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SUMMARY
This paper investigates algorithms for enabling surgical
slave robots to autonomously explore shape and stiffness of
surgical fields. The paper addresses methods for estimating
shape and impedance parameters of tissue and methods
for autonomously exploring perceived impedance during
tool interaction inside a tissue cleft. A hybrid force-motion
controller and a cycloidal motion path are proposed
to address shape exploration. An adaptive exploration
algorithm for segmentation of surface features and a
predictor-corrector algorithm for exploration of deep
features are introduced based on discrete impedance
estimates. These estimates are derived from localized
excitation of tissue coupled with simultaneous force
measurements. Shape estimation is validated in ex-vivo
bovine tissue and attains surface estimation errors of less
than 2.5 mm with force sensing resolutions achievable with
current technologies in minimally invasive surgical robots.
The effect of scan patterns on the accuracy of the shape
estimate is demonstrated by comparing the shape estimate of
a Cartesian raster scan with overlapping cycloid scan pattern.
It is shown that the latter pattern filters the shape estimation
bias due to frictional drag forces. Surface impedance
exploration is validated to successfully segment compliant
environments on flexible inorganic models. Simulations and
experiments show that the adaptive search algorithm reduces
overall time requirements relative to the complexity of the
underlying structures. Finally, autonomous exploration of
deep features is demonstrated in an inorganic model and
ex-vivo bovine tissue. It is shown that estimates of least
constraint based on singular value decomposition of locally
estimated tissue stiffness can generate motion to accurately
follow a tissue cleft with a predictor-corrector algorithm
employing alternating steps of position and admittance
control. We believe that these results demonstrate the
potential of these algorithms for enabling “smart” surgical
devices capable of autonomous execution of intraoperative
surgical plans.
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1. Introduction
Integration of preoperative geometric data into the
surgical work flow by robotic and computer-assisted
surgical systems produced a disruptive technology allowing
significant improvement in the treatment of disease through
minimally invasive surgery (MIS) techniques. Examples
in radiosurgery, stereotactic neurosurgery, otolarygologic
surgery, and orthopedic surgery demonstrate the use of
preoperative data sets to augment the surgical system
in modalities requiring precision and navigation beyond
manual human abilities.44 With few exceptions, data
integration relies on rigid anatomic landmarks or exogenous
fiducials. The utility of the preoperative imaging studies
for directing intraoperative behavior is severely limited
by anatomic changes in the surgical environment created
by patient positioning and clinical intervention. This
limitation precludes the use of assistive technologies, such
as active constraint control or virtual fixtures1,21,25 or passive
navigation assistance, for the improvement of MIS on
deformable tissue structures since an accurate model of
the immediate environment is unavailable or substantially
deviated from preoperative imaging data. Methods for
acquisition and intelligent use of real-time intraoperative
sensory information to augment preoperative data, we
believe, will result in a new generation of “smart” surgical
robots that apply control updates to augment the system
function based on measured environmental clues.10,44

Intelligent use of on-line data by “smart” surgical robots
will enable surgeons to make strides in the complexity of
techniques, precision, and overall capabilities of surgical
procedures. These improvements will be made by adapting
to the environment during teleoperation in order to make
surgical slaves behave more reliably or safely. Improved
intraoperative data integration will also allow autonomous
performance of low level tasks by a surgical slave. An initial
requirement to facilitate this interaction is online acquisition
of environment data and formulation of digital models for
actionable control laws.

Sensing modalities for acquiring environment data during
MIS are used sparsely during robotic procedures due
to the complexity of both obtaining reliable data and
applying this data intraoperatively in a method useful to
the operator. Sole reliance on imaging data for surgical
execution presents a significant limitation of current robotic
systems. Intraoperative imaging can be constrained either
by environmental conditions or clinical considerations.
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An example of the former is the inability to use light-
based imaging during intravascular procedures where blood
obfuscates the image. An example of the latter is the desire
to limit exposure to radiation or the undesirable space and
compatibility constraints imposed by intraoperative MRI.

