeh, 1998] addressed the problem of laparoscopic surgery by searching for a suitable
mechanism to serve as a passive stand that allows keeping the orientation of the camera even
when the surgeon does not hold the laparoscope.

There are many methods for manipulating the laparoscopic camera by a robotic
assistant. These methods are categorized into three main approaches. The first approach uses
control signals initiated by the surgeon using a remote controller. The second approach uses
automatic guidance of the laparoscopic camera, and the third method is the direct method, in
which, the surgeon manipulates the laparoscopic camera directly by using force compliance
control. Remote controllers take many forms such as hand controllers, leg actuated pedals, or
systems that interpret the motions of the surgeon’s head [Finlay and Ornstien, 1995]. Wei et
al. [1997] presented a system for automatic laparoscopic camera guidance by tracking the

laparoscopic instruments using color coding of the instruments.

In addition to all the fundamental requirements in Chapter 3, this chapter is devoted to
formulating the design requirements in terms of required workspace and required force
exertion capability from the medical robot presented in this thesis. The design problem is
visualized in Fig. 4.2. The cube in Fig. 4.2 represents the required workspace for the specific
medical application and the weight W represents the required load to be supported by the

robot.

The explicit statement of the design problem is as follows. The design problem is to
synthesize a robot that supports a load W and manipulates this load in a required workspace.
Based on the conclusion of the previous chapter we choose to synthesize a mini parallel robot
for this task. The synthesis includes both type and dimensional phases. The emphasis is on the
fact that the robotic architecture is unknown and the research aims at comparing several
architectures for the same task and choosing the best concept. One of the goals of the

comparisons between several architectures is finding the smallest possible parallel robot
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featuring a mechanically feasible design and presenting better characteristics than the other
architectures. The details of the synthesis and comparison are presented in the following

chapters.

Figure 4.2: Symbolic representation of the design goal.
JI71127141 1°D27 7712N°0 21X 04,2 1R

The required load W and the desired workspace were defined based on physical
estimate for the surgical laparoscopic procedures. The desired workspace is a 40x40x20-mm
cube and the robot is required to reach every point within this cube while maintaining a
rotation of 20° about the [1,1,0] axis. This axis is described in a platform-attached coordinate
system. The required external forces are equivalent to supporting a weight of W=1.2 kg with a
lever of L = 0.1 [m]. The speed of the laparoscope tip should vary between 2.5 to 25
[mm/sec]. Based on these design requirements other possible implementations for the robot
would be in knee arthroscopy and total knee replacement surgery using the semi active

approach.

The design requirements listed above are used in the following chapters in the stage
of dimensional synthesis of the robots. The following chapter presents the type synthesis for

parallel robots.
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Chapter S
Type Synthesis

5.1 Introduction

Type synthesis deals with the construction of new mechanisms to fulfill a desired task
by considering various arrangements of links and joints. In type synthesis, emphasis is placed
on the type of joints and links rather than on the dimensional or geometric properties of the
mechanism. Many researchers tried to systemize the invention process of new mechanisms.
Among these researchers the following works focused on the synthesis of parallel
manipulators [Hunt, 1983; Earl and Rooney, 1983; Malik and Kerr, 1992; Shoham and Roth,
1997]. These works were based on Grubler’s equation for general mobility in mechanisms,
which is the fundamental formula for type synthesis.

In order to clearly continue this chapter we whish to present the reader with the
following definitions based on the material presented in [Hunt, 1978] and in [Phillips (a),
1984].

General Mobility: The general mobility of a mechanism is the required number of
independently controlled joint variables in order to specify the
location of the links relative to one another.

Connectivity: The relative degrees of freedom between two links in a mechanism.

The Grubler-Kutzbach equation for the general mobility in a mechanism is presented in

Eq. (5.1).
M=dn-g-1)+>fi (5.1
Where d = 6 for spatial mechanisms, d = 3 for planar and spherical mechanisms, and d = 2 for
planar prismatic mechanisms. For the interpretation of all the cases 2< d <6 see [Hunt, 1983].
n is the number of links in the mechanism including the ground link, g is the total number of
joints in the mechanism, and Zf; is the sum of the degrees of freedom in the mechanism. The
general mobility equation disregards the geometric properties of the mechanism; therefore, it
fails to describe mechanisms in singular configurations in which the mobility is a result of
specific geometrical relations between the joints’ axes. The parameter d in equation 5.1 is
taken as 3 for spherical mechanisms or planar mechanisms because these mechanisms fulfill
geometrical conditions that provide dependence of constraints regardless of the configuration

of the mechanism. For example, Fig. 5.1 presents two such mechanisms. Fig. 5.1(a) presents
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the famous spatial four-bar mechanism usually referred to as Bennett’s linkage. Fig. 5.1(b)
presents the spherical crank. For the analysis of Bennett’s linkage refer to [Hon-Chcung,
1981]. Both these linkages have mobility M=1 while Eq. (5.1) indicates zero mobility. A zero
general mobility indicates that the analyzed combination of joints and links represents a
statically determinate structure. Negative general mobility indicates a statically indeterminate

(over-constrained) structure.

(a) (b)

Figure 5.1: (a) The Bennett linkage. (b) The Spherical crank.
ST 12127X0 07171010 (b) .Bennett 0771010 (a) :5.1 11"

Many researchers addressed the problem of type synthesis for parallel spatial
mechanisms. The synthesis of parallel manipulators was described using the screw theory and
based on Grubler’s equation in [Hunt, 1983]. This work presented criteria for avoiding
undesirable robot arms that are prone to jamming and presented suggestions for six DOF
parallel manipulators. Shoham and Roth implemented the graph theory in order to determine
linkages, which have connectivity of six between at least two of the links. The work
suggested a method for modifying the graph representation of mechanisms in order to
facilitate computing the connectivity between every link pair in the mechanism. Malik and
Kerr addressed the problem of type synthesis of in parallel mechanisms based on Grubler’s
equation and discussed all the possible mechanisms with mobility ranging from three to six.
The work presented 14 distinct possible configurations with varying number of in-parallel
kinematic chains.

In manipulator design, emphasis should be placed on the distinction between the

general mobility and the connectivity. A six degrees-of-freedom manipulator is a mechanism
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with a connectivity of order six between the ground link and the output link. Therefore, the
connectivity and not the general mobility are important in manipulator synthesis [Shoham and
Roth, 1997]. An example for this statement regarding mobility and connectivity is presented
in Fig. 5.2. This figure presents the 6-6 Stewart platform with a moving and a base platform
interconnected by six extensible links via spherical joints. The total number of links, n, in this
mechanism is 14, the number of joints, g, is 18, and the sum of degrees of freedom, > f;, is 42.
Therefore, the General mobility when using Eq. 5.1 with d = 6 is 12. This result means that
we need twelve geometric parameters to fully describe the geometry of the mechanism. The
result is misleading since it includes the passive rotations of the extensible links around their

respective axes of rotation. These rotations do not affect the fact that the moving platform

n=14.%f,=42.d=6.g=18.
M = 6(14-18-1)+42 = 12

Fr e
7, ‘M‘\ % ® Connectivity between platforms = 6.
<L

Figure 5.2: Mobility and connectivity in the Stewart 6-6 platform with two spherical

joints at the extremities of each extensible link.

071172 0721910 0D Stewart 6-6 1192197110 112D N1 11WRI1 1117272100 :5.2 11X
JI191pT020N N1°21M4 N1xPa

retains six degrees of freedom relative to the base platform.

5.2 Synthesis of a class of parallel manipulators

In this section, we present the type synthesis of parallel manipulators with identical
kinematic chains. The focus on manipulators with similar and symmetrical distribution of the
actuators stems from the need for even load distribution between the kinematic chains and
design simplicity. The requirements for simplicity and structural rigidity guided us toward
investigating mechanisms with minimal number of in-parallel kinematic chains and, in
particular, kinematic chains that end with revolute joints connecting the kinematic chains’
extremities with the moving platform. This architecture diminishes the problem of collisions
between the adjacent kinematic chains and, as will be shown in chapter 8, this architecture has

advantages in terms of structural rigidity and lower actuator forces.
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We define the following quantities for the similar in-parallel kinematic chains. my
represents the connectivity between the moving and the base platforms along each one of the
identical kinematic chains. n; represents the number of links including the moving and base
platforms, g; denotes the number of joints, and ) fj is the sum of degrees of freedoms in the
kinematic chains. Accordingly, every kinematic chain fulfills Eq. (5.2):

m;=6(n-g-1)+ > (5.2)

Furthermore, we denote the number of in parallel kinematic chains by the letter L. The
total sum of degrees of freedom in the mechanism, ) f;, is given by Eq. (5.3).

2 =131 (5.3)

The total number of links in the mechanism and the total number of joints are given in
Eq. (5.4) and Eq. (5.5), respectively.

n=(n-2)L+2 (5.4)
g=Lg (5.5)

By substituting equations (5.3), (5.4), and (5.5) in Grubler’s equation for the general
mobility and substituting Eq. (5.2) for the connectivity along an in parallel kinematic chain
we obtain the following result presented in Eq. (5.6).

M=Lm-6(L-1) (5.6)

Since we are interested in non-redundant manipulators with identical kinematic chains
the number of active joints in a kinematic chain, g,;, in each kinematic chain is defined by Eq.
(5.7).

ga = M/L (5.7)

Where the number of kinematic chains, L, ranges between unity for serial
manipulators and L = M for fully parallel manipulators. 1 <L <M.

In order to avoid redundancy or unwanted freedoms, as the ones presented in the case
of the Stewart platform example, the connectivity between the moving and base platforms
along each kinematic chain must be six at most. However, the connectivity must be greater or
equal to the general mobility of the mechanism, therefore, 6 > m; > M. Based on these results
Eq. (5.6) becomes a simple tool for listing parallel manipulators with identical in-parallel
kinematic chains. The equation yields the required connectivity, m;, for a desired general
mobility and a given number of kinematic chains, L. We note that Eq. (5.6) is fulfilled for any
number of kinematic chains, L, if all the kinematic chains allow connectivity equal to six
between the base and the moving platforms. Table 5.1 presents all the possible combinations

for parallel robots with identical kinematic chains. The table presents six possible
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manipulators. The work presented in [Malik and Kerr, 1992] considered the cases with M > L
> 3. By using similar reasoning based on Grubler’s mobility equation they presented 14

different combinations for parallel manipulators with different kinematic chains and non-

uniformly distributed actuation joints.

Table 5.1: The possible parallel manipulators with identical kinematic chains.
JIAT 017N 7R NMIRW0IW0 2D 0TW9Kn 0727 2pnil 07012170 :5.1 12210
General Number of required kinematic Active joints per
Mobility kinematic chains chain connectivity kinematic chain
M L m Zal
2 2 4 1
3 A e
3 5 1
4 2 5 2
3 e
4 | e
5 No solution available
6 2 6 3
3 6 2
4,5 | e e
6 6 1

5.3 Selecting architectures based on design guidelines

According to table 5.1, there are three general architectures for obtaining six degrees
of freedom parallel manipulators with identical kinematic chains. These three architectures
differ one from another in the number of kinematic chains. The three general architectures can
be achieved by many combinations of links and joints. Therefore, we must follow some
design guidelines that take into account the practicality of the different manipulators.

We consider the practical joints of types R, P, S, U, and C. Where R stands for

revolute joint, P for prismatic, S for spherical, U for Hooke’s, and C for cylindrical joint. We
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begin by first ruling out the helical joint because of its unnecessary complication. In the next
step, we look for manipulators with simple kinematic chains. This requirement for simplicity
highlights the essential use of coalescence of joint axes. For example, a spherical joint is
preferable on its equivalent 3R kinematic chain in terms of simplicity. The importance of
utilizing joint coalescence for simplifying the kinematic chains was highlighted in [Hunt,
1983].

For parallel manipulators with identical kinematic chains, there are two practical
solutions with three or six kinematic chains. The case with L=2, i.e. two kinematic chains is
ruled out because of the complexity of activating three joints in a kinematic chain. Table 5.2
presents the known six DOF parallel manipulators with three kinematic chains. The table
specifies the kinematic chains in a customary way, in which, the kinematic chains are
identified by the types of joints when traversing the chains from the base to the moving
platform. The active joints in each kinematic chain are identified by bold font setting. Some
works utilize four-bar, five-bar or other complex planar sub-mechanism for actuation;
therefore, these planar mechanisms are equivalent to planar kinematic pairs. We refer to a
planar kinematic pair by the letter E and we present the kinematic equivalence of the complex
kinematic chains. Figures 5.3 to 5.15 present the schematic representations of the robots in

table 5.2.

Table 5.2: Listing of known parallel manipulators with three kinematic chains.
JI1TUN 1R MR W70 0D T'D1T 1 077727 2PN0 07118219710 NIN'WU1 5.2 11710

Related work Type of the kinematic chains Figure
[Behi, 1988] PRPS Fig. 5.3
[Kholi, et al., 1988] PRRS Fig. 5.4
[Romiti and Soreli, 1990] Two actuated parallelograms in series, P, S. | Fig. 5.5

Equivalent to EPS Kinematic chains.

[Soreli, et al., 1997] Double parallelogram actuation, P, S. | Fig. 5.6

Equivalent to EPS kinematic chain.

[Zlatanov, et al., 1992] Planar kinematic chains with asymmetrical | Fig. 5.7
distribution of actuation between the kinematic
chains and planar sub-mechanisms.

RRPS, RRPS, RRPS
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Table 5.2: Listing of known parallel manipulators with three kinematic chains —
continued.
0NN —N1"uN 1R NMR0I0 U170 0D 0'DIT 0772729100 0° 119219700 INtw 5.2 1710
Related work The kinematic chain Figure
[Tsai and Tahmasebi, | A family of three legged manipulators with non- | Fig. 2.3
1993] | extensible rigid links and planar actuation by five
bar linkages, pantographs or planar motors.
Equivalent to ESR kinematic chain.
[Ben-Horin and Shoham, Planar motors, R, S. Fig. 2.4
1996] Equivalent to ERS kinematic chain.
[Alizade, Tagiyev, and RRPS kinematic chains. Fig 5.8
Duffy, 1994]
[Collins and Long, R, pantograph actuation, S. Fig 5.9
1995(a)] Equivalent to RES kinematic chain.
[Mimura and Funahashi, R, Five bar mechanism actuation, S. Fig. 5.10
1995] Equivalent to RES kinematic chain.
[Ebert and Gosselin, Three Five-bar parallelogram linkages with | Fig. 5.11
1998] actuation of both sides of each parallelogram in
each kinematic chain. Equivalent to RES.
[Byun and Cho, 1997] PPSP Equivalent to ESP kinematic chain. Fig. 5.12
[Cleary and Uebel, 1994] | URS kinematic chain with the U joints controlling | Fig. 5.13
the pitch and roll of the lower rotating links.
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Figure 5.3: The robot presented by Behi [1988].
Behi [1988] 2w 2"2pni 0121111 :5.3 11"

Figure 5.4: The robot presented by Kholi et al. [1988].
Kholi et al. [1988] 2w "2"2pnil Y1211 :5.4 11'R

Figure 5.5: The robot presented by Romiti and Soreli [1990].

Romiti and Soreli [1990] 2w "272pni V12171 :5.5 11X
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*)

Figure 5.6: The kinematic chain of the robot presented by Soreli, et al. [1997].
Soreli, et al. [1997] 2w “22pNi1 Y1217 20 N"UN1"P NIWIWA :5.6 11'R

(b)

'Y
:-;—Ii'-l s c»lfj—\f] —t

Figure 5.7: The robot presented by Zlatanov, et al. [1992].

Zlatanov, et al. [1992] 2w 22PN V121111 :5.7 11'R

Figure 5.8: The robot presented by Alizade, Tagiyev, and Duffy [1994].
Alizade, Tagiyev, and Duffy [1994] 20 "2*2pni1 U121711 :5.8 11"R
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il HANDLE

PANTOGRAPH 3

PANTOGRAPH 1

Figure 5.9: The robot presented by Collins and Long [1995(a)].
.Collins and Long [1995(a)] 7w 22PN 812171 :5.9 11X

‘0: The parallel robot presented by Mimura and Funahashi [1995].
.Mimura and Funahashi [1995] 2w 0"2"2pni 0012171 :5.10 11"

Active

1: The parallel robot presented by Ebert and Gosselin [1998].
Ebert and Gosselin [1998] 2w *22pnin Y1217 :5.11 T1'R

-35-



Chapter 5: Type Synthesis

2: The parallel robot presented by Byun and Cho [1997].
Byun and Cho [1997] 21 22PNl V121711 :5.12 11"R

3: The parallel robot presented by Cleary and Uebel [1994].
.Cleary and Uebel [1994] 2w "2"1pni1 B12171 :5.13 11"R

5.4 A family of parallel manipulators

All the manipulators in table 5.2, except for the robot suggested by [Tsai and
Tahmasebi, 1993], use kinematic chains that end with spherical joints to connect the
kinematic chains with the moving platform. In this section, we present a family of parallel
manipulators that includes fourteen distinct manipulators. All the manipulators in this family
have three identical kinematic chains connected to the moving platform by revolute joints. In
addition, all these manipulators have the same reactions acting on the moving platform. In
chapter 7, we will show that these manipulators share the same instantaneous direct
kinematics matrix, and in chapter 10, we will analyze the parallel singularities of this family

of manipulators.
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Figure 5.14 presents all the fourteen kinematic chains that belong to this family of

manipulators. The last links in all the kinematic chains are connected to the moving platform

’”\\} \\ N
é
RSPR PSPR HSPR
g’;f

-

PPSR RRSR HHSR

PRSR PHSR USR CSR

Figure 5.14: A family of 14 manipulators with common kinematic features.

JN9Nwn mtunt1'p midn 0 072°1pn 0° 1021970 14 20 Nngwn :5.14 11X

by revolute joints and apply on the moving platform the kinematic constraints of revolute-
spherical (RS) dyads. The figure includes the PPSR kinematic chain, which is the same as the
one presented by [Tsai and Tahmasebi, 1993]. Among all the fourteen kinematic chains in the

figure, we chose two candidate manipulators for the task that was presented in chapter 4. The
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two candidate manipulators are the RSPR and the USR manipulators. All the kinematic chains
with helical (H) pairs were excluded because of the kinematic complexity introduced by these
pairs. In the following section, we present in detail the kinematic parameters of the two

suggested manipulators.

5.5 The RSPR and the USR manipulators
The USR and the RSPR manipulators are presented in Fig. 5.15 and 5.16. All the
joints are indicated by encircled letters denoting the type of the joints. These manipulators

were first presented in [Simaan, Glozman, and Shoham, 1998].

5.5.1 The USR manipulator

The USR robot consists of three identical kinematic chains connecting the base and
the moving platform. Each kinematic chain is composed of two links. One link is connected
to the base platform by a active universal (U) joint, the other link is connected to the moving
platform by an R joint, and the two links are connected in between by a spherical (S) joint.
The lower link of each kinematic chain is oriented in space by a differential drive, controlling
its yaw and pitch angles relative to the base platform, Fig. 5.15.

Using the mobility equation shows that this manipulator has a mobility m = 6. The
number of rigid links, n;, in each kinematic is 4, the number of joints in each chain, g, is 3,
and the sum of the joint freedoms in each kinematic chain, Xf;, is 6. Therefore, the

connectivity between the moving and base platform is 6.

Moving Platform

Stationary
Base

Figure 5.15: USR parallel robot.
JUSR "272pn 119721911 :5.15 11"

This structure is a variation of the structure described by [Cleary and Uebel, 1994]
which uses URS joint cobmination for each kinematical chain, controlling the pitch and roll
of the lower links. The structure that we suggest has, however, a different order of joints - a

revolute joint connecting the links to the moving platform, and a spherical joint between the
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links. This modification prevents collision between links and eliminates some of the singular

configurations in the URS manipulator.

5.5.2 The RSPR manipulator

This manipulator consists of three identical kinematic chains connecting the base and
the moving platform. Each chain contains a lower link rotating around a pivot perpendicular
to the base platform and offset-placed from the center of the base. At the other end of the
lower link, a prismatic actuator is attached by a spherical joint. The upper end of the prismatic
actuator is connected to the moving platform by a revolute joint. The axes of the revolute
joints constitute an equilateral triangle in the plane of the moving platform, Fig. 5.16.

The mobility equation indicates that this manipulator has a mobility m = 6. The
number of rigid links, n;, in each kinematic is 5, the number of joints in each chain, g, is 4,
and the sum of the joint freedoms in each kinematic chain, Xf;, is 6. Therefore, the
connectivity between the moving and base platform is 6.

This manipulator is distinguished by the location of the lower links revolute axes
being placed offset from the center of the base platform. Alizade, Tagiyev, and Duffy [1994]
presented a robot with RRPS kinematic chains. We will show in chapter 8 that the RSPR
robot requires less actuator effort for the same task. In chapter 10 we will show that this robot
eliminates some of the singular configurations that are present in the RRPS robot. However,
using the swept volume analysis, which was presented in Zhiming, [1994], reveals that when
eccentricity is eliminated in RSPR robot then both RSPR and RRPS have the same swept

volume of the kinematic chains’ upper extremities. Since RSPR robot has an R joint at the

Moving Platform @

Stationary
Base

Figure 5.16: The RSPR parallel robot.
.RSPR 1912117 :5.16 T1"R
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end of each kinematic chain, which imposes additional perpendicularity constrains, it results
in a smaller vertex space and work volume than RRPS robot. We will show in chapter 10 that,
unlike the robot by Alizade, Tagiyev, and Duffy [1994], the eccentricity of the lower revolute

joints eliminates singular configuration of the robot.
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Chapter 6
Kinematics of the USR and the RSPR Robots

6.1 Introduction

The kinematics of a robot deals with finding the analytical relations between its input
variables (the values of the active joints) and output variables (the position and orientation of
the gripper). The equations that connect between the input and the output variables of a
mechanism are called the kinematic equations of the mechanism. The equations that connect
between input and output velocities in a mechanism are called the instantaneous kinematic
equations of the mechanism. The direct kinematics problem deals with finding the output
variables of the robot, i.e. the position and orientation of the gripper, for a given set of input
variables, namely, the active joints’ variables. The inverse kinematics problem deals with
finding the required input variables (active joints’ values) that correspond to a given set of
output variables (position and orientation of the gripper).

The inverse kinematics problem of the Stewart-Gough manipulators is trivial with
single solution, but when the number of kinematic chains is reduced, the number of solutions
of the inverse kinematics problem increases and the problem becomes more challenging. The
direct kinematics problem of parallel manipulators is by far more challenging than the inverse
kinematics problem since it requires solving a set of polynomial equations in the output
variables. While the inverse kinematics problem for a general Stewart-Gough manipulator has
only one solution, the direct kinematic problem has up to 40 real solutions [Lazard, 1993].
Recently, Deitmaier [1998] systematically changed the geometric properties of a general
Stewart-Gough manipulator and, for the first time, gave an example of a manipulator with 40
real solutions to the direct kinematics problem.

In this chapter, we will show that the USR and the RSPR robots have eight solutions
for the inverse kinematics problem. These inverse kinematics solutions for the USR and the
RSPR robots are used in the simulations for evaluation of the workspace of both
manipulators. The direct kinematics problem for a tripod mechanism such as the upper tripods
of the USR and the RSPR robots was solved in [Tahmasebi and Tsai, 1994(a)]. Tahmasebi
and Tsai [1994(a)] showed that there are 16 solutions for the direct kinematics problem of the
tripod mechanism with pairs of solutions that are the mirror images of one another with
respect to the plane that passes through the spherical joints. Based on the solution in

[Tahmasebi and Tsai, 1994(a)], the direct kinematics problem of the RSPR and the USR
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robots becomes simple. This is because the only required additional step is finding the
positions of the spherical joints and defining the transformation matrices from the planes
through the spherical joints’ centers and the base planes of the robots. For parallel robots,
only the Inverse kinematic solution is needed for control purposes; therefore, we do not need
to solve the direct kinematics problem and we limit this chapter to presenting the inverse
kinematic solutions of the USR and the RSPR robots.

Without loss of generality, the following analysis assumes symmetrical robots, but the
same analysis presented here can be adapted for any non-symmetrical geometry of the
manipulators. We refer to the plane, which is defined by the three lower extremities of the
kinematic chains as the base plane. We assume that the lower extremities of the kinematic
chains define an equilateral triangle in the base plane. The incenter of this triangle is called
the center point of the base platform and we fix the origin of the world coordinate system at
this point. The world coordinate system is defined such that its x-axis points from the center
point to the lower extremity of the first kinematic chain. The z-axis points upward from the
base plane and the y-axis completes the right-handed coordinate system. We also assume that
the upper extremities of the kinematic chains connect to the moving platform at three distinct
points such that these points define an equilateral triangle in the plane of the moving platform.
The incenter of this triangle is called the center point of the moving platform and we attach a
coordinate system having its origin coincident with this point. This coordinate system is
referred to as the central platform-attached coordinate system. The x-axis, of this coordinate
system, points form the center point of the moving platform to the upper extremity of the first
kinematic chain. The z-axis is normal to the moving platform and the y-axis completes the
system to a right-handed coordinate system, Fig. 6.1. In addition to the central platform-
attached system, we define three platform-attached coordinate systems called C;, C,, and Cs,
Fig. 6.1. These coordinate systems are right-handed and rotated about the z-axis of the central
platform-attached coordinate system. The y-axis of the i’th coordinate system, C;, is parallel
to the axis of the upper revolute joint of the i’th kinematic chain. The origin of the C;
coordinate systems is located at the upper extremity of the i’th kinematic chain.

In order to facilitate the formulation of the inverse kinematics problems for the USR
and the RSPR robots we introduce the following symbols that will be used for both
manipulators. Fig. 6.1 presents these common symbols without showing the details of the
kinematic chains.

i: an index indicating a specific kinematic chaini=1, 2, 3.

o,: center point of the moving platform.
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Central platform-
Moving platform

Z,=1n attached

Yo
Revolute / R

joint r

Xp _
Spherical
Zy / joint
Base plane /'.
Yo
°

By .
0

Figure 6.1: Common symbols used for the RSPR and the USR robots.
JUSR 1121771 RSPR 1912177 0'9mMwn 0°11M0 :6.1 11X

rp: the radius of the moving platform.

t: position vector of the center of the moving platform.

pi: position vector of the upper extremity of the i’th kinematic chain.

Ppi: position vector of the upper extremity of the 1’th kinematic chain in the central
platform-attached coordinate system.

Epi: an angle measured from the x-axis of the central platform-attached coordinate
system, X, to pp; according to the right-hand rule about z,.

e;: position vector of the lower extremity of the i’th kinematic chain.

e: the eccentricity measure (equal to the Euclidean norm of ;).

Ebi: an angle measured from the x-axis of the world coordinate system, Xo, to e;

according to the right-hand rule about zy.
bi: position vector of the spherical joint of the 1’th kinematic chain.
n: a unit vector normal to the moving platform.

I, : a unit vector along the axis of the upper revolute joint in the i’th kinematic chain.
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h;: A vector specifying the height of the i’th kinematic chain upper extremity relative

to the base plane.
"R » - rotation matrix transforming vectors from the central platform-attached
coordinate system to world coordinate system.
pRCi : rotation matrix form the C; coordinate system to the central platform-attached

coordinate system.
Note: all the vectors, unless otherwise noted, are expressed in the world coordinate
system.
Equations (6.1) and (6.2) give the expressions of the vectors describing the location of

the connection points of the kinematic chains to the platforms, pp; and e;.

ppi= [1p cos(&pi), 1p SIn(Epi), 0r' (6.1)
e; = [e cos(&pi), € sin(pi), 0" (6.2)
Where the angles &,; and &p,; are equal and have the values given by Eq. (6.3).
2(i—1
Coi =G = 2i-1) 3 )Tt (6.3)

Eq. (6.4) gives the expression for the unit vectors ;.

£ =[cos(&p + m/2), sin(Eyi + 1/2), O] (6.4)

The columns of the rotation matrices pRCi are the unit vectors along pp;, I., and n expressed

in the central platform-attached coordinate system; therefore, Eq. (6.5) has the following

form.

Cos(épi) - Sin(gpi) 0
"R, =|sin(£,) cos(&;) 0 (6.5)
0 0 1

6.2 Inverse kinematics of the RSPR robot

Figure 6.2 presents the kinematic model of RSPR robot with additional symbols that
are defined herein.

1p: the length of the rotating links.

vi: the angle between the normal, n, and the normal to the base plane.

P;: the plane in which the i’th extensible link rotates about the revolute joint, .

vi: the line of intersection between the plane P; and the base plane.
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In addition to these symbols, we define the active joints’ variables that control the
movement of the moving platform. Figure 6.3 presents a top view of the base platform. The
rotation of the i’th rotating link is measured as indicated in the figure and is denoted by 6.

The length of the 1’th extensible link is indicated by the symbol I;.

Second solution

Base plane

Figure 6.2: The RSPR with the kinematic model for one kinematic chain.
JIMR NUN™1"p Nw70? "un™1"pin 27Mi 0D RSPR 81211 :6.2 1178

Figure 6.3: Top view of the base platform and the notation system of the

rotating links’ angles.
J1122IM0N M21Ma I1TNT 171070 NUTW1 0027 IN1191°29 2D 2D 82N :6.3 11X
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The locus of the spherical joint of the i’th kinematic chain is a circle with a radius equal
to the length of the rotating links, r,. The center of the spherical joint, uj, is defined by the
intersection of the plane P; with the circle of the rotating link. This indicates that when the
position and orientation of the moving platform is given then there are two possible solutions
for each rotating link as demonstrated in Fig. 6.2. Since every rotating link has two possible
values for 0, the whole manipulator has eight solutions for the inverse kinematics problem.

The solution presented here allows careful selection of the desired inverse kinematics
solutions for every kinematic chain. This is important in order to maintain consistency of the
solution during the simulations for workspace evaluation.

The unit vector normal to the moving platform is given by the third column of the

rotation matrix WRp as expressed in Eq. (6.6).

n="R_ -[0,0,1] (6.6)
The position of the kinematic chain upper extremity is given by:

pi=t+ "R, .pp; (6.7)
We define a point d; as the point, in which, a line parallel to the normal, n, and passing
through p; pierces the base plane. We also define the vector pd; as the vector from point p; to
d;.

pa -
" cos(y;)

(6.8)

Where the symbol |pd;| indicates the magnitude of the vector pd;.

Using the scalar product definition between the vector -n and h; and substituting it in Eq. (6.8)

yields:
2
_ =
lpd;| =~ (6.9)
n hi
The point d; is obtained by Eq. (6.10).
pd; =p; +pd; :pi_|pdi|*n (6.10)

Point d; belongs to the plane P;; therefore, it is possible to obtain the two solutions of
the inverse kinematics problem by tracing along v; in two directions as shown in Fig. 6.2. Any
point (X, y) on v; is define by the parametric equation in Eq. (6.11).

x=d, +t*xv,

yod +tey t € [-00, 0] (6.11)
iy y
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We define a point t, along the normal n such that

t,=t+r,n (6.12)
The equation of the plane P; is given by the determinant of the matrix M expressed in Eq.
(6.13).

X=X Y=V zZ2—Z%

M=det|x—xy, y—y, z-12; (6.13)

X=X3 Y—)V3 Z—2Z3
Where (x1, yi1, 21), (X2, Y2, 22), and (X3, y3, z3) are the Cartesian coordinates of the points ¢, t,
and p;, respectively. Equation (6.14) for the line v, is obtained by substituting z = 0 in Eq.
(6.13) and expanding the determinant.

Ax+Ay+C=0 (6.14)

Where Ay, Ay, and C are given by:

Ax =(zy1+z3y2-2ys t21y3 + 22y1 - 21 Y2) (6.15)
Ay=(X122-X2Z3 X1 23-X321 + X322 + X2 Z1) (6.16)
C=X122y3-X322y1-X1Z3Y2+ X0 Z3 Y1 -X2Z1 Y3 T X3 Z1 Y2 (6.17)

We use the letter m to refer to the slope of the line vi. The unit vector along this line is given
by Eq. (6.18).

t

t
m 1 m

vi:sgn( ppp1] ) > 0| [* = = 0| (6.18)
\/1+m \/1+m \/1+m \/1+m

The sign term in Eq. (6.18) ensures that the unit vector v; points in the same direction as the

projection of the vector pp; on the base, Fig. 6.2. The sign of the parameter t distinguishes
between the two solutions of the inverse kinematics for one kinematic chain. This method for
identifying the solutions holds for all the cases, except for the case when the vector pp; is
perpendicular to the base plane. This occurs when the platform is perpendicular relative to the
base plane and this configuration is outside the desired rotational capability of the
manipulator.

The parameter t is found by the intersection of the line v; with the circle of the lower

rotating link. The equation of the circle is given by Eq. (6.19).
(X—ex)2 +(y—ey)2 =rb2 (6.19)
By substituting Eq. (6.11) in Eq. (6.19), we obtain a quadratic equation with the

unknown parameter t.

at? +bt+c=0 (6.20)
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Where a, b, and c are given by:
a= Vit vi. b=2(d; —ei)t Vi. C= dit d; + eit € —2(11t e — I‘bz. (6.21)
The solution for t is given by Eq. (6.22).

:—bir\/b2 —4dac

2a

t

(6.22)

The solution with the plus sign corresponds to the solution shown in Figure 6.1 and
labeled as the first solution. The solution with the minus sign corresponds to the second
solution shown in Fig. 6.2. Figures 6.4 and 6.5 present the eight inverse kinematics solutions

for the RSPR robot with the moving platform parallel and right above the base platform.

0.1 0.1
a 1]
0.1 0.1
0 = 0.1 0 2 0.1
0.1 0.1 0.1 0.1
0.1 0.1
a 1]
0.1 0.1
0 = 0.1 0 2 0.1
0.1 0.1 0.1 0.1
Figure 6.4: The first four out of eight solutions of the inverse kinematics problem for
the RSPR robot.
P70NIPN 17027 MNINgn NIno 11NN 010K 10 113717190 NU2IR :6.4 117X
RSPR 11217 200 12191111
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0.1 0.1
0 0
-0 -0
0 = 0.1 0 . 0.1
0.1 0.1 0.1 0.1
0.1 0.1
0 0
-0 -0
0 = 0.1 0 . 0.1
0.1 0.1 0.1 0.1
Figure 6.5: The remaining four out of eight solutions of the inverse kinematics
problem for the RSPR robot.
11219711 NP NP N7"D27 MNINgn NG 711N 0711130 11317190 V2R :6.5 117X
.RSPR v1211 20

6.3 Inverse kinematics of the USR robot
The USR robot, like the RSPR robot, has eight possible solutions for the inverse

kinematics problem. The yaw and the pitch angles of the lower rotating links are the unknown

parameters of the inverse kinematics problem.

Figure 6.6 presents the USR robot with the relevant symbols. We use the following
symbols in addition to the symbols and geometrical assumptions that were presented in

section 6.1.

o: the yaw angle of the lower rotating link. a; is measured in the same way
like 6; for the RSPR robot. Figure 6.3 applies for the USR robot with the
replacement of 6; with a;.

Bi: the pitch angle of the lower rotating link. B; is measured relative to the

base plane as shown in Fig. 6.6.
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Li: a vector pointing from the center of the active Hook’s joint to the center
of the spherical joint.
lix: a vector pointing from the center of the spherical joint to the upper

extremity of the kinematic chain.

1;: the length of the lower rigid links in the kinematic chains.
I, the length of the upper rigid links in the kinematic chains.
Z,=n

et

) t
Second solution

‘ "
™
\ @; -7 ;1 p y solution

Z

Base plane N b,

Xo

Figure 6.6: USR robot with the kinematic model for one kinematic chain.

JMR TI'0N" 1" NWW? "un 1"pin 27mmMn1 USR 81217 :6.6 11"

The rotation of upper rigid link about the axis of the revolute joint defines a circle
with a radius ;. This circle is the locus of the spherical joint in the platform-attached
coordinate system. The lower link defines a sphere, with a radius 1;. All the points on this
sphere are the locus of the spherical joint in the world coordinate system. The solution of the
inverse kinematics problem of one kinematic chain is obtained by finding the intersection
points between the circle and the sphere associated with the kinematic chain. Consequently,
there are two solutions for every kinematic chain and, in total, there are eight solutions for the
whole manipulator.

The position of the center of the spherical joint in a kinematic chain is given by Eq.
(6.23).
bi=pi—-l (6.23)
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Where p; is given by Eq. (6.7) and 1;; is expressed in world coordinate system by Eq. (6.24).
lo="R,"Re, [ sin(ys), 0, L cos(y))] (6.24)
Substituting Eq. (6.24) and Eq. (6.7) in Eq. (6.23) results in:
bi=t+ "R, (ppi + "R + [l sin(v), 0, -, cos(y7)]') (6.25)
The vector along the lower rotating link, 1, is given by Eq. (6.26).
lii=bi- e (6.26)
The rotating link has a constant length 1;, therefore, we obtain one constraint equation,
Eq. (6.27).
| t+ "Ry« (ppi +"Re, [l sin(), 0, -2 cos(r)]') - ei| =1y (6.27)

Raising Eq. (6.27) to the power of two results in an equation with one unknown parameter ¥;.

acos(y;)+bsin(y;)=c (6.28)
Where a, b, and c are given by:
a=2l([e; - pi]'n) (6.29)
=21 t
b=—"2(e;-pil "Rypp;) (6.30)
p
c=12 =12 —|p;]" —¢” + 2pi'e; (6.31)

Equation 6.28 has two solutions [Lipkin and Duffy, 1985]:

i\/a2+b2—c2}

(6.32)

a

Y, = AtaHZ(Ej + Atan2£
C

These solutions are demonstrated in Fig. 6.6. The solution with the minus sign
corresponds to the first solution in Fig. 6.6 and it is characterized by positive yi. The solution
with the plus sign corresponds to the second solution in Fig. 6.6 and it is characterized by
negative ;.

After selecting the desired solution we substitute y; in Eq. (6.26) and we obtain the
vector li;. We use the symbol w; to refer to the unit vector along the perpendicular projection

line of Ii; on the base plane. w; is given by Eq 6.34.

Wi = —2 * |:111X 5 lily 5 Oj| (634)
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Where 1;; and lily are the first two direction numbers of 1;;. We compute the required yaw

angle, o, by utilizing the expression for dot and cross products between w; and a unit vector

along e;.
t
cos(a;) = [ei WiJ (6.35)
e
. [ei X Wi]t Zy
sin(o;) = —————~ (6.36)
o, = Atan2 sin (o) (6.37)
cos (oci)

The pitch angle, (3, is limited in the range i € [0,n]; therefore, computing the scalar

product between the unit vectors along l;; and wj is sufficient for explicit computation of f3;.
1 W.tl.
B; =cos 11—11 (6.38)
1

Equations (6.37) and (6.38) give the desired yaw and pitch angles for every active
universal joint in the manipulator, hence, the solution of the inverse kinematics problem is
complete. Figures 6.7 display the eight solutions of the inverse kinematics problem with the

moving platform parallel and right above the base platform.
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Figure 6.7: The eight solutions of the inverse kinematics problem for the USR robot.
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Chapter 7

Jacobian Formulation of A Class of Parallel Robots

7.1 Introduction

This chapter presents the Jacobian formulation of a class of parallel manipulators that
was introduced in section 5.4 Fig. 5.14. The robots in this class of manipulators share a
common tripod mechanism, which constitutes of a moving platform and three links connected
to it by revolute joints. These links transmit to the moving platform the same constraints as
the constraints associated with a spherical-revolute (SR) dyad. This fact allows unifying the
Jacobian formulation for this class of manipulators.

Various Jacobian formulation methods for parallel robots can be found in the
literature. The methods are based on velocity equations [Tahmasebi and Tsai, 1992], static
equilibrium [Cleary and Uebel, 1994, Simaan, Glozman, and Shoham, 1998] and screw theory
[Waldron and Hunt, 1991]. Collins and Long [1995(b)] formulated the Jacobian matrices for
fully parallel and serial manipulators based on reciprocal screws. More recently, [Tsai, 1998]
used similar method to the one presented in [Collins and Long, 1995(b)] and utilized
reciprocal screws to formulate the Jacobian matrix of the PPSR parallel-chain robot, which
was presented in [Tsai and Tahmasebi, 1993]. This formulation of the Jacobian matrix,
though mathematically simple, lacks the geometrical view that allows simpler derivation of
the Jacobian matrix. The formulation presented in the sequel divides a typical manipulator of
Fig. 5.14 into a parallel part and a serial part. This overcomes the problem of obtaining a line-
based Jacobian formulation [Hao and McCarthy, 1998] for the class of manipulators of Fig.
5.14 and unifies the singularity analysis of this class of manipulators. The method enables

interpreting the singular configurations in terms of the geometry of the robot.

7.2 The Jacobian matrix for parallel manipulators

The Jacobian matrix for parallel manipulators relates the instantaneous twist motion of
the moving platform with the corresponding required speeds of the active joints. This
definition is dual to the definition of the Jacobian matrix for serial manipulators where the
Jacobian matrix relates the speeds of the active joints with the corresponding instantaneous
twist motion of the moving platform. This duality was presented in [Waldron and Hunt, 1991]
and later in [Collins and Long, 1995(b)]. The duality of the Jacobian definitions for Serial and

Parallel manipulators stems from the duality between wrenches and twists. For serial
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manipulators, the twist of the end effector is a linear combination of the motion screws
associated with the active joints. For parallel manipulators, the resultant wrench acting on the
moving platform is a linear combination of the active joints’ action screws. Equation (7.1) is
the general form of the input-output velocity relation of a general non-redundant manipulator
[Gosselin and Angeles, 1990].

Ax =Bq (7.1)
Where x denotes the vector of the output link’s position and orientation variables, x denotes

twist rates of the output link, q denotes the vector of the active joints values, and q denotes

the speeds of the active joints.
For open-chain manipulators, the direct kinematics is trivial; therefore, there exists an
explicit relation in the form of Eq. (7.2).
x = f(q) (7.2)
Taking the time derivative of Eq. (7.2) yields a relation in the general form of Eq. (7.1) with
the matrix A being the identity matrix. Therefore, the definition of the Jacobian matrix for
serial manipulators is according to Eq. (7.3).
x=Jq (7.3)
The matrix J is the Jacobian matrix for serial manipulators and it is defined by the partial
derivatives of the direct kinematics relations.

= (7.4)
4 an

The direct kinematics of closed-chain manipulators does not have simple explicit form
and the inverse kinematics problem has explicit and relatively trivial form. Therefore, a
relation in the form of Eq. (7.5) is always attainable. Alternatively, loop closure equations
may be used for the Jacobian formulation [Basu and Ghosal, 1996].
q =1f(x) (7.5)
Taking the derivative of Eq. (7.5) with respect to time yields a relation in the form of
Eq. (7.1). For a fully-parallel manipulator, the matrix B is a diagonal matrix and it is easy to
invert it. Therefore, the definition of the Jacobian matrix and the input/output velocity relation
for parallel manipulators is given by Eq. (7.6). This definition assures that for a fully-parallel
manipulator the Jacobian matrix exists for all configurations [Ma and Angeles, 1992].

q=Jx (7.6)
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Equation (7.7) gives the expression for the Jacobian matrix cells. Moreover, the Jacobian
matrix, J, is the product of multiplying two matrices according to Eq. (7.8), [Gosselin and

Angeles, 1990].

j, =290 (7.7) J=B'A  (7.8)

Y aXJ

The matrices, A and B, are called the instantaneous direct kinematics matrix and the
instantaneous inverse kinematics matrix, respectively. These matrices are used for
determining the singularity conditions regarding loss or gain of degrees of freedom [Gosselin
and Angeles, 1990] and will be used in the singularity analysis presented in chapter 10.

By assuming no power loss in the manipulator, we obtain the input/output static forces
relation. For serial manipulators, the Jacobian relates between the wrench applied by the

output link on the environment and the corresponding forces of the active joints, Eq (7.9).

t=J'f (7.9)
Where 1 is the vector of active joints’ forces and f is the wrench applied on the environment
by the output link. For parallel manipulators, the Jacobian matrix relates between the
force/torque intensities of the active joints and the resultant wrench on the output link

according to Eq. (7.10).

-1

=3 f (7.10)
Table 7.1 summarizes the input/output velocity and static forces relations for parallel

and serial manipulators.

Table 7.1: Jacobian definition for Parallel and Serial manipulators.

07710 078121721 0772721 0012177 1R PD 1 TN 7.1 1720

General input/output velocity relation:  Ax=Bq

Property Parallel manipulators Serial manipulators
Explicit kinematic relation q=f(x) x =1(q)
Instantaneous relation q=Jx x=Jq
Jacobian definition T = 22‘ J=B"A i= ? J=B
j q;
Static forces relation = Jt_lf t=J%
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In chapter 1 we gave the definition of a fully-parallel manipulator. This definition
results in parallel robots with diagonal and non-singular instantaneous inverse kinematics
matrices. Therefore, we refer to every manipulator that has a non-diagonal instantaneous

inverse kinematics matrix as a non-fully-parallel manipulator.

7.3 Jacobian formulation of a class of parallel robots

All the manipulators in Fig. 5.14 share the same tripod mechanism shown in Fig. 7.1.
Accordingly, we first develop the Jacobian matrix of this tripod mechanism and we use this
Jacobian matrix to develop the Jacobian matrix of a complete manipulator that belongs to the
aforementioned class of manipulators. We then concentrate in particular on the USR and the
RSPR robots and we derive the Jacobian matrices for these robots. We will use force
decomposition method to formulate the Jacobian of the tripod mechanism and the RSPR
robot. We will also formulate the Jacobian matrix for the USR robot and demonstrate the
velocity-based method. The formulation of the Jacobian matrices for the USR, RSPR, and the
Double Circular Triangular (Fig. 2.7) robots was presented in [Simaan, Glozman, and

Shoham, 1998] based on the force decomposition method.

Revolute

Moving platform

Figure 7.1: Common tripod mechanism.

Amuwn 227-N70 011101 :7.1 1R

7.3.1 Jacobian of the tripod mechanism
The tripod in Fig. 7.1 includes a moving platform and three links, A;. The links, A;, are
connected to the moving platform by revolute joints and to the previous links in the kinematic

chains, B;, by spherical joints. The spherical joint simplifies the force decomposition since it
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transmits forces only [Cleary and Uebel, 1994]; therefore, we will use this method to
formulate the Jacobian.

We will use the following symbols in agreement with and in addition to the symbols
presented in chapter 6:

i: an index referring to a specific kinematic chain. i=1,2,3.

o,,: the center point of the moving platform.

I, : a unit vector along the axis of the upper revolute joint in the i’th kinematic chain.

WRp: rotation matrix transforming vectors from the central platform-attached

coordinate system to world coordinate system.
$1i: a unit vector along the 1’th tripod link, A;.
s1i: a vector from the spherical joint center to the upper extremity of the i’th kinematic
chain.
$2i: a unit vector through the center of the spherical joint of the i’th kinematic chain

and parallel to the axis of the upper revolute joint F;.

f1i: the magnitude of the force transmitted along link A;.

f>i: the magnitude of force acting on the tripod link, A;, along $»;.

f;: three-dimensional vector of the force intensities fj;.

f,: three-dimensional vector of the force intensities f;.

s.. the external wrench applied by the moving platform on its environment. The

external wrench is a six-dimensional vector specifying in its upper three elements
the resultant external force f., and in its last three elements the resultant moment t.,
1.e., se= [fe, t].

Link A;jis connected to the moving platform and to link B; by a revolute joint and a
spherical joint, respectively. Consequently, in static analysis it is capable of exerting on the
platform a force in a direction spanned by the flat pencil of §;; and r;, and a moment in the
direction of T; x §; as illustrated in Fig. 7.2. Link B; can exert on link A; through the center of
the spherical joint, a force in a direction defined by the flat pencil of §;; and $;, Fig. 7.2.
Therefore, we decompose the force transmitted from link B; to A; into two components. The
first component is of magnitude f}; and in the direction of §;; and the second component is of
magnitude f5; and in the direction of §,;.

Equations (7.11) and (7.12) result from static equilibrium of forces and moments about

the center point of the moving platform, respectively.
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3 . oa 34 4
DTS+ sy —f. =0 (7.11)
3 . 3 . 3 .
D URppp xfysy+ > VRopp x By + > - s, xBisy —t. =0 (7.12)
Where the expression 213: " $1; xf5:8,; represents the moments of the forces 28, along the

axes I; x8y;, Fig. 7.2.

Writing Equations (7.11) and (7.12) in a matrix form yields:

§11 §21 fl [
R T
pPPi X8 (TR pp; —s1;) x8y; | 12 e

Flat pencils

Figure 7.2: Force transmission from link B; to A; and from link A; to the moving
platform.

DTN IN90797 A; 1772101 A; 71772107 B; 1772100 112 11200 :7.2 1R

Equation (7.13), when compared to Eq. (7.10), yields the Jacobian matrix of the tripod

mechanism, which will be referred to by the symbol J.

t
~ S s
J=| " a (7.14)
Ropp; x8;; (T Rppp; —s;5) X 8y;

The forces at the spherical joints are given by:

f1 _~t71 fe
e

The rows of the Jacobian matrix of the tripod, 3, are the Pliicker line coordinates of

the lines along the links_ §;, and the lines $,;. This geometric interpretation of the Jacobian

matrix, J , is presented in Fig. 7.3.
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Unlike the result obtained by [Tsai, 1998], The formulation of J presents a matrix

which is constructed from lines that are easy to determine since it describes a typical

subassembly of a class of manipulators. The geometrical interpretation of the rows of J is

important for the singularity analysis, which is based on line geometry. The geometry of the

lines of the Jacobian J is easily determined in a platform-attached coordinate system.

Figure 7.3: Geometrical interpretation of the rows of the tripod’s Jacobian matrix.
L227-N700 0771010 20 1RM219D0 M0 20 uniR™ 11X :7.3 11'R

The group of manipulators in Fig. 5.14 shares the same tripod mechanism. The
complete Jacobian matrix of a manipulator in this group is easily obtained by taking into
account the equilibrium of forces at the spherical joints. It is possible to obtain a relation
between the forces fj; and f,; and the active joints forces by treating the remainder of the
kinematic chains as a serial chain and applying the reactions on link B;. The relation between
the actuators’ force intensities and the forces at the spherical joints is given in Eq. (7.16)
where Js denotes the Jacobian matrix of the serial chains.

T:Js{fl} (7.16)
f,
Substituting the expression for the forces at the spherical joints according to Eq. (7.15)

in Eq. (7.16) results in:

f .1
r:JS{ 1}:JQJt S, (7.17)
f2

Equation (7.17) and Eq. (7.10) have the same form, therefore, by using the definition of the
Jacobian matrix we conclude that the Jacobian of a complete manipulator is given by Eq.

(7.18).

J=J,7F (7.18)
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Therefore, the instantaneous direct kinematics matrix, A, is the Jacobian matrix of the
tripod mechanism and it is common for all the manipulators in Fig. 5.14. The instantaneous
inverse kinematics matrix, B, is the Jacobian matrix of the serial part of the kinematic chains

and every manipulator of Fig. 5.14 has a different matrix.

7.3.2 Jacobian matrix of the RSPR robot
The Jacobian matrix of the RSPR robot can be easily obtained by using the method
described in the previous section. Figure 7.4 presents the lower part of the manipulator
separated from the tripod mechanism.
We use these additional symbols For the RSPR robot:
li: the vector from the center of rotation of link B; to the center of the 1’th spherical
joint.

$ni: @ unit vector along the axis of rotation of link B;.

Moving platform N

Base platform

Figure 7.4: The actuators’ moments and the forces transmitted through the spherical joints.

0777179011 0'R91N1 717 071200 IIN13i01 072709100 20 1 0INni :7.4 11X

The torque required from a rotational actuator balances the moment of the forces
acting on link B; through the spherical joint. Therefore, the expression for the required torque

intensity, ty;, after performing algebraic manipulations is:

thi = l(gli XS pi )tlbiJfli + l(§2i X $pi )tlbiJfZi = Cny;f}; + Cnyfy (7.19)

Where Cn;; and Cny; are the coefficients of fj;and f;; in Eq. (7.19), respectively.
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We define the active joints force/torque intensities vector, T, as the linear actuator
forces and the rotating link’s torques; therefore, by substituting Eq. (7.19) and Eq. (7.15) we

obtain the Jacobian matrix of the whole manipulator.

f, I 0 || f; | 0 |1
T= = = J s, (7.20)
t, Cn, Cnmy|f, Cn;, Cn,

Where t, is a three-dimensional vector of rotating link’s torque intensities, Cn; and
Cn; are 3 by 3 diagonal matrices having Cn;; and Cny; on their main diagonals, respectively.

According to Eq. (7.20) and Eq. (7.17) the instantaneous inverse kinematics matrix, J; is:

I Cn
Jo= (7.21)
0 Cn,
The Jacobian matrix of the whole manipulator is given by Eq. (7.22).
1 on [ 8y $2; ‘
J=J 5= ! e 2 (7.22)
; {0 an {WRpPPi X8i; (w R pp; _sli)XSZi

We note that the Jacobian matrix is defined in all the configurations in which the inverse
kinematics matrix Js is non-singular. We will deal with the physical interpretation of this

phenomenon in chapter 10, where we present the singularity analysis.

7.3.3 Jacobian matrix of the USR robot

It is possible to use the same method that was used for the RSPR robot to formulate
the Jacobian matrix of the USR robot. However, to demonstrate the loop closure method we
will formulate the Jacobian matrix of the USR robot based on this method.
We will use the following additional symbols for the USR robot.

0, : the yaw angle of the 1’th link B;.

0, : the pitch angle of the i’th link B;.

0,: three-dimensional vector of the yaw angles 0,; .

0,: three-dimensional vector of the pitch angles 0,;.
Y @B : the angular velocity of the 1’th link B; relative to world coordinate system.

Yo the angular velocity of the moving platform relative to world coordinate system.
Sni: @ unit vector along the yaw axis of the universal joint.

$i: a unit vector along the pitch axis of the universal joint.
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Figure 7.5 depicts the kinematic loops of the USR robot. There are three independent
loops that lead to the closure equation in Eq (7.23). In addition, the perpendicularity of A;

relative to the revolute joint axes is expressed in Eq. (7.24).
S = t+WRpppi —1p; —e; (7.23)
$1;'85; =0 (7.24)
The time derivative of Eq. (7.23) and (7.24) is given in the following equations.

§;; = t+" o x" R pp;—" @ x 1 (7.25)

«—— Revolute joint

Spherical joint \

Universal joint

Figure 7.5: USR robot with the kinematic loop.

Jun 1mpn nR?2172m USR 81211 :7.5 117X

slit§2i + slit§2i =0 (726)

The lower link is actuated by controlling its pitch and yaw angles, therefore, the expression
forV @b is:

W(J)Bi = énigni + érigri (727)

In addition, the upper link A; is rigid, therefore, the following condition in is fulfilled.
§;;'8;; =0 (7.28)

By substituting equations (7.25) and (7.27) in Eq. (7.26) and performing mathematical

manipulations, we obtain the following result.

t
§21tt+[(prPPi _slin§2i:| Yo" = (85 %85 ) 1Oy + (835 % 855)' 11105 (7.29)
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We also substitute equations (7.25) and (7.27) in equation (7.28) and we obtain the following

result.

~ M ~ t ~ ~ - ~ ~
817 €+ (WRpPPi x sli) Mo = (85 %85 ) 1Oy + (815 %3 ) 10, (7.30)

Writing equations (7.29) and (7.30) in a matrix results in a matrix equation in the form of Eq.

(7.1).
Sii $2i T i Cn; Cr |6,
YR oo x5 (YR oo, ) < |lwopl= : (7.31)
ppplxsll pppl $1i )X 821 © Cn2 CrZ er

Where Cnj, Cny, Cry, and Cr; are 3 by 3 diagonal matrices with the following elements on

the main diagonal.
A At ~ a0t
Cny; = (81 x8,;) Iy Cny; = (85 X8, ) Iy (7.32)
A ooa )t s ooa )t
Cry; = (815 x85)' Iy, Cry; = (85 x85) 1y (7.33)
The instantaneous direct and inverse kinematics matrices are directly obtained by

equating Eq. (7.31) with Eq. (7.1) and the Jacobian matrix of the USR robot is given by Eq.
(7.8).

A A t
Cnl Cl‘l - Sti §2i
J= W R W R (7.34)
Cn, Cr, R, pp; x§y; R, pp; =85 | X8y

7.4 Conclusions

We showed that the Jacobian formulation for all the robots of Fig. 5.14 has the same
instantaneous direct kinematics matrix A, which is determined solely by the upper tripod
mechanism. However, these robots differ in the instantaneous inverse kinematics matrix, B,
which is determined by the serial part of the kinematic chains.

Additionally, the rows of the instantaneous direct kinematics matrix were shown to be
the Pliicker line coordinates of the lines that govern the kinematics of the tripod mechanism.
The formulation of the Jacobian matrix, when compared to other methods such as the
formulation which was suggested by [Tsai, 1998] using reciprocal screws, yields a direct
geometrical interpretation regarding the lines that govern the kinematics of the system.

The Jacobian formulation in this chapter serves as a mathematical background for the
singularity analysis of the family of manipulators presented in Fig. 5.14. This method is
simpler for mechanisms with spherical joints because of the easy decomposition of the forces

transmitted through the spherical joint.
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Chapter 8
Dimensional Synthesis of the USR and the RSPR Robots and

Performance-Based Comparison

8.1 Introduction

This chapter presents the dimensional synthesis of the USR and RSPR robots to fulfill
the task assigned for in chapter 4. The details of this work were presented in [Simaan,
Glozman, and Shoham, 1998] where, in addition to the USR and the RSPR robots, we
included in the comparison the Double Circular Triangular robot and the RRPS parallel robot.

The aim of the synthesis process is to find the minimal dimensions of the robots that
provide the required work volume and end effector forces (refer to chapter 4 for details). The
synthesis process is based on computer simulations that use the inverse kinematics and the
Jacobian formulations of the robots in order to evaluate the required actuator forces/ranges
and spherical joint limits. The synthesis of the robots also included ruling out robots that

exhibit singular configurations in the required work volume.

8.2 Dimensional synthesis

The dimensional synthesis presented in this chapter is based on computer simulations.
In the simulations, we scan a vast range of robots with different characteristic dimensions and
we select the robot with the minimal dimensions that satisfies the desired work volume with
minimal actuator forces.

In addition to the symbols presented in chapters 6 and 7, we introduce the terms
central configuration and initial height of a robot. In a central configuration, the moving
platform is parallel to the base platform and its center is located right above the center of the
base platform and displaced from the base platform by an amount equal to the initial height
parameter. We will use the symbol h, to refer to the initial height parameter. The central
configuration of a robot corresponds with the center point of the required work volume cube,
Fig. 8.1.

The characteristic dimensions of the RSPR robot are the radius of the moving
platform, rp,; the radius of the lower rotating links, r,; the eccentricity amount, e; and the initial
height h,, Fig 8.2(a). The characteristic dimensions of the USR robot are the radius of the
moving platform, rp; the length of the lower and upper rotating links, 1; and I, respectively; the

eccentricity amount, e; and the initial height, h., Fig. 8.2(b).
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Required work volume

Figure 8.1: A parallel robot in central configuration and the correspondence of this
configuration with the center of the required work volume.
1T '8 7127921P NINXNNT D20 13711791192 272910 ¥1217 :8.1 11X
01T OT12D0 91 12IN7

Figure 8.2: Characteristic dimensions of the RSPR robot (a) and the USR robot (b).
.(b) USR 1121771 (a) RSPR 1812177 N1"17"91® M17T™N :8.2 11"R

The computer simulations aim to determine all the admissible robots that fulfill the
desired task (presented in chapter 4) and additional design requirements. The design
requirements included feasible actuator forces and spherical joint tilting ranges.

The characteristic dimensions of the USR and the RSPR robots were altered during the
simulations and a vast array of robots was examined. Table 8.1 presents the scanned range of
the characteristic dimensions for the USR and the RSPR robots in the final simulations. Prior
to these final simulations, we carried out initial simulations, in which we scanned a larger
array of characteristic dimensions and we induced an evaluation of the minimal required
actuator forces/ranges. In addition, the final simulations took into account the requirement for

reasonable actuator forces. This was accomplished by determining upper bounds for the
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actuator forces based on evaluation of what is achievable from reasonable rotary/linear
actuators. This also insures that the robots do not acquire singularities inside the desired work
volume. For the RSPR robot, we set the upper bounds for the linear actuator forces and the
rotating links’ moments at 30[N] and 1.0 [Nm], respectively. For the USR robot, we set the
bound for the universal joint moments at 2.0 [Nm].

The solutions for the RSPR robot were limited by the minimal length and stroke of the
linear actuators. This requirement of actuator length stemmed from the initial simulation set.
The minimal length of the linear actuators was evaluated from design requirements of the
linear actuators and this evaluation of the minimal length and stroke of the linear actuators
was stipulated as a design requirement in the final simulation. Table 8.2 presents all the
twenty-two RSPR robots that fulfill the desired work volume, the desired actuator
dimensions, and upper the bounds of actuator forces/moments. Figure 8.3 explains all the

symbols presented in Table 8.2.

Table 8.1: The scanned range of characteristic dimensions of the RSPR and USR robots.
JI1'82IM7021 19701 10X USR 1 RSPR 07012177 N1M1M91R0 MITTM0 010N :8.1 1210
Property Symbol RSPR USR
Platform radius Ip 30: 10: 100 20: 10: 60
Rotating link length T 30: 10: 100
Initial height h, 40: 10: 200 50:10: 120
Eccentricity e 20: 10: 80 20: 10: 60
Lower link length 1 20: 10: 80
Upper link length I, 20: 10: 80
Number of scanned robots 7616 9800
Number of admissible robots 22 95
Note: All dimensions are in millimeters.
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Table 8.3 presents forty out of ninety-five USR robots that fulfill the design
requirements. In addition, the table presents additional motion limits. These motion limits

inhibit inverse kinematic singularity by limiting the angle between the upper and the lower
links.

Figure 8.3: Geometric presentation of the symbols in table 8.2.

.8.2 117101 0™ 1IN"07 "UNIR™ 18 :8.3 11"

Figure 8.4: Geometric representation of the symbols in table 8.3.

.8.3 117101 0™ 1IN™07 "UNIR™ 118 :8.4 11™R
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8.3 Selecting a prototype candidate

Based on the simulation results in tables 8.2 and 8.3 we chose one robot from the
admissible RSPR robots and one robot from the admissible USR robots. These robots are
identified in tables 8.2 and 8.3 by their dark background data rows. Theoretically, we should
select the smallest robots in tables 8.1 and 8.2; however, we chose mechanically feasible
robots. This requirement stems from the fact that we intend to locate the motors between the
base and the moving platforms of the RSPR robot. Also for the USR robot we selected a robot
with dimensions that allow locating three active Hooke’s joints in the base platform.

Tables 8.2 and 8.3 show that the rotary actuators in the RSPR robot are required to
provide smaller moments than the rotary actuators for the USR robot. The required spherical
joint tilting range for the selected RSPR robot is smaller than the one for the selected USR
robot.

In addition to the above simulations, we compared the selected USR and the RSPR
robots by plotting the required actuator forces along a diagonal path from the lower corner of
the workspace cube (point [-20, -20, -10] mm) to the upper corner of the cube (point [20, 20,
10] mm), while keeping the moving platform with an orientation of 20 about the [1, 1, 1] axis.
The results shown in Fig. 8.5 and Fig. 8.6 correspond to a [7, 7, 7 [N], .0.7, 0.7, 0.7 [Nm]]

wrench applied by the moving platform on its environment.

[N] [N*m]

25 , , , 0.43
: . L e o T

P et LR LT  LEREt EEEEEE TR, - R 0.35

18- -------- Am-m - e LT el SEEEEEEEEE A 0.29

e - T T R EET TP T 0.00
-] S L R R — R - oo 0.10
! A R ! !

AT R S T e 019
15 ‘ ‘ ' ‘ ‘ 029
0 0.01 0.02 0.03 0.0 0.05 0.06

path length

Figure 8.5: RSPR selected robot actuator forces along the diagonal path.
JNTD?RI 217000 771IR? N2l RSPR 91217 1120 07270911 1IN0 :8.5 11'R
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Figure 8.6: USR selected robot actuator forces along the diagonal path.
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The results in Fig. 8.5 and 8.6 show that the required actuator moments of the selected
RSPR robot are smaller than the ones required from the actuators of the selected USR robot.
In addition, the USR robot suffers from mechanically complicated design because of the
usage of the three active Hooke’s joints. We will show in chapter 10 that the use of these
active Hooke’s joints introduces undesirable singularities. Based on these results and on the
design advantages of the RSPR robot we chose the RSPR robot as the best solution to our
design problem because of its relatively small size, small required actuator forces and
achievable spherical joint tilting ranges. Therefore, the prototype, which is presented in

chapter 11, is based on the selected RSPR robot.

8.4 Work volume of the selected RSPR robot

This section analyses the workspace the RSPR robot. The algorithm for workspace
evaluation starts from an initial position with a valid inverse kinematics solution. We use
cylindrical coordinate system [p, ¢, z] to evaluate the work volume. For every constant z
section, we move the platform in radial directions for a varying angular coordinate, ¢, and we
register the maximal radial distances pmax that correspond to a valid solution. All the

workspace figures in this section give the workspace in a [x’, y’, z’] coordinate system
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parallel to the base-platform-attached coordinate system [Xo, yo, Zo] with an origin fixed at the
initial position. Therefore in these figures z = 0 denotes the workspace section in which the

robot maintains a height equal to its height in the initial position, Fig. 8.7.

The robot in its initial position and its
associated coordinate system

— -~

Base platform-attached
coordinate system

Figure 8.7: The RSPR in an initial position and its associated coordinate system.

MNRANN TV TR N30T N2NN0 1°%712°91122 RSPR 181217 :8.7 11'R
AT 178712911072

Fig. 8.8 presents constant height sections of the workspace of the RSPR robot. Fig 8.9
depicts the 3-D work volume boundary surface of the RSPR robot. Both these figures
represent the workspace of the RSPR robot with a moving platform parallel to the base
platform and with an initial position [0, 0, 0.16][m] with respect to the base platform attached

coordinate system.

Figures 8.10 and 8.11 depict the workspace of the RSPR robot with a moving platform
oriented 20° about the [1, 1, 0] axis. From these figures, it is clear that the desired 40x40x20-
mm work volume cube is within the workspace of the moving platform and it is obvious that
the work volume of the RSPR robot is markedly affected by the orientation of the moving
platform. However, even with 20° rotation of the moving platform about the [1, 1, 0] axis we

still fulfill the desired workspace cube.
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30 view of the workspace Top view of the workspace
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Figure 8.8: Sections of the RSPR robot work volume with parallel platforms and an
initial position of [0, 0, 0.16] [m].
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Figure 8.9: The RSPR robot work volume boundary surface with parallel platforms

and an initial position of [0, 0, 0.16] [m].
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30 view of the warkspace Top view of the warkspace
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0: Work volume sections of the RSPR robot with the moving platform rotated
20° about the [1, 1, 0] axis.
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rotated 20° about the [1, 1, 0] axis.
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8.5 Conclusion

Based on the design objectives set forth in chapter 4 we performed dimensional
synthesis of the USR and the RSPR robots. The comparison of the RSPR robot with the USR
robot, the Double circular triangular robot, and the RRPS robot indicated that the RSPR robot
is better than the others in terms of smaller required actuator forces and smaller spherical joint
tilting range. The synthesis process resulted in 22 admissible RSPR robots and 95 possible
USR robots with different characteristic dimensions. Based on design guidelines we chose
one USR robot and one RSPR robot as candidate robots for our design task. We performed
comparison between the two selected robots and we showed that the candidate RSPR robot is
better than the candidate USR robot in terms of mechanical simplicity and smaller actuator
forces. Therefore, we chose the RSPR candidate robot as the preferable solution to our design
problem. Chapter 11 will present prototype of the RSPR robot, which has the characteristic
dimensions of the candidate RSPR robot described in this chapter. The following chapters
present additional advantages of the RSPR robot over the USR robot in terms of less singular

configurations.
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Chapter 9

Introduction to Line Geometry

9.1 Introduction

This chapter serves as a humble introduction to the subject of line geometry in space.
The objective of this chapter is to lay the logical foundations for the singularity analysis
presented in the next chapter.

Line geometry deals with defining the elementary geometrical forms in space and
determining the conditions for linear dependence between points, planes and lines. The
material in this chapter is mainly based on [Veblen and Young, 1910; Graustein, 1930;
Sommerville, 1934; Hunt, 1978]. Other good references, for the reader who is interested in a

summary of the subject, are [Ben Horin, 1997] and [Dandurand, 1984].

9.2 Homogeneous coordinates of points, planes and lines in space

Every point in space is ordinarily defined by the set of three Cartesian coordinates [x,
y, z]. This representation lacks the capability of treating points, lines, and planes at infinity.
The definition of homogeneous coordinates allows overcoming this obstacle and leads to
homogeneous equations for planes, thus, facilitating the analysis of linear dependence
between planes and transforming it into a problem of solving a set of homogeneous equations.
The use of lines at infinity is important in kinematics since, for example, it allows describing
the motion of a prismatic joint and linear motion in plane by using screw motion about a line
at infinity with zero pitch. Furthermore, the homogeneous coordinates have no metric basis

and serve as a tool for projective geometry.

9.2.1 Homogeneous coordinates of a point in space
Let a point in space be represented by the non-homogenous Cartesian coordinates [x,
y, z]. The Homogeneous coordinates of this point are defined by Eq. (9.1) Where the entire
coordinate sets [X], X2, X3, X4] and k[X1, X2, X3, X4], With x4 # 0, represent the same point [X, vy,
z].
o ~2 oy 9.1)
Xy Xy Xy
Additionally, the coordinate set [l, m, n, 0] represents a point located at an infinite

distance along all rays having the direction numbers 1, m, n. This is proved by writing the
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parametric representation of the Cartesian coordinates of the points located along a ray with 1,
m, n direction numbers. The Cartesian coordinates, written in a homogeneous form, of these

points are [xo +1t,y, + mt,z, + nt,l]. Where xo, yo, and z are the Cartesian coordinates of a

point on the ray. By dividing by the parameter ¢ and considering the case where ¢ approaches

infinity, we obtain [1, m, n, 0].

9.2.2 Homogeneous coordinates of a plane in space
The equation of a plane in Cartesian coordinates, [X, y, z], is given by

ax+by+cz+d=0 (9.2)

By using the definition of homogeneous coordinates, one obtains the homogeneous equation
of a plane as presented in Eq. (9.3).

a;X; +a,X, +a3x;+a,x, =0 (9.3)
Thus, the homogeneous coordinates of a plane are the ordered set [a;, ay, a3, a4]. We note that
since [1, m, n, 0] represents a point at infinity along a ray with 1, m, n direction numbers, then
the equation x4 = 0 represents the plane at infinity.

If we refer to the plane having the homogeneous plane coordinates [a;, a,, a3, a4] as a,
and to the point having the homogeneous coordinates [x;, X», X3, X4] as X, then we can
interpret Eq. (9.3) in two dual forms. Eq. (9.3) represents all the planes, a, passing through a
given point, X, and in a dual form, it represents all the points, x, lying on a given plane, a. This

brings us to the following duality principle in projective geometry.

9.2.3 The principle of duality

The principle of duality states that the basic elements in space, the plane and the point,
are dual. Duality stems from the fact that points and planes have the same four-dimensional
form of homogeneous coordinates. This duality is used in [Veblen, 1910] and [Graustein,
1930] where all the theorems regarding points appear in pairs with all the theorems regarding
planes by interchanging the words point and plane. In plane geometry, the line and the point
are the dual of each other. To summarize, table 9.1 lists the dualities in space and plane

geometry.
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Table 9.1: Duality of geometric basic elements

0770702 071UNIR™Y 07UIN2R 20 N172R1T 9.1 11710

Dimension Homogeneous equation Duality
Space geometry: a;X; +a,X, +a3x;+azx, =0 Point < Plane.
Plane geometry: a;X; +a,X, +a3;x; =0 Point < Line.

9.2.4 Homogeneous coordinates of a line
Either two distinct points or two planes define a line in space. Based on this fact,
Julius Plucker introduced the homogeneous coordinates of a line, 1, as the ordered six

coordinates defined by Eq. (9.4)

1= [p41, P42, P43, P23, P31, P12] 94
Where pj is defined by Eq. (9.5).
Pik = Xj Yk — Xk Yj j, k= 1,2,3,4. _]ik (95)

One can notice that Eq. (9.5) defines twelve entities, which only six of them are
linearly independent. This is due to the fact that p;; = -p;. If x and y represent homogeneous
coordinates of two distinct points, then Eq. (9.4) is referred to as the Plucker homogeneous
ray coordinates of a line. If x and y represent homogeneous coordinates of two distinct planes
then Eq. (9.4) is referred to as the Plucker axis coordinates of a line.

The Plucker coordinates of a line can be represented in a compact form by using the
homogeneous coordinates of two points, x and y, located on it. Eq. (9.6) presents a 2x4 matrix
used to compute the pj Plucker coordinate by computing the determinant of a 2x2 matrix
constructed from the j and the k columns.

|:X1 Xy X3 Xﬂ (9.6)
Yi Y2 Y3 Y4

Let 1 be a line defined by the points x = [Xi, X2, X3, X4] and y = [y1, Y2, V3, y4]. If we
associate with this line an intensity of force acting along it, then the first three ray coordinates
of line 1 represent the vector of the force and the last three coordinates represent the moment
of the force about the origin. For instance, the Plucker coordinate p;, represents the intensity
of the moment of a force along line 1 about the z-axis, Fig 9.1. The expression for p;, in Eq.

(9.5) is manipulated to have the following form in Eq. (9.7).
pP12= X1y2 — X2y1 = Xi1(y2 - X2) - X2(y1-X1) 9.7)
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If we draw the line, 1, in scale as in Fig. 9.1, then its length is proportional to its intensity.
Therefore, Eq. (9.7) gives the moment of a force along line 1 about the z-axis. Similarly p,3
and ps3; represent the intensity of the moment of a force along line 1 about the x and y axes,
respectively. The first three Plucker line coordinates pai, p42, and pas are the direction numbers

of the force vector along line 1.

ZA }/A

D/lay23y3ay4] [yl’y27y37y4]

1
=-X1
X1, X2, X3, X4]| ! Y
[ b b b ] :E E

»
»

1
[x1, X2, X3, X4] ! Eyl X1

X X

Figure 9.1: Physical interpretation of the Plucker coordinates.

Plucker M1 1112 2W "29°1"9 W17"9 :9.1 11"R

Based on the above explanation, the Plucker coordinate set [0, 0, 0, p23, p31, pi2]
represents a line on the plane at infinity, which is perpendicular to a line with the direction
numbers [p23, p31, p12]. This result is obtained by substituting two point coordinates x and y in
Eq. (9.5) with x4 = 0 and y4 = 0. For example, A line with the Plucker line coordinates [0, 0, O,
1, 0, 0] is located in a plane at infinity, which is perpendicular to the x axis and has only a
moment about the x axis. This reasoning, presented in [Hunt, 1978], helps to understand the
following relation between the Plucker coordinates of a line:

P1,P43 T P31P45 + 041025 =0 (9.8)

Eq. (9.8) represents the perpendicularity between the moment of a line about the origin
and the line itself. This equation is a quadric surface in a five dimensional space and every
point on it represents a sextuple [al, a2, a3, a4, a5, a6] which satisfies the condition for being
a legal set of homogeneous line coordinates [Graustein, 1930]. Therefore, every point on this

quadric is a line in the 3-dimensional space. This equation is referred to as the Grassmannian

or the Plucker quadric [Merlet, 1989].
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9.3 The basic geometric forms
This section deals with the questions related to the minimal number of
points/planes/lines required to define the space.
Two distinct points, X and y, define a range of points such that all the points, z,
belonging to this range of points, fulfill the following equation.
Z =ax+by 9.9)

All these points, i.e., the points that fulfill Eq. (9.9), are collinear with x and y.

Three points, X, y and z, can either be collinear, or not. If the three points are collinear
they belong to the same range of points. If they are non-collinear they define a plane of points.
All the points lying on this plane, w, are linear combination of the three points.

w=ax+by +cz (9.10)

Four distinct points u, v, w, z may either be collinear, coplanar, or non-coplanar. If the
four points are collinear they obey Eq. (9.9) and, therefore, they are linearly dependent. If the
four points are coplanar then they are linearly dependent and fulfill Eq. (9.10). If the four
points are non-coplanar, then they define all the points in space, s, as a linear combination:

s=au+bv+cw+dz (9.11)
Based on these facts, any group of more than four points is linearly dependent.

To summarize, points define three basic geometric forms, i.e., the range of points (or
pencil of points), the plane of points, and the space.

We can now consider planes and use the point-plane dualities to deduce the following
results: Two planes having the homogeneous plane coordinates, x = [X;, X2, X3, X4], and y =
[v1, Y2, V3, Y4], define a pencil of planes such that every plane, z, fulfills Eq. (9.9), where x and
y in this equation are plane coordinates. Three copunctal planes define a plane sheaf, or in
other words, a bundle of planes. All the planes, w, in this bundle of planes, fulfill Eq. (9.9),
where X, y, z, are plane coordinates. Four non-copunctal planes define the totality of planes in
space, such that every plane in the space, s, fulfills the plane version of Eq. (9.11). Therefore,
by using the duality principle, we concluded that the plane defines three basic geometric
forms, namely, the pencil of planes, the bundle of planes, and the space.

Two distinct lines, 1 and m, may be either skew or copunctal. If the lines are copunctal
then the two pairs of points [X;, X2]€l and [y;, y2]€m are coplanar; thus, they are linearly
dependent, i.e., |x; X2 y; ¥2| = 0, or by implementing the definition of Plucker line coordinates
(1,m) = 0. Where the operator (I,m) is defined for six-dimensional vectors 1 = [1;, I, 13, 14 s, 1¢]

and m = [m;, mp, m3, my ms, mg] according to Eq. (9.12).
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(ILm) =1, my + hms +l3 mg + Iy m; + 1s my + lg m3 (9.12)
If 1 and m are two Plucker coordinate vectors of two lines, then writing Eq. (9.12) in

terms of the Plucker ray coordinates of the lines results in:
(Lm) = 14 mp3 + lap m3y + Lyz myp + 13 myy + 131 myp + 112 mas (9.13)
The equation (a,a) = 0, when a is a Plucker ray coordinate vector, is the same as the
expression for the Grassmannian in Eq. (9.8). Therefore, the equation (a,a) = 0 is the
necessary condition for a given six-dimensional vector, a, to be an admissible ray coordinate
vector. Furthermore, we will show that the operator (I,m) based on Eq. (9.13) for two lines, 1

and m, represents the mutual moment of the lines.

To explain Eq. (9.13) we consider two lines 1 and m having Plucker ray coordinates 1
=1, ly]' and m =[m,, mg]. Where 1, and m, are the unit vectors of lines 1 and m and l,, my are
the moment vectors of lines 1 and m about the origin, respectively. The expression for the

moment intensity, Q, of a unit force acting along the line 1 about the line m is given by Eq.

(9.14).
Q=(dx1,)'m, (9.14)
The vector d is a vector from a point on line m to a point on line 1, Fig 9.2. Let r; and ry,

represent two vectors from the origin to an arbitrary point on lines 1 and m, respectively. The

vector d is given by Eq. (9.15)

Figure 9.2: Mutual moment of two lines.

O 10 172 7T N (9.2 11'R
d=r-rn (9.15)

Substituting Eq. (9.15) in Eq. (9.14) and performing some algebraic manipulation
leads to the result in Eq. (9.16).
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Q=(@x1,)'m, =(rx1,fm, +1,(r, xm,) (9.16)
The expressions (r; x1,) and (r,, xm, ) are the moment vectors of lines 1 and m about

the origin, respectively. Therefore, we showed that the result in Eq. (9.16) is the same as the
one in Eq. (9.13).

Two intersecting lines, x and y, define a pencil of lines, such that every line in this
pencil of lines, z, fulfills the line version of Eq. (9.9). Three copunctal, but non-coplanar, lines
define a bundle of lines, such that every line in this bundle, w, fulfills Eq. (9.10). Three
coplanar, but non-copunctal, lines define a plane of lines and every line in this plane obeys the
line version of Eq. (9.10).

Consider the two planes x-z and y-z of a Cartesian coordinate system. Each of these
two planes is defined by the point of origin and another two points on each plane, Fig 9.3.
Therefore, every point on each of these planes fulfills Eq. (9.10) with only two independent
variables. Consequently, every line in space is defined by four independent variables that
correspond with the two pairs of variables that define its piercing points, p; and p,, with
planes x-z and y-z. Hence, there are «o” lines in space. Based on this fact lines are equivalently
defined by the slope-intersect method, which depends on only four parameters of the slope

and intersect variables of two of its projected lines on planes x-y and x-z [Roth, 1984].

/

Figure 9.3: Four parameters define every line in space.
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We now come to answering the question: how many lines define the space? This
question is legal since we know that the six Plucker coordinates of a line are connected by the
Grassmannian and the norm of a unit vector along the line. Since a line in space is dependent

only on four parameters, one might think that four lines are sufficient to define all the lines in
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space. However, since the two relations of the direction numbers with the Grassmannian and
the norm of a unit vector along a line are nonlinear equations, then all the six Plucker
coordinates are linearly independent. Therefore, six independent lines define all the lines in
space. Another synthetic method to prove this, which was not presented in any of the above-
mentioned references, is presented hereafter.

The proof relies on the previous conclusions regarding the number of points and
planes to define the space. Fig. 9.4 (a) presents the complete quadrangle, which is defined by
four non-coplanar points x, u, v, w. Since these four points are non-coplanar, they are linearly
independent and they span the space. Similarly, these points define four non-copunctal planes,
therefore, these planes are independent and span the whole planes in the space. We note that
every three lines that correspond to the edges of a facet define every facet plane of the
quadrangle. Therefore, every three adjacent lines, along the edges of a tetrahedron facet, span
all the lines in the plane of the facet. Accordingly, the required number of lines to span all the

lines in space is six.

(a) (b)
Figure 9.4: Six independent lines span the space.
ANNN MR 019 07120 "N22 019 100 9.4 11'R

In the general case, it is possible to find six independent skew lines 1°,2°, 3, 4°, 5°, 6’
that span the space. We use the notations 1 € Plane(x, y, z) and 1 € Bundle(x, y, z) to indicate
the fact that a line, 1, belongs to a plane of lines or a bundle of lines that are defined by lines x,
y, and z, according to Eq. (9.10), respectively. Fig. 9.4 (b) shows six independent lines 1°, 2°,
3’, 4, 5, and 6’. These lines depend on the edges of the quadrangle in Fig. 9.4 (a) as
indicated in table 9.2.

-85 -



Chapter 9: Introduction to Line Geometry

Table 9.2: Linear dependence relations between the lines in Fig. 9.4 (a) and the lines in
Fig. 9.4 (b).

9.4 (b) 71"%2 0"1PiM 9.4 (a) 1"RA TP 172 I™IRM™? N17N 20 0Wp 9.2 1710

1’ € Plane(1, 2, 3). 2’ € Plane(1, 4, 5). 3’ € Plane(3, 5, 6).

4’ € Plane(2, 4, 6). 5’ € Bundle(1, 2, 4). 6’ € Bundle(2, 3, 6).

Writing Eq. (9.10) six times according to the relations in table 9.2 results in six linear

equations represented in matrix form in Eq. (9.17).

1,2,3,4,5,6]B=[1",2",3,4",5, 6] (9.17)
Where B is a 6x6 matrix, in which, every column includes the coefficients of the equation in
the form of Eq. (9.10) that corresponds to line 1°, through 6’. Based on Eq. (9.17), If matrix B
is non-singular then the lines 1°, 2°, 3°, 4°, 5°, 6’ are linearly independent and they span all the
lines in space. The objective of the following section is to determine the necessary geometric

conditions that render a group of six lines to be linearly independent.

9.4 Line families and linear dependence of lines

In general, there are oo* lines in space. If we impose on the homogeneous coordinates
of a line, p, a set of homogeneous linear constraints in the form of Eq. (9.18), then we define
families of lines.

(a,p)=0 (9.18)

Every family of lines includes all the lines that satisfy a given set of constraints.
Imposing one linear equation as a constraint creates a family of o’ lines. This family is called
the linear complex. Similarly, imposing two constraints defines a family of o lines, which is
called the linear congruence. Three constraints define a third family of lines, which is referred

to as the reguli. Four constraints define a finite number of lines in space.

9.4.1 The linear complex
We know that the condition for a given sextuple, a, for being a legal set of line
coordinates is given by (a,a) = 0. Accordingly, we consider two cases, the first is when (a,a) =

0, and the second when (a,a) #0.

- 86 -



Chapter 9: Introduction to Line Geometry

The special complex

If (a,a) = 0, then a represents a line and p in Eq. (9.18) represents all the lines that
intersect the line a. This is due to the fact that all such lines, p, have zero moment intensity
about line a, Fig. 9.5. Therefore, the lines of the complex are all the lines which intersect a
given line, including the given line itself. The family of these lines is referred to as the special
complex. All the lines in space that intersect the axis of the special complex, a, are linearly

depend on any five lines of the special complex.

a

Figure 9.5: The special complex.

.special complex i1 11®™ T :9.5 11X

The general complex

If (a,a) # 0, then the number sextuple in a does not represent Plucker coordinates of a
line and Eq. (9.18) is interpreted according to the definition in Eq. (9.12). We first substitute
the definition of the Plucker coordinates of line p, based on two points, x and y, as given in
Eq. (9.5). The resulting equation is Eq. (9.19). Therefore, Eq. (9.18) can now be interpreted in
the following way.

> anxjyi —xiy;)=0 9.19)
(n,j,k)€[(1,2,3),(2,3,1),(3,1,2),(4,4,1),(5,4,2),(6,4,3)] '

This equation, i.e., Eq. (9.19), is linear and homogeneous in the coordinates of point Xx;
therefore, it represents the equation of a plane on which point x moves. This means that all the
lines of the linear complex pass through a given point, y, and another point, x, which moves in
a plane. Consequently, all the lines of the complex form a flat pencil of lines through y. A
linear complex of this kind is called a general linear complex or non-special complex. The
above analysis of a general linear complex is presented in the following theorem.
Theorem 1: A general linear complex has a pencil of lines in every plane and a pencil of lines
through every point in space. [Graustein, 1930].

Based on theorem 1, we deduce that every flat pencil through any point in space

defines a sub-group of a general linear complex, which is associated with it. Therefore, every
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line that depends on the generators of the flat pencil depends also on the generators of the
associated general complex.

Another theorem regarding the general linear complex was presented in [Veblen and
Young, 1910]. This theorem states the following.
Theorem 2: A linear complex consists of all lines linearly dependent on the edges of a simple
skew pentagon. The proof for this theorem is presented in detail in [Veblen and Young,

1910].

9.4.2 The linear congruence
Two equations in the form of Eq. (9.18) define two linear complexes. The linear
congruence is a family of lines with o’ lines that belong to two complexes. Eq. (9.20)
represents the homogeneous linear equations associated with the linear congruence, where a
and b are sextuples of constants not all zero, and p is the Plucker coordinate vector of a line in
the linear congruence.
(a,p)=0 (b,p)=0 (9.20)
Eq. (9.20) states that the congruence is the intersection of two complexes. Any line, p,
which belongs to the linear congruence, fulfills Eq. (9.15), where k and | are arbitrary
constants. Equation (9.21) represents a flat pencil of linear complexes.
k(a,p) +1(b,p) =0 (9.21)
The flat pencil of complexes, in Eq. (9.21), includes special complexes and the lines of the
congruence intersect the axes of all the special linear complexes that are defined by this
equation. The axes of these special complexes are called the directrices of the congruence. All
the lines in a linear congruence intersect all the directrices of the congruence.
The condition for a complex, defined by Eq. (9.21), to be a special complex is given
by Eq. (9.22).
(ka+1Ibka+1b)=0 = kZ(a,a)+kl(a,b) +12(b,b)=0 (9.22)
If we suppose that the complexes defined by a and b are special, then (b,b) =0 and (a,a) =0,
but (a,b) # 0 because a and b are not allowed to intersect. Consequently, the two directrices
of the general linear congruence are two skew lines. A linear congruence, with two skew
directrices, is called a non-parabolic congruence [Graustein, 1930] or a hyperbolic

congruence [Veblen and Young, 1910].
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The hyperbolic congruence is defined by four lines concurrent with two skew
directrices. These four lines are called the generators of the hyperbolic congruence. Any line
that is also concurrent with the directrices belongs to the congruence and linearly depends on

the four generators of the congruence.

Figure 9.6: The hyperbolic congruence.

hyperbolic congruence i1 1R :9.6 11"R

If the directrices of the linear complex, in Eq. (9.21), are concurrent, then it has one
(doubly counting) directrix, q, and this directrix is a line in a flat pencil of a general complex.
In this case the linear complexes defined by a and b are identical and general; therefore, there
is only one directrix. This directrix is a line of one of the flat pencils of the general pentagon
defining the linear complex. Figure 9.7 shows a simple spatial pentagon defining a linear

complex.

Figure 9.7: The Parabolic congruence as a subset of lines of the General complex.

.General complex i1 200 1¥12p NN3 1721 70K Parabolic congruence i1 :9.7 11X

If we consider a directrix, q, which belongs to the flat pencil defined by lines 1 and 2,
then the flat pencil [4,5] has a line 6, which intersects the directrix. Similarly, the flat pencil
[3,4] has a line 7 that intersects the directrix. Hence, all the lines defined by the three flat
pencils [6,q] [7,q] and [2,q] belong to the linear complex and constitute a linear congruence.
This type of linear congruence is called a parabolic congruence. All the lines, which belong

to one of the three flat pencils of the parabolic congruence, linearly depend on the lines q, 2,
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6, and 7.

If there is a group of four lines, with three coplanar lines 1, 2, 3, defining a plane r,
and a fourth line, 4, piercing &, then a Degenerate congruence [Veblen and Young, 1910] or a
special congruence [Graustein, 1930] forms. The three coplanar lines define all the lines in m;
therefore, they define a flat pencil of lines with a center at the point in which line 4 pierces 7.
Any line, q, in this flat pencil is a directrix of the degenerate congruence. Figure 9.8 presents
the simple pentagon associated with the degenerate congruence. Obviously, all the lines of the
degenerate congruence belong to its associated general complex, which is defined by the

simple pentagon 1, 2, 3, 4°, 5°. The lines that linearly depend on lines 1, 2, 3, and 4 are all the

Figure 9.8: The degenerate congruence and its associated general complex.

.0"XMN0 general complex 1 degenerate congruence i1 :9.8 11'R

lines in the plane 7 and all the lines through the center of the flat pencil of directrices.

The elliptic congruence has imaginary directrices and it is constituted from four
mutually skew and linearly independent lines. A line quadruple contains three line triplets. If
all the lines in a line quadruple are mutually skew, then every line triplet defines a ruled
surface called a regulus. The lines that depend on the four generators of the elliptic

congruence are the lines that depend on each one of the three reguli.

9.4.3 The reguls

This family of lines has o' lines that belong to three linear complexes. There are four
types of reguli, the first is called the regulus and the other three are called degenerate reguli.
The regulus is formed by three mutually skew directrices a, b, and ¢, and it is defined by all
the lines that intersect these three directrices. The lines that intersect all the directrices are
called the rulers of the regulus, for they define the ruled surface of the regulus. The points of

the regulus lie on a single sheet hyperboloid. The totality of the ruling lines of this ruled
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surface is called a regulus. No pair of the regulus rulers is allowed to intersect, for if two

rulers intersect, then two of the directrices are coplanar. Fig. 9.9 presents the regulus.

The rulers of a given regulus
intersect its  three  directrices.
Similarly, the directrices of the
regulus are the rulers of a conjugate
regulus and any three rulers of the
regulus are the directrices of the
conjugate regulus. Hence, the regulus

Ruler ———
is a doubly ruled surface for both the

regulus and the conjugate regulus Directrix ———

define the same ruled surface. All the Figure 9.9: The regulus and the conjugate regulus.

lines that belong to a regulus linearly
.TIMX0 regulus 11 regulus 1 1IR™7M :9.9 11"R

depend on any three of its rulers.

The other three degenerate reguli, in Fig. 9.10, are the bundle of lines, the plane of
lines, and the union. The first two degenerate reguli, i.e., the bundle of lines and the plane of
lines are two basic geometric forms, which we already presented. The union is defined by two
distinct flat pencils having one line in common.

All the lines that pass through the center of the bundle of lines linearly depend on any
three lines of the bundle. All the coplanar lines linearly depend on any three distinct and non-
copunctal lines in this plane. All the lines that belong to any of the two flat pencils of the
union linearly depend on the three generators of the union. In Fig. 9.10 the thick lines indicate

the independent lines and the thin lines indicate a linearly dependent line.

< <

Bundle of lines Plane of lines Union

Figure 9.10: The three types of degenerate reguli.

.degenerate reguli n “s10 nw17w :9.10 11"R
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9.5 Line varieties

A set of lines is a variety if all the lines in the set linearly depend on the base of the set
and no line outside the set linearly depends on the base of the set. Six line varieties are
defined based on the dimension of the base of the variety. All the lines in space depend on a
six-dimensional base of six independent lines; thus, all the lines in the space belong to the
most general space variety. The set of lines that linearly depend on five-dimensional base is
the lines of the linear complex; therefore, the line variety of rank five is the linear complex
variety. The variety of rank four is the linear congruence. The variety of rank three is the
planes variety. The variety of rank two is the /ines variety. Finally, the variety of rank one is
the point variety.

The point variety includes only one line in space, the line in the base of this variety.
The lines variety has a two dimensional base. If the lines of the base are skew then these lines
are the only lines of the variety, i.e., no other lines in space depend upon these lines. If the
lines of the base intersect, then the variety includes all the lines in the flat pencil of the base.

Tables 9.3, 9.4, and 9.5 are reproduced from [Dandurand, 1984]. These tables are
synthetic tables, i.e., they provide a logical tool for determining the geometric conditions for
linear dependence between lines. The tables are a summary of the subject of linear
dependence of lines and do not present the mathematical background of the subject.
Therefore, we wrote this chapter in order to present the mathematical background of the
subject.

Table 9.3 presents the line varieties and each variety is divided into several cases.
Each case is indicated by a number denoting the rank of the variety, and a letter specifying the
specific case in the variety. This method of indicating a specific case of a variety is common
among the researchers in the field of line geometry. Table 9.4 presents the result of adding
lines one by one starting with single line and ending with a six-dimensional base of the space
variety. Table 9.5 shows equivalent cases, which are combinatorially distinct figures of lines,

and belong to one of the cases presented in table 9.3.
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Table 9.3: Synthetic representation of the six line varieties reproduced from [Dandurand,
1984].
.[Dandurand, 1984] "9 2D "UN1"0 11%""2 line varieties i NWW :9.3 1?10
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Tableau 2 — Table 2

44 Topologie structurale H10, 1984

Table 9.4: All possible ways of adding an independent line to a group of one to five lines.

[Dandurand, 1984].
0119 1U™MN TU TR 1P 2721011 N1712N7 1270 "N22 19 190107 N1M0IXN 22 :9.4 N?710
.[Dandurand, 1984]
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Chapter 10
Singularity Analysis

10.1 Introduction

Singularity analysis of parallel robots is a subject of extreme importance for control
and synthesis of robot mechanisms. Many researchers, [Merlet, 1989; Gosselin and Angeles,
1990; Ma and Angeles, 1992; Hunt, Samuel, and McAree, 1991; Zlatanov et al., 1995; Basu
and Ghosal, 1996; Xu, Kholi, and Weng, 1992; Ben Horin, 1997], invested immense efforts in
solving this problem.

A general non-redundant mechanism can be considered as an input-output device, with
the input variables being the generalized coordinates variables, and the output variables being
the posture variables of the output link. The term posture refers to the six variables, position
and orientation, required to fully describe the location and orientation of a rigid body in space.

Singular configurations are defined as configurations, in which, the relation between
the input variables and the output variables is not fully defined. For serial mechanisms, with n
degrees of freedom, a configuration is regarded singular when the instantaneous input-output

map x=Jq is singular. Where x denotes an nx1 vector of the output link linear/angular
velocities, ¢ denotes an nx1 actuator velocities vector, and the matrix J is the system

Jacobian. Unlike with serial mechanisms, for parallel mechanisms a configuration, q, is
regarded singular when the input-output map q=Jx is singular [Zlatanov, et al., 1995].
For a general mechanism, with n degrees of freedom, the relation between the input
output variables takes the form:
Ax =Bq (10.1)
Where A and B are nxn matrices. This relation stems from differentiating all the loop
closure equations and the kinematic constrain equations in each loop with respect to time. For
fully parallel manipulators the matrix B is diagonal and its inversion is always possible [Ma
and Angeles, 1992]. Therefore, the common definition for the Jacobian matrix for parallel
manipulators takes the form J=B™' A and the instantaneous inverse kinematics problem is
define by q=Jx. The matrices A and B are referred to as the direct kinematics and the
inverse kinematics matrices, respectively [Chablat and Wenger 1998]. This notation stems
from the facts that singularity of the matrix A leads to an undefined forward instantaneous
kinematics problem and singularity of the matrix B leads to undefined inverse instantaneous

kinematics problem. Based on rank-deficiency of the matrices A and B Gosselin and Angeles
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[1990] divided the singular configurations into three cases: the first, when only A is singular;
the second one, when only B is singular; and the third, when both A and B are singular. We
adopt the terminology in [Chablat and Wenger 1998] and refer to the singular configurations
associated with singularities of the direct kinematics matrix, A, and the inverse kinematics
matrix, B, as parallel singularities and serial singularities, respectively.

Hunt, Samuel, and McAree [1991] discussed the singular configurations in serial,
parallel, and composite serial and in-parallel robots, by using motion and action screws. The
main observation of this work is presented in the statement that in a serial manipulator the
actuators are twist applicators, and in a fully parallel robot the actuators are wrench
applicators. Moreover, the authors use the reciprocity principle to deduce results from the
space of constraints and interpret them in the space of freedoms. The reciprocity principle
states that any screw taken from the space of freedom, i.e., motion screw is reciprocal to any
screw taken from the space of constraint, i.e., action screw. The authors proved that a work-
piece grasped by a serial chain can only loose degrees of freedom (or reciprocally, gain
constraint); while a work-piece grasped by fully in parallel manipulator can only gain degrees
of freedom (or reciprocally, lose constraint) in configurations inside its workspace domain. A
non-fully parallel manipulator can either loose or gain degrees of freedom.

This result, regarding loss or gain of freedoms, can be explained by inspecting Eq.

(10.1) as follows: if the direct kinematics matrix is singular (parallel singularity), then the
linear equation system B™'Ax=q has a non-trivial solution x#0 for ¢=0. Therefore, the

moving platform gains degrees of freedom and performs movements in the direction of x that

belong to the nullspace of the Jacobian matrix J. If a serial singularity occurs, i.e., B is
singular, then the linear system of equations X=A"'B¢q has a non-trivial solution q=0 for

x =0. Therefore, the moving platform loses degrees of freedom.

While serial singularities occur on the boundary of the workspace of a parallel
manipulator, parallel singularities may occur inside the workspace of the manipulator. Serial
singularities are associated with sets of configurations where different branches of the inverse
kinematic problem meet, and parallel singularities are associated with sets of configurations
where different branches of the direct kinematic problem meet [Gosselin and Angeles, 1990].

In both cases, i.e. serial and parallel singularities, control of the robot is lost. In serial
singularities, the actuated joints velocities reach extreme values, and in parallel singularities,
the moving platform loses one or more constraints and falls along a path of singular

configurations. Parallel singularities are hazardous to the mechanical assembly of the robot
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and may lead to mechanical failure. The relation between the actuator forces vector and the

wrench acting on the moving platform is given in equation (10.2):

B' t=A'f (10.2)

-1 -1
Where B' and A'  are the inverse transpose of B and A.

In parallel singularities A is singular and the system of equations in Eq. (10.2) has a
non-trivial solution t#0 for f=0. Thus, near singularity the actuators forces reach extreme
values and the joints undergo high stresses, especially if the kinematic chains include passive
revolute joints transmitting moments. In serial singularities, the system of equations in Eq.
(10.2) has a non-trivial solution f#0 for zero actuator forces 1=0. Consequently, in serial
singular configurations, the wrench acting on the moving platform does not affect one or more
actuator forces.

Zlatanov, et al. [1995] proposed a general velocity equation for interpreting the
singularities of a general manipulator by considering the singularities of the instantaneous
direct and inverse kinematics matrices and the matrix defining the relation between the
actuated joint velocities and the passive joint velocities. Based on singularity of these
matrices, this method allows physical interpretation of the singular configurations.

Ma and Angeles [1992] proposed classifying the singularities of parallel manipulators
into three categories. The first category is called architecture singularities, the second
category is called configuration singularities, and the third category is the formulation
singularities. Architecture singularities are singularities that depend on the architecture of the
robot. Such singularities exist for all configurations inside a considerable part of, or the entire
workspace of the manipulator. Configuration singularity is caused by a particular
configuration of the manipulator. Formulation singularity is a singularity caused by the
mathematical model due to failure in representing the system at a particular configuration.
Burton [1979] referred to architecture singularities as permanent critical forms, and to
configuration singularities as instantaneous critical forms. Architecture singularities are of
particular importance in stages of conceptual design of new parallel manipulators since the
designer must assure that the suggested architecture is not architecturally singular. Ma and
Angeles [1992] proved, by analyzing the rank of the Jacobian matrix, that a 6-6 Stewart
platform is architecture singular if the moving and the base platform are similar polygons. In
addition, they proved that if the moving and base platforms are similar irregular polygons,

then the manipulator is singular throughout a considerable part of it’s workspace. Karger
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[1998] investigated the spatial architectures for parallel robots which are architecture singular,
and presented a list of all degenerated parallel manipulators.

Dandurand [1984] addressed the problem of rigidity conditions of compound spatial
grids by using line geometry. Parallel singularities were solved by line geometry by Merlet
[1989] for a 3-6 Stewart platform. Ben-Horin [1997] implemented the method of line
geometry for many fully-parallel manipulators. He showed that for fully-parallel manipulator
the Jacobian matrix consists of Plucker coordinates of the lines along the prismatic actuators.
Therefore, he based the singularity analysis on finding geometrical conditions for linear
dependence between these lines. Collins and Long [1995(a)] used the line geometry method
for analyzing the singularities of the hand controller in Fig. 5.9. Notash [1998] used line
geometry to investigate redundant three-branch platform manipulators and their preferable
actuation distribution in order to eliminate singularities. Hao and McCarthy [1998] discussed
the conditions on the joint arrangements that ensure line-based singularities in platform
manipulators. They showed that in order to have line-based singularities the platform must
connect to the kinematic chains by spherical joints or equivalent joint arrangements. In our
work, the USR and the RSPR robots do not fulfill this requirement, but thanks to the use of
the instantaneous direct and inverse kinematics matrices, we overcome this obstacle.

A fully parallel manipulator has only one solution for the inverse kinematics problem;
therefore, the associated inverse instantaneous kinematics matrix, B, is diagonal and non-
singular for all the cases where the linear actuator’s lengths is not zero. In contrast with fully-
parallel manipulators, non-fully parallel manipulators use compound kinematic chains that
allow more than one solution for the inverse kinematic problem. Consequently, for non-fully
parallel manipulators, singularity of both matrices A and B should be considered for complete
analysis of singular configurations. Singularity of the matrix B indicates a loss of degrees of
freedom in one of the kinematic chains.

Based on the singularities of matrices A and B we divide the singularity analysis into
two stages. In section 10.2, we analyze parallel singularities by using line geometry method.
This provides the analysis of parallel singularities for a class of non-fully parallel
manipulators that share the same direct instantaneous kinematics matrix A. This class of non-
fully parallel manipulators includes 14 different architectures already listed in Fig. 5.14. In
section 10.3, we inspect the matrix B for serial singularities and we apply the analysis for the

RSPR and the USR robots shown in Fig. 5.16 and 5.15.
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10.2 Analysis of Parallel singularities for a class of non-fully parallel

manipulators

10.2.1 The method of analysis
This section presents configuration singularity analysis of the tripod part of the RSPR

and USR robots. The Jacobian matrix J presented in Eq. (7.14) corresponds to this tripod

mechanism. Furthermore, the Jacobian matrix, J , is common for a class of non-fully parallel
manipulators that share an identical tripod mechanism to the one appearing in the RSPR and

the USR robots. This class of manipulators was presented in Fig. 5.14. In Chapter 7, we

showed that the Jacobian matrix J of the tripod mechanism in Fig. 7.1 is the direct

kinematics matrix of a complete parallel manipulator with such tripod mechanism. Therefore,

the singularity analysis of J reveals all the parallel singularities associated with the
aforementioned class of non-fully parallel manipulators in Fig. 5.14 (including the RSPR and
USR robots).

The method of analysis is based on line geometry and synthetic proofs. The emphasis
is placed on the geometric interpretation of each singular configuration rather than on
developing the determinants describing the singularity from algebraic point of view. The
analysis starts with low-rank line varieties and ends with the linear complex variety. For each
case in Fig. 9.3, we inspect the conditions for having n+1 lines belonging to a variety of rank
n, n=1..6. In cases where we consider singularity of flat pencils, we assume that the tested line

triplet forms such a flat pencil and we write the geometric conditions for such singularity.

10.2.2 Preliminary definitions

When utilizing line geometry method in singularity analysis, it is a preliminary task to
notice all the relations between lines, planes, and locus of points. First, we begin by setting up
the relevant nomenclature for this section. Then we register a list of useful geometric relations
upon which we will base all following geometrical proofs.

Fig. 10.1 presents a geometric interpretation of the Jacobian matrix J associated with

the tripod part of the RSPR robot. In chapter 7 we showed that the rows of the Jacobian
matrix J are the Plucker ray coordinates of the lines in Fig. 7.3. We will use the symbols I

k=1..6 to refer to row number k in the tripod’s Jacobian matrix J. Hence, the Plucker ray

coordinates of lines 1, I, I, L4, Is, and ls in Fig. 10.1 are the rows of the tripod Jacobian matrix
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J. Singularity of J stems from linear dependence of its rows 1y, I, 13, 4, 15, and lg; therefore,
we use line geometry to find all the configurations in which these lines are linearly dependent.
Nomenclature:
The following symbols facilitate the formulation of the geometrical proofs in this
chapter. All the symbols are explained herein and shown in Fig. 10.1.
pi: center points of the revolute joints on the moving platform. i=1,2,3.
ri: vectors of the revolute joints’ axes on the moving platform. i=1,2,3.
bi: Center points of the spherical joints. i=1,2,3.
0,: The center point of the moving platform.
n: Normal to the moving platform that passes through o,
Pi: The plane defined by n and a point p;, i=1,2,3.
PO: The plane defined by points p;, i=1,2,3.
BO: The plane defined by points b;, i=1,2,3. This plane is hereafter referred to as the tripod
base plane.
jk: A flat pencil generated by lines I; and . k, je{1,2,3,4,5,6}, k=#.
Xk A flat pencil generated by lines I; and I, that belongs to category of flat pencils X. The

expression Xj, represents the same flat pencil as Xy (Xjx = Xij).

Px ik : The plane associated with flat pencil X .

‘X ik : The center point of flat pencil Xi.

p;p«: the line defined by points p; and pk.

I': the complete group of the Jacobian lines. I' = {1;, I, I, L4, Is, I} .

Cji: the group of Jacobian lines other than the Jacobian lines I; and L.
Cic= {la: lhel, n#j, nzk}.

We regard lines and planes as sets of points. Therefore, the symbols m and € have the
same interpretation for groups of points. Accordingly, the expression a N b indicates the
intersection of two lines, a and b, in a common point, or the intersection of two planes, a and
b, along a common intersection line, or a line a piercing a plane b. The expression acb

indicates that a point, a, is on the line/plane, b; or that a line, a, lies in the plane b.
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P,

Bo

Figure 10.1: Geometrical interpretation of J and its associated lines 1,..1s.
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Geometric relations:
The tripod mechanism in Fig. 10.1 determines the following geometric relations.
These geometric relations are self-evident and stem directly from the architecture of the tripod
in Fig 10.1.
Geometric relation Al: Points p; are not collinear. i=1,2,3.
Geometric relation A2: b;eP1, b,eP2, b;eP3.
Geometric relation A3: r, €P0, r,eP0, r;P0.
Geometric relation A4: L4||ry, Is||r2, l||rs.
Geometric relation A5: r;LP1, r, 1 P2, r; 1 P3.
Geometric relation A6: p;er;, 1, j=1,2,3, 1#].
Corollaries:
The following corollaries result from geometric relations Al..AS. Each corollary is
followed by brackets enclosing a list of the geometric relations used to prove it.
Corollary Crl [A2]: 1,€P1, L,eP2, 3eP3.
Corollary Cr2 [A3, A4]: 14]|PO, 15||PO, 14||PO.
Corollary Cr3 [A4, AS]: 4.LP1, 1sLP2, 14 LP3.
Corollary Cr4 [A2, A4, AS]: L4 L1, Is LD, I L1s.
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Next, the singularity of the tripod mechanism is presented. We refer to each case in the

line varieties according to the nomenclature in Fig. 9.3.

10.2.3 Point singularities (1a)

Singularity of the point variety in which two lines are coincident is not possible. This
is because lines 1, I, and 15 belong to three distinct planes P1, P2, and P3, respectively. They
Also pass through three distinct points p;, p2, and ps, therefore no couple from these lines can
be simultaneously concurrent with the intersection line of the three planes P1, P2, and P3.
Lines L, 15, Is move such that each one is perpendicular to the planes P1, P2, P3, respectively.

Therefore, concurrence of a couple of lines form this group is not possible.

10.2.4 Flat pencil singularities (2b)

We seek to find singularities which stem from subsets of lines 1;..1¢ that include more
than two lines in one common flat pencil, therefore, we inspect all the cases with three lines in
one flat pencil.

A group of n lines in space can form n(n—l)/ 2 different flat pencils. Fig. 10.2

registers all possible flat pencils for the case n=6. Each point on the circle circumference
represents a line and each line connecting two points on the circumference of the circle
represents a flat pencil. For example, the point 1 on the circumference of the circle represents
line 1; and the line connecting between point 1 and point 2 on the circumference of the circle
represents the flat pencil defined by lines 1, and L.

Figure 10.3 lists all 15 distinct flat pencils formed by lines 1;..Is. Each two-digit
number, jk, in the diagram represents a flat pencil formed by lines I; and l.. The figure
presents four different categories of flat pencils: T, R, S, and F categories. Each category
includes three or six flat pencils. Flat pencils in each category are similar in a sense that it is
sufficient to analyze the singularity of one category member and to apply a similar analysis to
all other members of the same category. This process of flat pencil grouping is possible due to
similarity of all the kinematic chains of the tripod. The kinematic chain similarity induces

cyclic analogy between flat pencil category members; for example T,,,T,;, and T, are

analogous because each one is formed by adjacent prismatic actuator axes. We refer to a
category member that is subjected to our singularity analysis as a category representing flat

pencil.
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We distinguish between constant flat pencils and temporary flat pencils. While a
temporary flat pencil is a configuration-dependent flat pencil, i.e., it forms under certain
conditions on the configuration variables; a constant flat pencil is configuration independent
or, in other words, it is architecture dependent. Hence, we refer to constant flat pencils as
architectural flat pencils.

We notice that the F category includes architectural flat pencils and the remaining
categories include temporary flat pencils only.

The four categories of flat pencils are:

The T category: T = {T2, T23, T13}.
The F category: F = {F 4, F2s, F36}.
The S category: S = {Sas, S4s, Ss6}.
The R category: R = {Ris, Rig, R4, Ros, R3s, R3s}.

The flat pencils are divided into four categories. These categories are tested for
singularities by testing a category representing flat pencil and considering the geometrical
conditions that lead to singularity. There are four cases; each case corresponds to a different
category.

In the following sections, we consider a category representing flat pencil in each
category. For every category representing flat pencil defined by lines I and I (I;, Ik € I') we
test all the lines in the complementary group Cjx. For every line 1, in the complementary group
(I,eCjx) we determine the geometric relations that render or prohibit it from belonging to the

flat pencil of lines I; and I.

Case 1 line l,eTj. j, k=1,23.j #k. ,eCy:
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Let T;, be a category representing flat pencil. We inspect all cases where T, spans a
line 1,€C,. Based on the symmetry of the tripod, there are three distinct cases: I, =13, I, = L,
and 1, = Is. The case 1, =I5 is equivalent to case I, = 14 due to symmetry considerations.
Case 1.11,=1:

The following proof shows that I;e T, only if the tripod reduces to the planar case,
i.e., the moving platform lies in the tripod base plane BO.
Proof:

1) Points p; and b; define line 1;, i=1, 2, 3.

2) Points p; define the moving platform plane, PO.

3) Points b; define the base plane B0.

4) In the case where line 13T}, all the points p; and b; (1 =1, 2, 3) belong to the same
plane, i.e., pi € T},, bi € ° T}, . Therefore, the moving platform lies in the base plane
PO=B0="T,,.

This case is shown in Fig 10.4. We refer to this singular configuration as singular

configuration S1. The geometric conditions of this singular configuration are:

Singular configuration S1: BO = P0 = l,eTj«.
j, k,n=1,2, 3. jzk=n.

Figure 10.4: Singular configuration S1.
.S1 111212170 1"X¥71279112 :10.4 T1'R

Since we showed that the configuration in Fig 10.4 is singular, we will henceforth

exclude the possibility that the moving platform lies in the tripod base plane.

Case 1.2 1, =14 (equivalent to 1,=Is):

This case leads to a singular configuration S2.
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Proof:
1) Line 14 passes through point b; (b, € Ly).
2) l1eP1, LeP2 and n is the intersection line of P1 with P2; therefore,T,, is located
along n.
3) In a singular configuration, line 14 passes through °T,,. Point b, fulfills b;eP1,

b;€B0 and line 14 is perpendicular to P1 (4LP1). Hence, line 1, intersects n only
when point b; coincides with the piercing point of n with plane BO, i.e.,

b, =nNBO0.

4) Lines 1; and 14 define F, and lines l; and 1, define Ti, such that line 1; is the
intersection line of the two planes (1,="T,, ""F,).

5) In a singular configuration, line 14 lies in T, . Since line L4 is not the intersection
line of PF, with PT,, itliesin " T, only if PT,,=PE,.

6) Points by, p;, and p, define PT,,. Line r; and point b; define PF,. Since points
biel;, pieli and e T, = b€ T}, and p; € P T, ; therefore, the only condition for
fulfilling P T,,="F,, is p.e"F,.

7) Based on geometric relation A6, line r; and point p, define the plane of the moving

platform PO.

8) Line r; is the intersection line of the planes PO and PF,,. Since point p; is not on r;
(p22r1) then poe”F,, is fulfilled only when PF,=P0, i.c., in this configuration
PT,,=PF,=PO0.

9) b, =nNnB0 and b;eP0; therefore, point b; is the center point of the moving
platform o, (bi=0,).

10) Singular Configuration S2 is defined such that PT,, =P0 and b;=e,. This singular

configuration is shown in Fig. 10.5.

Singular configuration S2: P T;, = PO, bj= 0,= l,e T},

g, k,n)e{(1,2,4),(2,1,5),(2,3,5),(3,2,6),(3, 1,6), (1, 3, 4)}.
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Figure 10.5: Singular configuration S2.
S2 N"1212170 1°X7179112 :10.5 TR

Case 1.3 1,=1I¢:

This case leads to two singular configurations S3 and S4. In these singular

configurations, line l¢ belongs to Tj,.

Proof:

1) Line I passes through bs (b3€6).
2) Line I fulfills Ig||rs.
3) If the geometry of the moving platform fulfills r3||p;p2, then I¢|[pip2.

4)pie b, poe b = pip2e T}, .

5) le[pip2, pip2€ T, = I[P T,

6) In a singular configuration, line lg fulfills loeTi2. Since lg||’ T;, the condition
b;ePT,, is a sufficient condition to fulfill lse P T}, .

7) 1,eP1, LLeP2 and n is the intersection line of P1 with P2; therefore, the center of

Tia, 1. °Ty,, is located along n.

8) In a singular configuration, line l¢ passes through the center of Tj,. Point b fulfills
b;eP3, b;eB0 and line I is perpendicular to P3 (I¢LP3). Hence, line l¢ intersects n
only when point b; coincides with the piercing point of n with plane BO, i.e.,

b3=nNB0.

9) There are two cases: in the first, “T), is located along n above the moving

platform, and in the second, “T), is located along n beneath the moving platform.
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Singular configuration S3 (°T,, located beneath the moving platform): Since b;eBO0,
then singular case S3 occurs when point “T,, B0 and b; is concurrent with it. Therefore, In a

singular configuration b3 =nNB0=°T,, . In this singular configuration points by, by, and b;

are copunctal. Fig. 10.6 illustrates this singular configuration.

The geometric conditions of this singular configuration are:

Singular configuration S3: b;=b,=b;. ri||p;px = L eTjk.

g, k,ne{,2,6),(2,3,4),3,1,5}.1,j, k=1,2,3. i#j=k.

Figure 10.6: Singular configuration S3.
.S3 11"12121°0 N°XT71279119 :10.6 TR

Singular configuration S4 (°T,, located above the moving platform): In this singular
configuration by;=°T,, € B0, l,€Ti2, LeTi,, bieTia, byeTiy; therefore T, =B0. This

singular configuration is illustrated in Fig. 10.7.

Singular configuration S4: P T =BO0. ri||pjpk. bi=°T y = L€ Tj.

(g, k,ne{(1,2,6),(2,3,4),(3,1,5)}.1,j, k=1,2,3. i#j=zk.

Case 2 line I, eFj. (J, k)e{(1, 4), (2, 5), (3, 6)}. L,eCj«:

Let Fi4 be a category representing flat pencil. We look for a line 1,eC;4, which is
linearly dependent with the generators of Fi4. Based on the symmetry of the tripod, we
consider only two cases: I, = I, (equivalent to 1, = 13), and 1, = Is (equivalent to 1, = I¢).

Case 2.1 1, =1, (equivalent to 1, = 13): This case is identical to case 1.2 1, = l4.

- 108 -



Chapter 10: Singularity Analysis

Figure 10.7: Singular configuration S4.
.S4 11"12121°0 N"X71279119 :10.7 TR

Case 2.2 1, =15 (equivalent to 1, = I¢):

This case leads to a new singular configuration S5. In a singular configuration line s

belongs to flat pencil F}4 therefore, the flat pencil S4s also exists.

Proof:

1) L4J|PO , 15|[PO [corollary Cr2] ; therefore P S, |[PO.

2)If PS,s#PF,, then 1, is the intersection line of *S, with PF,.

3) If PS,#PF,, then ls can not simultaneously fulfill lse®S,; and lse’F,;
consequently, both conditions are simultaneously fulfilled only if *S,;="F,, . Thus,
in a singular configuration, Ise *S,s and Ise °F,, ; Thus, "S;s="F,,.

4)If PS,s="F,, then PF,, |[PO, but since p;e " F,, and p;P0 we conclude that in a

singular configuration PS, = P 14=PO0.

5) Point by is on line Is (b, €ls). Point b; is the center of F, (b;="F,,).

6) In a singular configuration Is€F4; hence, b, € Is.
7) b;eB0, b,eB0 = 15eBO0.

8) || Is and in a singular configuration ls€BO0, therefore, r»||BO.
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The singular configuration S5 is illustrated in Fig. 10.8 and Fig. 10.9. This singular

configuration is defined as follows:

Singular Configuration SS5:
First set: ijkZ PO, bj;1€P0 = 1,€Fjx.
G, k,n)e{(1,4,5),(2,5,6), (3, 6,4)}.
Second set: ijkZ PO, bj.;€P0 = 1,€Fj.

U,.k,n)e{(1,4,6),(2,5,4),(3,6,5)}.

Note: index j follows a cyclic order such that forj=3 = j+1 =l and forj=1=j-1=3.

P2 Moving Platform

v

P (p3) BO

b (b2) bs

Figure 10.8: Side view of singular configuration S5.

S5 1171212170 N°X¥7127911P7 TX V2N :10.8 11X

Figure 10.9: Singular configuration S5.

S5 N™12121°0 17871279119 :10.9 TR

Case 3 line l,eSik. (J, k)e {(4, 5), (4, 6), (5, 6)}. ,eCj:
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We choose Sss as a category representing flat pencil. In a singular configuration flat
pencil Sus exists and it spans a line 1,€Cys. There are three distinct cases to be considered. The
three cases are I, =1; (analogous tol,=1,), 1, =13, and I, = l.

Case 3.1 1, =1, (equivalent to 1, = I,):
This case is the same as case 2.2.
Case 3.2 1,=1:
This case leads to a singular configuration, which is special case of architectural

singular case S1.

Proof:
1) L4J|PO 15|[PO [corollary Cr2] therefore S, |[PO.

2) Point ps satisfies: p3ePO0, psels.

3) In a singular configuration l;€ *S 5 , therefore, p;e PS5 . Consequently, in a
singular configuration S, =P0.

4) Point b lies on 3, i.e. bs€ 13, and in a singular configuration b;e?S,; .

5) Points b and b, satisfy: by €ls, b2€ls; hence by e?S, and b, PS,s .

6) We showed that by, by, and b; belong to *S,; ; therefore, BO="S 5 =P0.

Case3.31,=lg:
The following proof shows that this case leads to singular configurations S6 and S7. In
these singular configurations the moving platform is parallel to the tripod base plane.

Proof:
1) L||PO 1s||PO [corollary Cr2] therefore PS,; |[PO.

2) In a singular configuration ls€ "S5 and S, lies on l.
3) by €ls, bo€ls and bselg; therefore b1e S5, b,e PS5, b3e S, and BO= PS,;.

Therefore, BO|[PO.
Singular configurations S6 and S7 are illustrated in Fig. 10.10 and Fig. 10.11.

Singular configurations S6, S7: BO||PO. 1, S;k.
1, k,n=4,5, 6. jzk=n.
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Figure 10.10: Singular configuration S6.

.S6 N™12121°0 117811279179 :10.10 11"R

Figure 10.11: Singular configuration S7.

S7 NM12121°0 17871279119 :10.11 11'R

Case 4 1,eRjx. (j, k) e{(1,5), (1, 6),(2,4),(2,5),(3,4), (3, 5)}. lheCj:
Let R;s be a category representing flat pencil. This case leads to for four cases that we
already dealt with.
Case 4.1 1,=1,: This case is the same as case 1.2.
Case 4.2 1,=I5: This case is equivalent to case 1.3 and leads to similar singularity.
Case 4.3 1,=l4: This case is the same like case 2.2 and leads to same singular configurations.

Case 4.4 1,=l¢: This case is equivalent to case 3.2 and leads to singular configuration S1.
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10.2.5 Planes singularities

This section presents the singular configurations that belong to a rank three system.
Therefore, we inspect all the cases, in which, four lines belong to the planes variety.

Regulus Singularities (3A):

The group of lines, I'={l;..I¢}, includes three permanent flat pencils Fj4, Fas, and F3q,
Consequently, the maximum number of skew lines in I" is three. We recall that all lines in the
same regulus are skew and intersect all the lines in the conjugate regulus [Veblen, 1910].
Based on this fact, if we suppose that lines 1, I, I3 form a regulus, then lines L, 15, and I can
not belong to this regulus because line 14 intersects 1, Is intersects I, and lg intersects Is.
Therefore, no group of more than three lines can belong to the same regulus and singularity of
type (3A) is not possible.

Union singularities (3B):

The lines that depend on the generators of a union are all the lines that depend on each
of its two flat pencils. Therefore, we need not consider this case since we already considered
all the singularities that stem from flat pencil singularities.

Bundle singularities (3C):

A singular bundle includes more than three lines intersecting in a common point. In
order to find all singular bundles we register all possible line quadruplets in I' and we divide
them into four different line quadruplet groups.

Table 10.1 lists all the 15 line quadruplets. A singular bundle forms if all the lines in
one of these line quadruplets are copunctal. The process of line quadruplet grouping is
possible due to the kinematic chain symmetry of the tripod. This table also presents four

different quadruplet groups, namely, groups Q1, Q2, Q3 and Q4.

Table 10.1: 15 line quadruplets and their separation into four categories.

JNR12P? ONPR120 817791 07119 DX 20 N171120 15 :10.1 1720

Physical meaning of quadruplet category Quadruplet category members

Q1: All the quadruplets that include all

prismatic actuator axes and one of the lines i, | Q1 = {1, L L), (11 L1 1s5), (I L1 1)}

Is, 1.

Q2: All the quadruplets that include lines

associated with adjacent kinematic chains. Q2= {ik:Lls), (i lsLle), (L 1sIsle);
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Table 10.1: 15 line quadruplets and their separation into four categories — continued.

Jwnin — mx121p? 0NpP12n 811791 0119 V2R 20 M712n 15 :10.1 11220

Q3: Any line quadruplet including two lines

associated with a first kinematic chain, one
Q3= {(h L), 1 b L41s), (L3 L1s),

prismatic actuator axis associated with a
(L 1s1e), (i 131s516), (13 1416)}

second kinematic chain, and one line from {l4,

Is, I} that belongs to a third kinematic chain.

Q4: All line quadruplets including a constant
flat pencil from one kinematic chain, and two
other lines from ly, s, l¢ such that each line Q4= i ks o), (s e lo),
belongs to either a second or a third kinematic (316 Lt 15)

chain.

Case 1 Singularities of Q1 line quadruplets:

Let (I I, 15 I¢) be a category representing line quadruplet. This case leads to singular
configurations that are the general cases of singular configurations S3 and S4 in which the
geometry of the moving platform does not fulfill I || pip2.

Proof:

1) Point bs fulfills bs=l;Nlg, i.e., bs=°F, .

2) In a singular configuration, lines 1;, I, 15, and ls intersect in one common point.

3) Since bs = I3nlg and I3 # I the only possible common point of intersection for lines
1, b, L5, and I¢ is bs.

4) bse Ls, beP3, L,eP2, and 1,€P1; therefore, the intersection is possible only along
n=P1NnP2NP3,1ie., bsen.

5) b;eBO0 and in a singular configuration b;en; therefore b; = nNB0, namely, bs is the

piercing point of n with the tripod base plane B0.

6) In a singular configuration “T,,=°F;; =b;. Therefore, there are two possibilities.
The first is when °T,, is located above the moving platform, and the second is
when °T,, is located beneath the moving platform.

7) If °T,, is beneath the moving platform it means that b= b,= bj; therefore, this is

the singular configuration S3.
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8) If “T,, is above the moving platform then in this configuration 1; = bybs and l,=b,

bs, therefore, 1,€B0, LLbeB0. This singular configuration was already presented in
Fig. 10.7. This is the general case of singular configuration S4.
Case 2 Singularities of Q2 line quadruplets:

Let (I; I 14 Is) be a category representing line quadruplet. This line quadruplet forms a
singular bundle if a pair of spherical joints coincides. We designate this singular configuration
as S8. Fig. 10.12 illustrates this singular configuration.

Proof:
1) bi= Iin L, b= LN Is; therefore the only possible intersection point for the four
distinct lines is b;= b,.

2) b;ePl, b,eP2; consequently, the intersection point b;=b, is located along

n=PInP2.

3) b;eB0, b,eB0; therefore, in a singular configuration b;=b,=n"B0, i.c., the

spherical joints coincide at the piercing point of n with the tripod base plane, BO.

Figure 10.12: Singular configuration S8.

S8 T1™12121°0 N"X¥1129119 :10.12 1™

Singular configuration S8: b; = by. j.k=1,2,3. jzk.

Case 3 Singularities of Q3 lines quadruplets:
All the line quadruplets in this category lead to singular configuration S8. We choose

(1; L 14 16) as a category representing quadruplet and present the following proof.

- 115 -



Chapter 10: Singularity analysis.

Proof:
1) Point b, fulfills b;eB0, b;=1;n4; therefore, in a singular configuration all distinct
lines 1;, I, l4, and I intersect in point b;.
2) l,ePl, LeP2; thus, the intersection points of these lines is located along

n=PlNP2.

3) In a singular configuration line I, intersects 1, in point b;. Therefore, bi1=T,, .

4) b=1,nBO, i.e., b, is the piercing point of I, with the tripod base plane. This means
that b;=b,=°T,. Consequently, this configuration is singular configuration S8

shown in Fig. 10.12.
Case 4 Singularities of Q4 lines quadruplets:

This case leads to two singular configurations which are special cases of singular
configurations S6 and S7. To prove this we select (I; I4 Is l) to be a category representing
quadruplet.

Proof:
1) bi=l1nL; therefore, in a singular configuration, b, is the common intersection point

of all lines in the quadruplet.

2) I¢|[PO, 15||PO [corollary Cr2]; thus, S |[PO.
3) b1eBO0 and in a singular configuration b;="°S ; therefore °S,, €BO.

4) Points b,, by and Sy, define PS,. Since all these points belong to BO we conclude

that in a singular configuration BO||PO, i.e., the tripod base plane and the moving
platform are parallel. Fig. 10.13 and 10.14 present the two special cases of singular

configurations S6 and S7.

Figure 10.13: Special case of singular configuration S7.

S7 101212170 178712791 20 "U19 28N :10.13 TR
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P0|[BO

Figure 10.14: Special Case of Singular configuration S6.
.S6 NM"1212170 13712 911p 20 U719 17PN :10.14 11X

Plane singularities (3D):

Singularities of type 3D are characterized by having more than three coplanar lines in
the group I'={l;, I, I3, 14, Is, Is}. Therefore, we inpect all the line quadruplets to determine the
singularities that stem from this case.

There are four line quadruplet groups as we already presented in table 10.1. We
consider the cases, in which, a category representing line quadruplet is coplanar.

Case 1 Q1 coplanar line quadruplet:

All lines in this category are coplanar only if the moving platform lies in the tripod
base plane. We choose (I; I, 15 L4) as a category representing line quadruplet.
Proof:

1) Lines 1, I, and 15 pierce the plane of the moving platform, PO, in points p;, p2, and,
ps respectively. Since these points are not collinear, [geometric relation Al], then
these lines lie in one plane only if this plane is the plane of the moving platform PO.

2) Line ly is parallel to the moving platform; therefore, if lines 1;, L, and 15 lie in the
plane of the moving platform, then also 14 lies in this plane.

3) Points by, by, and bs lie on lines 1;, 2, and 3, respectively; therefore, they belong to
PO and the moving platform lies in the tripod base plane.

Case 2 Q2 coplanar line quadruplet:

The quadruplets in Q2 lie in one plane if two of the prismatic actuator axes lie in the

plane of the moving platform. We choose (I; I, 14 Is) as a category representing line

quadruplet.
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Proof:

1) Lines 14 and Is are parallel to the moving platform. l4||r;, Is||r2, [geometric relation

A4]. The plane they define, PS,s, is parallel to PO.
2) Points by and b, lie on both planes PS,; and PT,,, therefore line bib, is the

intersection line of these two planes.

3) Points b; and p; define line 1;. Similarly, points b, and p, define line I,.
4) p1€P0, p,€P0.Points p; and p; lie on the plane S, only if ?S,; =P0.

Figure 10.15 presents singular configuration S9. This singular configuration occurs

when two lines out of 1, I, I3 lie in the plane of the moving platform.

Singular configuration S9: 1;eP0, L ePO0. j, k = 1,2,3. j=k.

Figure 10.15: Singular configuration S9.
.S9 N"12121°0 N1°X11279119 :10.15 11'R

Case 3 Q3 coplanar line quadruplet:

All line quadruplets in this category are coplanar only if the tripod reduces to the
planar case. We choose (1; I, 4 Ig) as a category representing line quadruplet and present the
following proof.

Proof:

1) Line r; fulfills: r;ePO0, r;||ls; therefore r; is the intersection line of plane PO and

PF,, (r=PON"E,).
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2) Line L, pierces PO in point p,. In singular configuration line 1, lies in pF14;
therefore, point p; lies in the plane pF1 4-

3) Point p, does not lie on r;, (p2¢ri); therefore it lies in pF14 only if 1OF14=PO.

Therefore, Point b; fulfills b, PO.

4) In this case Line I, lies in PO if b, P0.

5) Line I is parallel to r3 and rs lies in PO; therefore, it is parallel to PO. l¢||PO.

6) bselg and Ig||PO, thus, line g lies in PO only when point bs lies in PO. Therefore, the

moving platform lies in the tripod base plane.
Case 4 Q4 coplanar line quadruplet:

Let (1) 14 15 Is) be a category-representing line quadruplet. The following proof shows
that all line quadruplets in this category lie in one plane only if the moving platform lies in the
tripod base plane.

Proof:

1) biely, byels, bsele.

2) Ly||r1, Is||ra, lg||rs; therefore, in a singular configuration, these lines define a plane

parallel to the plane PO and this plane is the tripod base plane, BO.

3) Line I, pierces PO in point p;. It also pierces the plane B0 in point b;; therefore, line

I; lies in BO if point p; lies in BO. Because BO||PO then p; B0 only if BO=PO.

10.2.6 Linear Congruence singularities
This section presents the singularities that stem from having five lines in one linear

congruence.

Elliptic congruence (4A):
Four skew lines in space form three distinct reguli and a fifth line is linearly dependent
with them if it belongs to one of these reguli. Elliptic congruence singularities are not possible

in our case since there are no four lines in the same regulus (see case 3A).
Hyperbolic congruence (4B):

Four lines concurrent with two other skew lines form a hyperbolic congruence. Any

fifth line concurrent with the same two skew lines is linearly dependent with the four lines.
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A group of six lines contains six line quintuplets. These line quintuplets are (1; L I3 L4
Is), L), (L Lzlsl), (I Ll ), (I I 1415 1), and (I, 15 L4 Is lg). We notice that all
these groups contain two constant flat pencils of type F. In a singular configuration all the
lines in one of these groups are concurrent with two skew lines, 1, and l,. Since each group has
two constant flat pencils of type F the line 1, is defined by the centers of these flat pencils. We
notice that there are two distinct categories of line quintuplets; therefore, we define F1 and F2
quintuplet categories as follows:

FI={(hi b 1), i L 1sle), (11 L 315 L6)}.

F2={(i L 415 L), (1; I3 415 L6), (I 5 Ly 15 L)}
Case 1 F1 line quintuplets:

Let (I b I3 I4 Is) be a category-representing line quintuplet. This line quintuplet

contains the architecture constant flat pencils Fj4 and Fs. Two skew lines 1, and 1, that

intersect the lines 1;, b, 14, and 15 are defined such that laZCFMCFZS and line I, is the

intersection line between the planes defined by these flat pencils, i.e., I,="F 4" F,5. We look

for a fifth line, 15, which intersects lines 1, and I,. The following proof presents a new singular
configuration S10.

Proof:
D 1, ="F; Fys, 1,="F4nP Fys.
2) b= °F4 . b="Fs; therefore 1, BO.

3) Line I rotates in the plane P3, i.e., l;€P3.

4) Let i; be the piercing point of line I, with the plane P3, i.e., i;= l,nP3. If line 15
intersects 1, and passes through point i, then a singular configuration of type 4B
forms. In particular, if the intersection line Iy lies in plane P3, then line 13 will
always intersect it.

5) b;eBO0 and 1,eB0. There are two possibilities for line I3 to intersect l,: in the first,
line 15 does not lie in the tripod base plane, therefore, it intersects 1, only if point b
lies on l,. In this case, a singular special complex forms; therefore, this case will be
presented under the special complex singularities. The second possibility is 1;€B0,
i.e., line 15 lies in the base plane; therefore, it intersects 1.

6) If 13;eB0 then singularity occurs if point i; lies along line 15. Figure 10.16 presents

this singular configuration.
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Singular configuration S10: 1,€BO, PF; ;,3APF y .3 "BO€l,

;, k,n=1,2, 3. j#k#n.

Figure 10.16: Singular configuration S10.
S10 1™12121°0 1°X11279179 :10.16 11X

Case 2 F2 category:

Let (I) I, 1415 Ig) be a category-representing group. Like in case 1, 1, and 1, are defined

such that 1,=°F,°E,s, 1,=PF4nPE,s. We define points i; and i, such that i, is the

intersection point of line 1; with PF,s and i, the intersection point of Ly with PF,s.

Additionally, we define point i3 as the intersection point of 1, with the base plane. This case
introduces new singular configuration S11. In this singular configuration lines 1, I, 14, 15, and
I are concurrent with two skew lines 1, and 1.
Proof:
1) b;eBO0 and line I¢ passes through bs.
2) In a singular configuration, line ls intersects L.
3) L,eBO , therefore, excluding the case where bs€l,, in a singular configuration line g
lies in the tripod base plane.
4) line 1, is defined by points i; and i,.
5) if l¢ passes through point i3, then all the five lines 1;, I, L4, Is, and ls are concurrent
with L, and 1, .

Figure 10.17 presents singular configuration S11.
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Singular configuration S11: 1,€BO0, PF; ;3K \,; "BO€l,,.

g, k,n)e{,2,6),(2,3,4),(3,1,5)}.

Figure 10.17: Singular configuration S11.
S11 171212170 1°X12°9179 :10.17 TR

Parabolic congruence (4C):
This case unifies all flat pencil singularities related with one or more flat pencils of the

parabolic congruence, therefore, it does not add new singular configurations.

Degenerate congruence (4D):

The lines that dependent on the four generators of a degenerate congruence are the
lines of a plane (3D) and the lines that pierce this plane in a common point. Accordingly, we
have to inspect the case, in which there are two lines piercing in a common point the plane
defined by the other three lines.

A group of six lines has 20 line triplets. Table 10.2 lists all these line triplets and
presents six groups of them, U1..U6. We consider all the cases in which these line triplets are

coplanar and two other lines intersect their plane in a common point.
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Case 1 Ul line triplets:
This category includes only one line triplet. The lines in the triplet (1;, L, 13) are
coplanar only when the moving platform lies in the tripod base plane. This was already

proved in flat pencil singularities (2B) in case 1.1.

Table 10.2: Complete listing of all 20 line-triplets and their separation into six groups.
J1IX12P WW? 0npP1?n1 o R N1 2w 20 22 01077 :10.2 11710

Ul ={i L)}

U2 ={(iz15), (b 13 1y), (11 12 ls)}
U3={LLL), L L), 1 1), I 1), L1 1s), (13 16)}
U4 ={LiLLs), (I Lu1o), (15 k), (51ske), (3 Lulg), (o 1s 1s)}
U5 = {(i Is1s), (I 1s16), (1314 15)}

U6 ={(ls15 1)}

Case 2 U2 line triplets:

Let (I; 15 Is) be a category-representing triplet. We assume that lines (I; 15 I5) are

coplanar. Therefore, lines 1; and 13 define the flat pencil "T,;. There are two cases to be
considered. In the first, lines 14 and I¢ intersect P T; in a single point, and in the second, lines
I, and I intersect P Tj; in one point.
Case 2.1 lines 14 and Is intersect P T,; in one point:

PT,; is defined by lines 1; and 1. Lines 14 and 1s pierce PT,; in points b; and b,

respectively. Therefore, these lines intersect PT,; in one point only if b;=b;. This is the
singular case S8.
Case 2.2 lines I, and I intersect T, in one point:

This case also leads to singular configuration S8.

Proof:

1) Line I, rotates in the plane P2, L,eP2.

2) The center of Ty lies along the normal, “T,; en.

3) bs is the intersection point of line lg with PT}5, b= 1N T;.

4) If line I, and I¢ intersect P T,; in one point, then this point must be bs.
5) b;eP3 and L, P2, therefore, line I, may pass through b; only if b;en.
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6) If bsen then since lines 1; and 15 define flat pencil T,; then bs="°T,;.

Therefore bi=bse P T, and this is singular configuration S8.

Case 3 U3 line triplets:

All the line triplets in this category include one flat pencil of type F. Let (I, 1, 14) be a
category-representing line triplet. Based on the proof in flat pencil singularity (2B) case 1.2,
the lines in this line triplet are coplanar only if lines I; and I, lie in the moving platform plane,
PO. In this case line Is also lies in the moving platform plane, therefore this case leads to
singular configuration S9 in Fig. 10.15.

Case 4 U4 line triplets:

We examine the line triplet (1;, Ls, ls) as a category representing one. In flat pencil
singularity analysis, case 2.2, we proved that the lines of this triplet are coplanar only if they
lie in the moving platform plane, PO. In this case also line I, lies in PO since it is defined by
point b, €ls and p,P0. Therefore, this is singular configuration S9 in Fig. 10.15.

Case 5 U5 line triplets:

This case leads to singular configuration S1. We already proved in flat pencil
singularity analysis, case 3.2, that the lines in the category representing line triplet (I3, Ls, ls)
are coplanar only if the moving platform lies in the tripod base plane.

Case 6 U6 line triplets:

Based on flat pencil singularity analysis, case 3.3, the lines (4, Is, ls) are coplanar if the
moving platform and the tripod base plane are parallel. Two lines from the group (1;, L, 13)
intersect the tripod base plane in a common point only if two of the spherical joints coincide.

This leads to a special case of singular configuration S8 in Fig. 10.12.

10.2.7 Linear complex singularities

A group of six lines degenerates from the space variety to the linear complex variety
in two ways. If all the six lines belong to a general spatial linear pentagon, then singularity of
the general complex occurs. If all the six lines intersect one common line, then a singularity of
the special complex occurs.
Case 1 Six lines in a general complex (5A):

Table 9.5 presents eight equivalent cases to the general complex. We note that all
the line quintuplets include two architecture constant flat pencils. Therefore, the equivalent

case in the table is the third case, i.c., case SA-(3).
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There are six line quintuplets in I'={l;..Is}. All these line quintuplets include two
architecture constant flat pencils. We define lines 17, Ig, and Iy as the intersection lines of the

flat pencils Fy4, Fas, F3¢ with the base plane B0, respectively (Fig. 10.18).

Figure 10.18: The lines of I" belong to the same general complex if and only if lines 15,
Is, and Iy belong to a common flat pencil.
Ih Ig . I; 0"1pin OX P71 OX general complex 1MKR? N2 I o"1pin NX13P :10.18 11"'X

flat pencil 1MXR? 030

Lines 17, I, and ly are linearly dependent with the flat pencil generators of Fj4, Fys,
Fs6 and, vise versa, lines 1, I, and 1 are linearly dependent with the flat pencils generated
by the line pairs (I4 I7), (Is Ig), and (I¢ ly). Similarly, lines ls, Is and l¢ are linearly dependent
with the flat pencils generated by the line pairs (1; I7), (12 Is), and (13 Io).

Based on theorem 1 of chapter 9 we prove that the condition for having all the six
lines of I in one general complex is that lines 17, Is, and ly intersect in one common point
and belong to the same flat pencil. For convenience, we recall theorem 1 of chapter 9:

Theorem 1: A general linear complex has a pencil of lines in every plane and a
pencil of lines through every point in space. [Graustein, 1930].

Based on this theorem every plane is associated with a flat pencil. Accordingly, the
tripod base plane, BO, is associated with a flat pencil of lines residing in it. To demonstrate
the proof we consider the general complex of lines generated by the two architectural flat
pencils F4 and F,s and either line I3 or line lg. Lines 17 and Ig belong to this general complex
because of their linear dependence with the generators of Fi4 and Fs. Lines 17 and Ig lie in
the base plane B0 and define a flat pencil of lines of the general complex. Therefore, if line

Iy is not in this flat pencil then the flat pencils defined by (I3 ly) and (I ly) do not belong to
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this general complex and the possibility of having all six lines of I" in this general complex
is ruled out.

Consider the general complex defined by F4, F25 and line 5. If line 1y belongs to the
flat pencil of lines 1; and Is then the flat pencil (I3 ly) belongs to this general complex and it
follows that line ls also belongs to this general complex since it lies in the flat pencil (I3 o).
In a similar way line 15 belongs to the general complex defined by F4, F25s and line ls only if

line Iy belongs to the flat pencil of lines 17 and Ig.
When lines 15, Ig, and ly intersect in one point all the four planes PF,, PE, PE;,

and B0 intersect in a common point. Therefore, the condition for this singularity is:

Singular configuration S12: PF,,nPF,sn PF;,n B0 = &

We note that the condition for this singularity is easily expressed as the condition for
having the four planes PF,, "E,s, PF,, and BO in one planar bundle, therefore, any one of

these planes is linearly dependent on the other three planes.

We resort to a simple case study to show that this singularity is possible even for
configurations with points b; # b, # bs. This example is simple and it is solved using a
geometric approach. The objective of this example is to answer the question whether this
singularity is local or it is a full-cycle singularity. In local singularity we mean that in the
singular configuration the general mobility of the mechanism is different than the full cycle
mobility only in local neighborhood of the singular configuration. In local parallel
singularity the moving platform performs undesirable infinitesimal motions relative to its
singular position. Another objective of this simple example is to answer the question
regarding possible methods for eliminating this singularity.

Consider the tripod in Fig. 10.19. This tripod has two fixed angles, B; and P,
between links A; and A; and the tripod platform, respectively. It has also two rigid links, A,
and A,, having the same length.

Figure 10.19: A simplified case study.

J0w19na anaTil :10.19 11X
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Imagine that we rotate the platform of the tripod together with links A; and A, about
line b;b, such that the angles 3; and 3, are kept constant. We start from a configuration in
which lines 14 and Is lie in BO and we rotate the platform and links A; and A, about b;b; as a
rigid body until lines 1; and L, lie in plane BO. In the initial configuration lines 1; and Is are
the same as lines 14 and Is, respectively Fig. 10.20. In the final configuration (i.e. line 1; and

I, lie in BO) lines 1; and lg are the same as lines 1; and L, respectively. This means that
during the process of rotation the intersection lines 1; and Is of planes PF, and PF,5 with

plane BO lie in angular sectors as shown in Fig. 10.20. Performing the same operation in the

b3 BO

b,

Figure 10.20: Top view of the initial configuration (a) and the sectors of lines I; and Ig (b).

(b) Ig 121 1712 20 MATAM (a) N"N?NNNN 1'8712°911P0 20 2D V2N :10.20 11'X

opposite direction results in two other angular sectors of lines 17 and Ig.

Because of the symmetry in this example every two homothetic lines in these
angular sectors intersect along the normal bisector of b;b,. Also because of the symmetry of
the equilateral platform this normal bisector is the intersection line of P3 with B0. Therefore
if we keep the two links and the platform in a given position, we can alter the position of
point b; such that is copunctal with an intersection point of such two lines. In such
configuration lines 1, I, and ly belong to one flat pencil with a center at b;. We note that any
movement relative to this singular configuration changes lines l; and lg therefore this

singularity is local.
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Case 2 Six lines in a special linear complex (5B):

A group of six lines includes three permanent flat pencils of type F. All the lines in "
intersect a common line if this line is the line of intersection of planes *E,, PF,s, and PF;, or
if points by, b,, and b; are collinear. Because of the geometry of the moving platform the
planes PE,, PE,, and "F;, do not have a common intersection line. Therefore, the only

possible singular configuration occurs when points by, b,, and b; are collinear, Fig. 10.21.

Figure 10.21: Singular configuration S13.
S13 17121210 1°XMA79179 :10.21 TR

Singular configuration S13: 4b; + Bb2 + Cb3=0
A,B,CeRN.(4,B,C)#(0,0,0)

10.2.8 Concluding remarks

The analysis of the parallel singularities led to 13 singular configurations. However,
not all these singular configuration are independent. This is because the method of analysis
increases the number of lines in a variety. Hence, some singular configurations are special

cases of the others. Table 10.3 presents the independent singular configurations:

Table 10.3: Summary of parallel singular configurations.
07272Pn 0771712170 0°2%8N 01270 :10.3 1720

Singular ‘ o
_ Geometric description figure Dependency
configuration

B0 =P0= lnETjk.
S1 10.4 Independent
J, k,n=1, 2, 3. jzk#n.
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PT. =P0,bj=0,= 1, T,
S2 J PP K 10.5 | Special case of S9
G, k,ne{(1,2,4),(2,1,5),(2,3,5), (3,
2,6),(3,1,6),(1,3,4)}
b1:b2:b3. ri”pjpk = lnE Tjk
S3 (g, k,n)e{(1,2,6),(2,3,4),(3,1,5)}. i, | 10.6 | Special case of S13
J, k=1,2,3. i#j=k
ijk =B0. ri”pjpk- bi:chkj lnETjk. (j,
S4 k,me{(1,2,6),(2,3,4), (3, 1,5)}.1,j, | 107 | Special case of S12
k=1,2,3. i#j=k.
First set: ‘”ijz PO, bj;1€P0 = 1,€Fjx.
(j’ k’ 1’1)E {(1’ 4’ 5)’ (23 5) 6)7 (3’ 67 4)}'
Second set: Pij: PO, bj.;€P0 = 1,€Fj. 10.8
S5 (G, k, n)e{(1,4,6),(2,5,4),(3,6,5)}. Special case of S9
Note: index j follows a cyclic order such 109
that forj=3 = j+1 =1 and forj = '
1 =j-1=3.
10.10 ‘
S6, S7 BO|[PO. I,eSjk. j, k, n =4, 5, 6. j#k#n. 011 Special case of S12
S8 b; = by. j,k=1,2,3. j=k. 10.12 | Special case of S13
S9 LeP0, LkePO. j, k =1,2,3. j=k. 10.15 Independent
lnEBO, ijjj+3ﬂka,k+3 N B0 e ln

S10 10.16 Special case of S12

I, k,n=1,2, 3. jzk#n. )

1,eBO, PF. .. sAPF .3 "BOel,.

S11 Byt3T kS " 10.17 | Special case of S12

(g, k,n)e{(1,2,6),(2,3,4),(3,1,5)}.
S12 PE 4 NPFyn PFi B0 # 10.19 Independent
Aby+ Bb2 + Cbh;=0

S13 10.21 Independent

A,B,CeR. (4,B,0)#(0,0,0)
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We note that there are four independent singular configurations. One of the advantages
of this tripod structure reflects in the fact that this architecture does not have the famous

Hunt’s singularity, which was presented in [Fichter, 1986] and [Merlet, 1989].

10.2.9 Design guidelines for minimizing parallel singularities

A successful design of a parallel robot provides a minimal number of singular
configurations inside the physical workspace of the robot. The term physical workspace refers
to the resulting workspace of the robot when we take into account joint limits, collisions
between moving parts, and only one assembly mode. In general, the design should not permit
assembly mode transitions because each transition is associated with a singular configuration.

These simple guidelines are of great importance when designing the class of parallel
robots to which the USR and the RSPR robots belong. Table 10.4 presents all six independent
singular configurations and the design guidelines, which prevent reaching these singular

configurations.

Table 10.4. Design guidelines for minimizing parallel singularities
0712121700 072800 19010 20 173172 120 21970 :10.4 1710

Singular | Geometrical condition for preventing | Suggested method for preventing

case singularity. singularity.

Prevent the lines 1,2,3 from lying in | Limit the spherical joint range, or

S1
the tripod base plane. limit the revolute joint range.

Prevent lines 1, j from simultaneously | Limit the lengths of lines i, j and
S9 lying in the moving platform’s plane. | pick suitable paths for points b;, b;.
i,jel,2,3.

S12 Prevent the planes PF, PF, PF, and Perform simulations to determine

BO from intersecting in one point. the required limits on [3; in order to

prevent this singular configuration.

S13 Prevent points b, from being | Choose correct paths for points b;.

collinear.
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10.3 Analysis of serial singularities for the RSPR and USR robots
All the robots listed in Fig. 5.14 share the same parallel singularities, but differ in
terms of their serial singularities. This is because every robot architecture has a distinct

instantaneous inverse kinematics matrix B.

10.3.1 Serial singularities of the RSPR robot
The instantaneous inverse kinematics matrix, B, of the RSPR robot is given by Eq.
(7.21) and it is rewritten in Eq. (10.3).

1 C
B- ™ (10.3)
0 Cn,

Cn, and Cn,are 3x3 diagonal matrices. The elements on the main diagonals of these
matrices were given in Eq. (7.19).
Cny =(8;; x8,;)' 1y, i=1,2,3. (10.4)
Cny; = (85 x8,) Iy i=1,2.3. (10.5)
Where §;; is the unit vector along the i’th tripod link Aj. §; is a unit vector through the center
of the spherical joint of the 1’th kinematic chain and parallel to the axis of the upper revolute
joint T.. ly; is the vector from the center of rotation of link B; to the center of the i’th spherical
joint. §,; is a unit vector along the rotation axis of link B;, see Fig. 7.3 and Fig. 7.4.

It is obvious from inspecting the matrix B that it is singular whenever one of the
scalars Cny; 1s zero; Therefore, the condition for serial singularity of the RSPR robot is given
by Eq. (10.6).

Cny; = (85 x8,) 1y =0 i=1,2,3 (10.6)

Singularity of matrix B indicates serial singularity of one of the kinematic chains. This
singularity is characterized by loss of a degree of freedom. The singularity of the matrix B is
not sufficient to indicate singularity of the whole robot. This is because we must keep in mind
that the singularity of B indicates singularity of one or more kinematic chains and we must
verify that this singular configuration is allowed by the selected assembly mode. Therefore,
the serial singularities must be given geometric interpretation in addition to the mathematical

analysis.

Rewriting Eq. (10.6) in the form of Eq. (10.7) indicates that it is satisfied in four cases.

Cng; = (805 %8) T = (i x853) '8 = (8 x T ) 8 i=1,2,3. (10.7)
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The four cases are:
Case a: §; lies in the plane of 1 and §,;.
Case b: 85| Spi.
Case c: ly; || 8.
Case d: Ly || S

Case d is not possible for the RSPR robot since §,; is the rotation axis of l;. Case a is
the general case and it includes cases b and c. Cases a, b, and ¢ are demonstrated in Fig.
10.22.

In case a, the actuator of rotating link can not apply force in the direction of §y;. In case
b, the actuators can not produce any motion of the kinematic chain extremity in a direction
normal to the base platform. In case c, the prismatic actuator lies in a plane tangent to the
circle of the rotating link and the two solutions of the inverse kinematics meet. In all these
cases any force acting on the kinematic chain extremity in the direction of the upper revolute

joint produces zero force/moment in the actuators.

(b)

(c)
Figure 10.22: Serial singularities of the RSPR robot — cases a..c.
.a..c 01"1Pn - RSPR 11217 20 N1" 110 NM1™1212170 :10.22 11"
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10.3.2 Serial singularities of the USR robot
The instantaneous inverse kinematics matrix B of the USR robot was given in Eq.

(7.31) and it is rewritten in Eq. (10.8).
Cn, Cy
B=
Cn, Cr |,

Cny, Cn,, Crj, and Cr; are 3 by 3 diagonal matrices given in Eq. (7.32) and Eq. (7.33)

(10.8)

with the following elements on the main diagonal:

(10.9)Cny; = (85 x8,;)'1y,; Cny; = (85 x8,)' Ty,

(10.10) Cry; = (8 %8 ) Iy, Cryj = (815 %84) 1y
Where §); is the unit vector along the i’th tripod link A;. §5; is a unit vector through the center
of the spherical joint of the 1’th kinematic chain and parallel to the axis of the upper revolute

joint ;. Iy is the vector from the center of the universal joint to the center of the spherical

joint of link Bi. 8y, §;i are unit vectors along the yaw/pitch axes of the universal joint of link
Bi, see Fig. 7.3 and Fig. 7.5.

The USR robot has a three-diagonal instantaneous inverse kinematics matrix, B, and it
is singular whenever one of its rows/columns is zero, or when a pair of its rows/columns is
proportional. In a similar way to the analysis of Eq. (10.7) of the RSPR robot we register all
the cases in which one of the elements in Cn;, Cn;, Cri, and Cr; is zero. Each one of these
cases, i.e., Cn;i=0, Cny;=0, Cr;=0, and Cr,=0 is separated into four cases like the cases a..d of
Cny=0 for the RSPR robot. The conditions for separately fulfilling Cn;i=0, Cny=0, Cr};=0,
and Cr,;=0 are registered in table 10.4.

10.5: The cases in which Cn;=0, Cn,=0, Cr};=0, Cr,;=0 are fulfilled separately.
.Cny;=0, Cny;=0, Cr;;=0, Cr,=0 TIM? 0™M™pPNnN 011 0"1PNil :10.5 N?7210
Condition Cn;;=0 Cny=0 Cr;=0 Cr;=0

a Si; liesin the | §»; lies in the $1; lies in the $,; lies in the
plane of I; and §,; | plane of ly; and §,; | plane of Iy; and §;i | plane of L; and 8

b S1ill Sni. Sai || Sni. S1ill 8sic Saill 8si.

c Li || 1. Lui || 82i. Lui || 81 Lui || 82i.

d Lo || Spi. Lo || 8ni. Lo || 8. Lo || 8.
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To find serial singularities of the USR robot we inspect the intersection of the
conditions in table 10.4 that lead to zeroing of a row or a column in B. We produce four
Carnot maps to register all the cases in which a row or a column is zero. The four Carnot
maps are shown in Fig. 10.23. Theoretically, there are 64 possible intersections in these
tables, but we exclude the cases that do not fulfill the geometrical constraints. In these maps,
the cells with dark background represent impossible configurations because of the geometry
of the universal joint, Fig. 10.24, and because §;; is perpendicular to $,;. From this figure, it is
clear that §,; is perpendicular to §,; and that § is perpendicular to l,;. We inspect the cases for
dependence and we find that there are only five independent configurations. These
configurations are indicated in the maps by letters A..E. All the empty cells in these maps

represent configurations that are dependent on configurations A..E.

Cuil a [ b | c | d || a|lb]| c|d
Cn2i Crli

Quaif b c | d Crif 4 b c | d
Crzi CrZi

Figure 10.23: Carnot maps for registering the configurations in which B is singular,

J1M72121°0 B 1X™M0n1 102 N1'XMA91190 010717 1372 1191 :10.23 11X
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Spherical joint

Yaw axis $y;

Base platform

Pitch axis §;

Figure 10.24: The universal joint of the USR robot and its associated geometric constraints
120 TITIUNIR™AN 11222001 USR U1211 20 2012 11X0 21791010 :10.24 11X

The serial singularities of the USR robot in which a row or a column of the
instantaneous matrix, B, is zero are:
Configuration A: both §;; and $y; lie in the plane of §,; and ly;, Fig. 10.25-(A).
Configuration B: ly; || 8y, i.€., the lower link is coincident with the yaw axis
of the Hooke’s joint, Fig. 10.25-(B).
Configuration C: §;; coincides with ly;, Fig. 10.25-(C).
Configuration D: §,; coincides with Ly;, Fig. 10.25-(D).
Configuration E: both §;; and §; lie in the plane of §,; and ly;, Fig. 10.22-(E).

In configurations A and B Cn;;=Cny;=0 and the corresponding column out of columns
1..3 in B is zero. In configurations E Cr;=Cr;=0 and the corresponding column out of
columns 4..6 in B is zero. In configurations C the corresponding row out of rows 1..3 in B is

zero. In configuration D Cr,=Cn,;=0 and the corresponding row out of rows 4..6 in B is zero.

In configuration D, the two branches of the solution to the inverse kinematics problem
meet. In case B the lower rotating link coincides with the yaw axis of the active Hooke’s joint
and the motor of this axis can not move the tip of this link. In cases A and E the forces of the
upper rotating link produce zero moment in one of the axes of the Hooke’s joint. In case C the

two links of the singular kinematic chain are collinear.
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In addition to the serial singularities in Fig. 10.25 there is an additional singularity that
occurs when two columns of B are proportional, Eq. (10.11).
Configuration F:
Cny; Crp - Cry; Cnpi =0 (10.11)
The condition in Eq. (10.11) is the general condition for singularity of one of the

kinematic chains, therefore in includes all the singular configurations A..E in Fig. 10.25.

(D) (E)

Figure 10.25: The five serial singularities of the USR robot.

JUSR 11217 M2D 1" 119 N1"12121°00 NPX712°91790 0NN :10.25 71X

10.4 Conclusions

In this chapter, we analyzed the parallel singularities of the manipulators in Fig. 5.14.
We found thirteen parallel singularities for all these manipulators out of which only four are
independent. We analyzed the serial singularities of the USR and the RSPR robots and we
showed that the RSPR has less serial singularities than the USR robot. We formulated the
conditions for the serial and parallel singularities. These conditions can be used for designing

a robot without singularities.
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Chapter 11

The RSPR Prototype Robot
11.1 Introduction

This chapter presents the experimental setup and the control method of the RSPR
prototype robot that was built according to the characteristic dimensions of chapter 8. We will
show that the prototype fulfills the objectives of the design task that were presented in chapter

4. The technical drawings of the prototype are in a separate appendix to this work’®.

11.2 The RSPR prototype robot — design characteristics and specifications

The RSPR prototype robot is based on the selected robot in table 8.2. For convenience,
the characteristic dimensions of this robot are re-listed in Table 11.1. Table 11.1 lists the
height range of the prototype robot based on the kinematic model (without taking into account
the additional parts below the base platform). The design of the robot included design of
customized linear actuators to achieve the desired minimal length and stroke. To reduce the
weight of the robot unnecessary material was removed by milling holes in the aluminum base
platform. This resulted in 30% weight reduction in the weight of the base platform. Figure
11.1 presents the RSPR prototype holding a medical tool for demonstration purposes. Figure
11.2 presents a top view of the RSPR robot showing the details of the base platform.

Table 11.1: Characteristic dimensions of the RSPR prototype.

.RSPR 1101 01901 2R U121 20 M"173IR MT™M :11.1 1720

o Minimal actuator
Eccentricity-e 20 mm 144 mm
length-Lyn.
Rotating link Minimal height
90 mm ) ) 130.9 mm
length- 1y, (kinematic model)
Radius of the
. Maximal height
moving platform - 50 mm . . 201.2 mm
(kinematic model)
Tp.

§ Robotics Laboratory - Technion.
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Figure 11.1: The RSPR prototype robot demonstrating surgical tool positioning.
JTIN1 722 019 07 RSPR 01970 2R V1217 :11.1 11'R
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Figure 11.2: Top view of the RSPR prototype robot showing weight reduction voids in the

base platform.

L2701 NIT11? MU71ana 0D 07020 NN1198°29 NR AxRIna RSPR 812177 20 9an :11.2 11"
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11.3 Mechanical properties of the prototype

The prototype robot has the physical properties listed in table 11.2. To achieve
maximal accuracy we use anti-backlash gearing for the linear actuators and high precision
gears for the rotating links. We use low friction PTFE coated lead screws for the linear
actuators to reduce the friction in the system. The backlash of the linear actuators limits the
accuracy of the robot, but replacing the lead screws with preloaded ball screws can easily

solve this problem.

Table 11.2: Physical properties of the RSPR prototype
RSPR 1101 0190 2R U1211 20 M2 09 N131270 :11.2 N?220

Weight 3 [Kg]
Physical dimensions of enveloping
. . . 250, 200 [mm]
cylinder (diameter, height).
Maximal continuos torque of the rotating
' 0.5 [Nm]
links at the gear output
Maximal force of linear actuators in
: : 220 [N]
continuos operation
Resolution of the optical encoders. 500 [encoder counts/revolution]
Resolution of the linear actuators 0.0015 [mm/encoder count]
Resolution of the rotating links 0.005  [degree/encoder count]
Linear actuator backlash 0.08-0.2 [mm)]
Rotating links backlash 20

11.4 Experimental setup

The motion of the prototype robot is controlled in a Master-Slave mode. Our
experimental system includes the computer control program in its core, a 12 bit 8 channel
digital to analogue D/A converter, input output I/O card, six power amplifiers, the power
supply unit, and the robot, Fig. 11.3.

The computer program reads the desired position/orientation of the moving platform
as an input signal initiated by the user (the Master). The control program calculates the
positional error and uses a PID control algorithm to compute the control signal, which is in
turn converted by the D/A card to an analogue signal. This analogue signal is feeded to the

power amplifiers and translated into a PWM signal for the DC motors M; .. M.
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The control program also checks the inverse kinematics solution and determines
whether an actuation limit has been reached. Additionally, the program prevents collision
between the linear actuators and the centrally located motors. This is achieved by computing
the piercing points of the linear actuator axes with an imaginary plane that is perpendicular to
the motors and defined by the upper extremities of the three central motors, Fig. 11.4. We
define an imaginary safety circle that lies in this plane. This imaginary circle has a radius
larger than the actual radius of the cylinder that envelops the three central motors. If the
piercing point of a linear actuator axis lies inside this imaginary circle this means that the
linear actuator collides with the upper extremity of one of the three centrally located motors.
This approximation is appropriate because the linear actuators retain an inclination towards
the centrally located motors and the inclination angle of the actuators does not reach high
values. Therefore, this method is a sufficient and a fast method for solving the collision
problem. We determined the required imaginary radius experimentally by manipulating the
robot in many positions that bring the linear actuators into collision with one of the centrally

located motors and we registered the upper limit of the result of the imaginary circle.

-t

khl A
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R Master unit /
D— M,
[/O card [[——— Encoder data lines
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—_—
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amplifiers [—,

Power Motor power lines Ms
Supply
unit i

-
g

Figure 11.3: A block diagram of the robot’s control units.
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Linear actuator

. ) Imaginary plane
Imaginary safety circle

Piercing
point

Central motors Rotating link

Base platfo

Figure 11.4: The imaginary circle for collision detection between the linear actuators and
the centrally mounted motors.
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11.5 Future work and experimentation

The prototype robot will be tested in the future in medical tasks such as
manipulating a laparoscope and an orthroscope in Orthroscopic knee surgery. To achieve this
goal we need a convenient means to translate the commands of the surgeon to the robotic
assistant. One possible method for manipulating the robot is by integrating a six degrees of
freedom hand controller that enables easy scaling of the motions performed by the surgeon.
The prototype also has not been exactly calibrated and in final stages of experimental setup
we need exact calibration of the robot. Additional work should be invested in designing an

extension mechanism that holds the tool.

11.6 Conclusion

The RSPR prototype was successfully designed, constructed, and controlled to meet
the design goals. The final dimensions and weight of the robot promise good portability,

which is an advantage in the operating room. The accuracy of the robot exceeds the accuracy
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achieved by manual manipulation of surgical tools. This points out the potential embedded in

this robot for medical applications.
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Chapter 12

Conclusions

12.1 perspective overview of the work

This work incorporated two new fields of research: the field of robotic assisted
surgery, and the subject of parallel manipulation. The requirements of a robotic assistant were
formulated according to evaluations of the required workspace for laparoscopic surgery.
Based on these requirements we sought the best robotic architecture for our design task. We
first compared the serial architecture with the parallel one and based on the architecture-
inherent characteristics of both architectures we concluded that the parallel architecture better
suits the requirements of a medical robot. Then we searched for new parallel manipulators
that fit the task. The synthesis process led to a family of 14 distinct parallel robots, with
common kinematic features. Based on design guidelines we chose two possible candidate
robots, the USR and the RSPR robots, for dimensional synthesis. The dimensional synthesis
phase included scanning a vast array of manipulators with different characteristic dimensions
and resulted in 22 possible RSPR robots and 95 admissible USR robots. Although the
dimensions of the USR admissible robots were smaller than for the RSPR robots, we chose
the RSPR robot because of two reasons. The first reason was that the RSPR robot requires
less actuator effort. The second reason was based on design guidelines regarding mechanical
simplicity and feasibility. Another important advantage of the RSPR robot over the USR
robot was revealed in the phase of singularity analysis.

The dimensional synthesis simulations were based on the inverse kinematics solutions
and the static Jacobian formulations for the USR and the RSPR robots. The aforementioned
family of 14 manipulators was shown to have a common Jacobian matrix formulation with the
same instantaneous direct kinematics matrix. This matrix was shown to be determined solely
by the common tripod mechanism.

The line-based formulation of the tripod mechanism Jacobian allowed the analysis of
the uncertainty configurations (parallel singularities) of all the 14 manipulators using line
geometry method. The analysis of parallel singularities of this family of manipulators showed
that these manipulators have 13 parallel singularities of which only 6 are independent and
general. The use of line-based singularity analysis provided the geometrical insight, which
allowed deducing design guidelines for minimizing the parallel singularities of these

manipulators by altering the design variables.
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The analysis of serial singularities of the RSPR and the USR robots showed that the
RSPR robot has less serial singularities than the USR robot.

The design phase of a medical robotic assistant was based on the results of the
dimensional synthesis of the RSPR robot. Based on actuator size and spherical joint limits we
built a compact RSPR parallel robot prototype (over all weight less than 3 kg) which allows
good portability in the surgery room.

After the prototype was successfully designed and constructed, we wrote a control
program that allows activating it in a Master-Slave mode. The mechanical and architectural
characteristics of the prototype indicate that this prototype is more accurate than a human
hand. These features of the parallel robot prototype highlight its embedded potential for

implementation in Laparoscopic and certain Orthroscopic surgeries.

12.2 Future work

The RSPR parallel robot prototype is currently an efficient tool, but it needs future
adaptations before entering the experimental phase. Before commencing with surgical
experiments, an exact calibration of the robot must be performed and an efficient interface
and hand controller is necessary. The development of an efficient hand controller or an
alternative solution for conveying the commands of the surgeon to the robot is a key
prerequisite for ensuring the success of the medical robotic assistant. For surgical procedures
incorporating tactile tasks, an efficient force-feedback system must be designed in order to
convey information to the surgeon regarding the tactile forces exerted by the robot on the

patient’s body.
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Abstract

This paper describes the structure of three types of
parallel robots and compares their performances in the
sense of size and static forces. The motivation for this
investigation is to construct a robot that best fits a given
medical application. The requirements are to cover a
given work volume with a given orientation and to
maintain the robot within the smallest cube possible.
Among the structures examined, three are presented since
two are modifications of known structures and the third is
a new one.

1 Introduction

The exponential growth of publication on parallel
robots in the last five years points to the potential
embedded in this structure that has not yet been fully
exploited. A survey of papers whose title includes the
word robots, reveals that the number of papers dealing in
particular with parallel structure has gone up from 1% in
1985 to 9% in 1996. This clearly indicates the trend of
the research in the field. A typical example is the
manufacturing area. The recently introduced parallel
structured machine tools by Ingersoll-Rand [7] and
Giddings-Lewis [11] opens the door for much research on
the application of parallel robots in manufacturing as
appears for example in the 1997 CIRP Annals.

Numerous investigations were aimed at new structures
of parallel robots. We refer the reader to Merlet’s
comprehensive study where he collected and grouped
different parallel structures by their Degrees Of Freedom
(DOF) (see Merlet - web page [9]). In the six DOF
section, different structures are grouped by their types of
joints €.g. RRPS, RRRS, etc. (where R stands for
Revolute, P for Prismatic and S for Spherical joint). The
ones not falling within these categories are collected
under the title of “robots with various kinematic chains “.

Some structures use flexible members thus reducing
their mechanical complexity by saving joints (e.g. [6,10]).

0-7803-4300-x-5/98 $10.00 © 1998 IEEE
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The three structures presented here are not included in
the above mentioned list. Two structures are
modifications of the USR and RSPR robots (where U
stands for a Universal joint), and the third is a new
structure which utilizes double planar robots. The idea of
this structure stems from Merkle’s [8] and Daniali’s [5]
works.

The structures of the new parallel robots are presented
next. In Section 3 the Jacobian matrices of the three
presented robots are derived. These matrices were used to
derive the static forces and examine singularity. Section 4
presents simulation results from which minimal
dimensions and actuating forces of each robot structure
needed to achieve the given task are derived.

2 Kinematic structure of the robots

In this section the kinematic structures of the three
suggested robots are given. The kinematic chains are
described by abbreviations of the joint types, starting from
the base platform and ending at the moving platform. All
letters denoting joint types are encircled and shown in
figures corresponding to each robot. (see Figs. 2.1, 2.2,
2.3).

2.1 USR robot

The USR robot consists of three identical kinematic
chains connecting the base and the moving platform, each
one has two links. One link is connected to the base
platform by a U joint, the other link is connected to the
moving platform by an R joint, and the two links are
connected in between by an S joint. The lower link of
each kinematic chain is oriented in space by a differential
drive, controlling its yaw and pitch angles relative to the
base platform.(Fig. 2.1)

This structure is a variation of the structure described
by Cleary [4] which uses URS joint cobmination for each



kinematical chain, controlling the pitch and roll of the
lower links. The structure we examined has, however, a
reverse order of joints - a revolute joint connecting the
links to the moving platform, and a spherical joint
between the links. This modification prevents collision
between links.

Moving Platfor

Stationary Base

Figure 2.1: USR parallel robot

2.2 RSPR robot

This structure consists of three identical kinematic
chains connecting the base and the moving platform.
Each chain contains a lower link rotating around a pivot
perpendicular to the base platform , and is offset placed
from the center of the base. At the other end of the lower
link a prismatic actuator is attached by a spherical joint.
The upper end of the prismatic actuator is connected to
the moving platform by a revolute joint. The revolute
joints axes constitute an equilateral triangle in the plane
of the moving platform (see Fig. 2.2).

This structure is distinguished by the location of the '

lower link revolute axes being placed offset from the
center of the base platform. Comparison between RSPR
structure and the structure suggested by Alizade [1]
which uses RRPS kinematic chains, shows that due to the
different order of joints, RSPR robot overcomes certain
singularities (90° rotation about a vertical axis) that exist
in RRPS arrangement, and reduces actuator forces as will
be shown in section 4. On the other hand it should be
noticed that the work volume of the RRPS is larger. Using
the swept volume analysis [12] reveals that when
eccentricity is eliminated in RSPR robot then both RSPR
and RRPS have the same swept volume of the kinematic
chains’ upper extremities. Since RSPR robot has an R
joint at the end of each kinematic chain, which imposes
additional prependicularity constrains, it results in a
smaller vertex space and work volume than RRPS robot.

Figure 2.2: RSPR parallel robot

2.3 Double circular-triangular robot

This new structure is composed of two 3 DOF planar
mechanisms. These planar mechanisms are different from
the planar mechanism suggested by Daniali [5] since they
use a circular-triangular combination rather than
triangular- triangular one, thus providing much higher
orientation capability (theoretically unlimited). The robot
(shown in Fig. 2.3) has two similar planar mechanisms
each one consists of a stationary circle and a moving
triangle which is connected to the circle by three passive
sliders pivoted on axes. The active joints actuate the
location of these three pivot axes along the circumference
of the stationary circle.

Passive End effector

Slider M

Active - Pivot P Supported

Slider ~ | on U Joint
Moving
Triangular Lead Screw
Frames Prismatic

H Joint Supported
on U Joint

Figure 2.3 : Double circle-triangle robot

Two sets of this structure are used to construct a six-
DOF robot. FEach structure contributes three-DOF,
namely, moves the triangle in a plane and rotates the
triangle about an axis normal to this plane. With two such
sets, a line connecting the triangle’s centers is actuated in
four-DOF. The output link is located along this line and
the additional two-DOFs are obtained by controlling the
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rotational motion of the moveable triangles. Each
triangle's center contains a U joint and is connected to the
output link at one triangle's center through a prismatic
Joint and at the other through a helical joint (nut and a
lead screw). Rotational motion of the output link about
the line connecting the centers is achieved by rotating the
first movable triangle (the prismatic joint) while motion
along the line is achieved by rotating both triangles at
different angles. Unlike the planar mechanism suggested
by Daniali [5], which allows maximum 60° rotation, the
planar circle-triangle based mechanism allows full
_ rotation and therefore practical use of the lead screw.

3 Robot performances

In the present research we aim at designing a robot for
accurate remote manipulation of a laparoscopic laser
dissection tool. Laparoscopic surgery has gained
increasing popularity in recent years and many operative
procedures are nowadays performed by this minimally
invasive approach, requiring fine dexterity and accurate
micro surgical technique. Utilizing laser for cutting
operations is a highly demanding task since it requires
the surgeon to manipulate the bulky apparatus of
laparoscope, camera and laser guiding system in a
constrained  environment with  high  accuracy.
Manipulating the laparoscope with an accurate robotic
manipulator controlled remotely by the surgeon is
therefore, an attractive approach. A parallel robot
structure better fits these medical requirements. This
robot structure is much more compact then the commonly
used serial one, more rigid and accurate and its inherent
limitation of small work volume is an advantage in
medical applications where the required motion is small
and safety is of utmost importance.

We examined the different parallel robots
performances from several aspects: the ability to access a
given work volume with a given orientation, the required
forces/torques at the active joints and limitations due to
singularities and spherical joints mechanical limitation.
To check for robot’s work volume we used the trivial
inverse kinematics solution. We avoid the singularity
where the Plucker coordinates of the lines stemming from
the Jacobian matrices are four in a plane and hence
dependent. This is the only singularity observed in the
neighborhood of the work volume we examined (For a
detailed singularity analysis of a series of parallel robots
using line geometry, see [2]). For the static forces/torques

analysis we used the Jacobian matrices the derivation of

which are given below.
The Jacobian matrix transforms forces exerted by the
moving platform into active joint’s forces/torques.
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For parallel robots the equation :

71

r=J" s, )]
determines the relation between the actuators generalized
forces 6x1 vector, 7, and the external wrench, s, , exerted

by the moving platform on the environment. This
equation is used next to determine the Jacobian matrices
of the three structures.

For both USR and RSPR robots the upper part is
identical, therefor we derive Jacobian matrix J of this
common part.

Fig. 3.1 shows only one kinematic chain out of
identical three. The moving platform is connected to a
link A4; via a revolute joint. The moving platform exerts
a wrench s, on the environment, the lower end of the

link is connected to another link B; by a spherical joint.
Moving Revolute

platform : i T XSy

-
-
-

Spherical
Joint

Figure 3.1: Common part of USR and
RSPR robot structures

We will use the following symbols in our discussion:

‘A7 - unit vector.

§1; - unit vector along link 4;.
T - unit vector along revolute joint axis.

§9; - unit vector parallel to T passing through the
spherical joint S.

R - rotation matrix from the moving platform to world
coordinate system.

p;- vector from moving platform’s center to ‘i'th
revolute joint.

Since Link A4; is connected to link B; by a spherical
joint and to the moving platform by a revolute joint, it is
capable of exerting force in the direction of s and
moment in the direction of T x§,on the moving

platform. Link B; can exert on link 4, forces of
magnitude F}; in the direction of §; and F; in the

direction of §j; .



After some algebraic manipulation one obtains :

3=[pu,mz,Pla,le,pzz,pn]T i=123  (2)
where py;and py; are 6x1 plucker coordinates of lines
8); and §,;, respectively, written relative to point ‘o’
and represented in world coordinates by:
Py = [3u,Rpix§u]f L i=123 3)

P2 =[,(Rp; = sy;) x3y]

3.1 Jacobian matrix of USR robot

Let 7n; and T7; be scalar quantities representing the

~ magnitudes of the moments applied by the active U joint

on link B; along §,;, §,; respectively (see Fig. 2.1),

where §,;, §,; are unit vectors along the rotation axes

of the U joint. Let 1,; denote a vector representing the
lower link B, from the U to the S joint.
Static equilibrium at point U yields:

Tni = (lbi X (Fligli + F2i§2i))'§m' i=123 @41

Tpi = (loi % (FuiSy; + Fp89:)) 8y 1=123 (42)
Using Egs. (1),(2) one obtains :

Fi; ~T‘1 .
[F;}J se 1=123 )

Define v; as a 1x6 vector having 1 at the i’th
column and zeroes otherwise, then :

~p—l

F=vIiT s, i=123 6.1

~ -1
Fyi=vi337 s,i=123 6.2)

Substituting in Egs. (4.1),(4.2) yields :

~1 ~rl .
- =(lb,-x(v,-.lr S¢Sl +vi+3Jr seszj)j-sm-

~g] el M
T, :(lbi X (ViJT— SeSji +v,-+3JT_ Segzjjj -84
i=123
after some algebraic manipulation one obtains:
A a A ~7
T |_ [(511' x8) Iyvi H3p x85) 'lh'vi+3]J

1
(51 8,) yvs 3 x8:) Jyviaa T
i=123

and the inverse transpose of the Jacobian matrix of the
USR robot is given by the matrix in the right hand side.
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3.2 Jacobian matrix of RSPR robot

Since the upper part of this robot is identical to the
previous one, Eq. (6) is used and substituted in the
expression of the moments at the lower link.

The moments at the lower rotating links are:

Tn; = (lqi x (Fii81; + F2i824)) -8 ©)
=

Following the same steps as for the USR robot one
obtains the inverse transpose of the Jacobian matrix, on
the right hand side of the following equation:

»

|
[FH]‘ il e (10)
T\ e R . . Ll e
" (Sli % Sm‘)' Livi +(52i x sm')' Ibivi+3]Jr
i=123

3.3 Jacobian matrix of the double
circular-triangular robot

This robot has two similar planar mechanisms at its
upper and lower parts hence it is useful to derive the
Jacobian matrix for the planar robot and utilize this

matrix to derive the Jacobian matrix of the spatial robot.
Moving

Stationary
Circular
frame
Figure 3.2 : Planar circular-triangular robot

The following additional symbols will be used in this
section : ;
J - Jacobian matrix of the planar robot.
0¢,0; - center points of the base circle and the moving
triangle respectively.
P - position vector from o, 10 o,.
t; - active sliders position vectors i=123.
s, - external force and torque exerted by the robot on the

environment.
f, - force applied by the planar robot in the plane of the

moving triangle.
T, - magnitude of torque applied by the planar robot,
perpendicular to the moving triangle.



/R, - rotation matrix, transforming vectors from i to j
coordinate system.
g, - function which relates between input moment and

the output moment of the U joint (T}, = g ;* Ty )-

1 - screw lead with a right handed helix.
n7 - effciency of lead screw.

From static equilibrium the Jacobian matrix of the
planar robot is obtained as:

1,€2,€3 ra= ( (A "(A A))
=4, d” d3 ( X4 YO (xll (50)‘ )) (11)
e1,e2,e3 e =aiky - (ZOXEx)

a; = (t thz) (x,, YO)(Pn x0) (‘ .0)(1,“ YO)

The relation between actuator forces and exerted
forces/moments by the moving triangle f;,7; is given by:

7] _T_.1 fbc
(= | fy (12)
73 ];

For the spatial robot we will use indices p and b to
refer to the upper and the lower planar robots.

First we decompose the exerted force/torque in end
effectors coordinate system (see Fig. 2.3). From static
equilibrium for the lead screw oneobtains:

rp =M pse r,= Mbse

(%)oooyo (1-%) 0 oo-llo
Mp o(/)yoo;Mb= %)/oo

0 010 00 00 00O

(13)

Figure 3.3: Parameters of lead screw

Where r, and r, are forces applied by the upper and

lower planar robots on the screw, written in end effector
attached system.
Using Egs. (12-14) one obtains:

_T_l R rlb ___T—l
T2p |= Npse 5 |72p|=J Nps, (14)
73p T3
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where matrices N ,and Nj,are given by Eq. (15), and
vector v;is a Ix3 row vector with 1 at the i’th column
and zeroes otherwise.

vi’R,M,
Np=| v2'R.M, | Ny=

gl
{00 000:|
2zn

Defining generalized forces as [r 2T

vi'R. M,
v2'R.M, (15)

gjl
0,0,-=-.00,g;

17 we find the

inverse transpose of the Jacobian matrix, given in the
right hand side of the following equation:

- -1
'r] I N

- oo Ny

4 Simulation goal and results

The goal of this investigation was to design a robot
that can manipulate surgical tools within a given work
volume, with a given force and accuracy, to minimize its
size and to obtain a robot which can be realized from
design point of view.

The desired work volume is a 40x40x20 mm cube.
The robot has to reach all points within this cube with an
orientation of up to 20°. The robot should fit into a cube
smaller than 200x200x200 mm.

All simulations use the inverse kinematic solution of
each structure to check for accesibility while different
robot dimensions, such as: base radius, moving platform
radius and initial height, were examined. The simulations
exluded robots which contain singular points within the
desired work volume, and robots which exceed the
limitation of 30° spherical joint inclination angle.

The dimensions of the smallest robot of each structure
are shown in table 4.1. All dimensions are in milimeters
and correspond to figures at section 2. Smaller robots
were also found, but design considerations such as joint
and motor sizes and mechanical feasability exluded them
from the final list.

In initial position the platforms are parallel at a
distance H, and the center of the moving platform
coincides with the center of the workspace cube.

Forces for each robot were computed along a diagonal
linear path from the lower corner of the workspace cube,
(point {-20,-20,-10]) to the upper corner of the cube (point
[20,20,10]), while keeping the moving platform with an
orientation of 20° rotation about [1,1,1] axis.



The results are shown in Figs. 4.1 to 4.4, The external
wrench applied by the robots is s,=[7,7,7 N ,0.7,0.7,0.7
Nm].

Table 4.1
USR RSPR
Rp 30 Rp 50 |Rb, Rpj199.138
Ax 30 Rb 90 | Lb,Lp |460.320
H 80 H 160 H 60
L1 60 Ax 20 Lead 25
L2 30 Bo 50
Fig. 4.4 shows a comparison between RSPR and
RRPS robot [1] with RSPR having zero eccentricity. This
- figure with Fig. 4.2 shows that placing the R joints on the
moving platform requires less torques at the active R
joints (about 37%) while the linear actuator forces in both
robots are almost the same.

USR Actuator Moments }-——

Double planar

I

IN"m)

ag 0.02 0.03 0.04 ans 006

Path length [M]
Figure 4.1
n  |RSPR Actuator Forces and Moments o
T T T Tal ;;A 0.48
p.s] PP O JO S SR ot g e 3038
15 famemamnnn N A, emeeennns dememmaonan r -------- ~0m

15 L i i i L 42
oo @ 0m 004 oS aes
Path length [M]
Figure 4.2

Figs. 4.5 to 4.7 show models of each robot (The USR
robot in this figure is in a singular position as one of the
links is coplanar with the moving platform).

0 Actuator Forces for Double

Circular-Triangular robot

Path length [M]
Figure 4.3

Difference between RRPS and RSPR {+— o
Actuator Forces and Moments

1)) xn 003 004 0.05 0Cs

Path length [M]
Figure 4.4

5 Conclusions

The goal of this investigation was to construct a robot
that best fits a given medical application. Among several
structures that were investigated three parallel robots are
presented. The Double circular-triangular Robot is a
novel structure with a considerably different structure
than the Gough, Stewart platform. The RSPR robot is a
variation of a known structure with a different location
and order of joints that reduces required actuator forces
and reduces singular positions. By changing the order of
the joints the USR robot enhances the performances of a
known structure

Jacobian matrices of all three robots were derived.
Simulation results compare the three structures from
desired work volume and active joints forces/torques
points of view.

Among the three presented robots, the RSPR robot
best fits the required task. This robot has the simplest
design and the largest work volume. The USR robot has
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one practical limitation at the spherical joints because of References

large inclination angles and the use of differential drive.

The Double-Planar robot exceeds the task limitations with [1] Alizade, R.I. and Tagiyev, NR. - “A Forward and
its enveloping volume and requires large actuator forces. Reverse Displacement Analysis of a 6-DOF in-Parallel
Manipulator”, Mechanism and Machine Theory,
Vol.29, No.1,1994, pp. 115-124.

{2] Ben-Horin, R.. "Design Parameters of Parallel
Robots”, Ph.D. Thesis, Technion, Haifa, Israel, 1998.

[3] CIRP Annals. Vol. 46, 1997.

[4] Cleary, K., Uebel, M., - * Jacobian Formulation for a
Novel 6-DOF Parallel Manipulator “ , Proc. IEEE
Conference on Robotics and Automation, 1994, Vol.
3. pp. 2377-2382

[5] Daniali, M.H.R.. Zsombar-Murray, P.J., and
Angeles, J : * The Kinematics of a Three DOF Planar
and Spherical Double Triangular Parallel
Manipulators”, Computational Kinematics, eds.
Angeles, ., Kovacs, P., Hommel, G., Kluwer
Academic Publishers, 1993, pp. 153-164.

[6] Hara, A. and Sugimoto, K., “Synthesis of Parallel
Micromanipulators”, Asme Transactions.
Journal of Mechanisms, Transmissions and
Automation in Design, Vol. 111, 1989, pp. 34-39.

Figure 4.6 : RSPR robot [7] Lindem,T. J., : “Octahedral Machine with a
Hexapodal Triangular Servostrut Section”. US patent
5401128, Ingersoll Milling Machine Company,
Rockford, IL,1995.

(8] Merkle, R.C., * A New Family of Six Degrees of
Freedom Positional Devices “ , Nanotechnology, Vol.
8, No. 2, 1997, pp. 47-52.

[9] Merlet, J.P., Web Page 1997
http.inria fr/prisme/personnel/merlet/merlet_eng.htl.

[10] Pernette, E., Henein, S., Magnani, I, Clavel, R,
“Design of Parallel Robots in Microrobotics”,
ROBOTICA, Vol.15, pp. 417-420, July-August 1997.

{11] Sheldon, P.C.,* Six Axis Machine Tool *.
US patent 5388935, Giddings & lewis, Inc., fond du

Figure 4.8: Double circular-triangular robot
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