Mechanical environment exploration can augment and
enhance imaging modalities. In the setting of open surgery,
surgeons are able to perform blind exploration to characterize
tissue. They can determine the shape and stiffness of organs
through palpation and manipulation and can insert their
fingers in crevices or behind organs to identify invisible
structures while moving safely along natural separation
boundaries between neighboring structures. In robotic MIS,
mechanical exploration can extend and patch image-based
surface environment models by exploring areas hidden
to the camera. Additionally, mechanical exploration can
add a dimension to the intraoperative digital model by
including information on the tissue characteristics such as
stiffness. Finally, in scenarios where a surgical instrument is
maneuvered along the separation plane of connective tissue
between organs, mechanical exploration can provide useful
information for autonomous motion and for constructing
assistive telemanipulation virtual fixtures. Current robotic
systems lack these capabilities, partly due to deficient sensing
modalities, but mostly due to a lack of algorithms to guide
exploration in flexible unstructured environments such as
MIS surgical fields.

In this work, we propose algorithms for autonomous
exploration of the shape and the mechanical impedance
parameters of an unknown flexible environment using only
force and position information. We believe, acquisition of
this data provides an essential missing element to augment or
replace preoperatively generated models and simultaneously
enhance intraoperative imaging modalities. Furthermore, an
autonomous approach allows the control architecture to
change from passive telemanipulation control to operator-
initiated autonomous exploration. This technology will
allow surgical slaves to collect information without direct
telemanipulation control from a remote operator; thus,
allowing the operator to focus on higher-level, more
demanding intraoperative tasks.

2. Background, Research Approach and Contribution

2.1. Works on exploration, mechanical probing and
imaging
The proposed algorithms, taken together, represent an
extension of previous research in shape, impedance, and
constraint estimation toward exploration in the setting of
robotic MIS. The combined literature forms a basis for
the proposed works and highlights the need for suitable
algorithms for exploration in compliant environments.

Shape models are critical for integration of intelligence
into robotic surgical systems and a fundamental component
to be developed for this purpose. Vision systems are an
obvious first step for this purpose due to the time cost
relative to the coverage but will not form complete models
where the image is obscured. Exploratory procedures have
therefore been proposed to supplement visual modalities

using a combination of tactile sensing, force sensing, and
proprioception for rigid objects and environments. Allen and
Michelman 4 proposed and investigated different mappings
for intelligent shape recognition from tactile sensing for
surface regions of rigid objects. Okamura and Cutkosky 36

investigated strategies for exploration of rigid environments
and surface feature detection, such as cracks or ridges,
using robotic fingers equipped with tactile sensors. Moll and
Erdmann 34 proposed algorithms for shape reconstruction
of planar objects rolled between two hands equipped with
tactile sensors. Multiple groups,2,6,18,22,50, have proposed
algorithms for contour tracking of surfaces using impedance
or force-motion control algorithms. The majority of these
works focused on cases of rigid or structured environments
and thus the methods require adaption for MIS where
the exploration site is highly unstructured and variably
compliant. Doulgeri and Karayiannidis 13 propose a control
law for regulation of force and position with an unknown
compliant surface. The method relies on joint level torque
estimates for estimating the disturbance and confirmed the
results under relatively stiff environments. Our particular
experience with soft media, such as tissue, has shown
that the signal to noise ratio limits the ability to estimate
position and the surface normal simultaneously as will be
elaborated.

During interaction with geometrically complex environ-
ments, shape exploration must be augmented to include
the interaction of the instrument tool with the environment
to model constraints opposing motion. Yoshikawa et al. 51

proposed a method for estimation of polyhedral contact
constraints using exploratory probing operations. Eberman 14

proposed a maximum likelihood estimator for contact state
in a planar Cartesian system. Debus et al. 11 applied a
hidden Markov model to identify predefined geometric
constraints using kinematic sensors. Lefebvre et al. 29

used stochastic estimation to identify rigid, frictionless
contact constraints. As above, the relevant works highlight
methods for rigid, and generally structured, environments
common to industrial processes for which robots have been
primarily deployed. Robotic MIS surgery requires methods
for understanding instrument contact constraints during
complex interaction such as dissection, suturing, and tissue
manipulation.

Palpation, a common modality of exploration in the context
of surgical care, has been widely studied for restoration
in robotic systems. The research community has focused
on palpation and segmentation of embedded structures in
flexible media such as tissue. Sabatini et al. 39 investigated
models of interaction between an instrumented robotic
finger equipped with a tactile sensor and flexible tissue.
Wellman and Howe 47 investigated the use of tactile sensors
for the segmentation and detection of nodules embedded
in tissue. Egorov and Sarvazyan 15 proposed the use of
tactile imaging for cancer detection and three-dimensional
reconstruction of contrasting tissue. Miller et al. 33 developed
capacitive array sensors for detecting small pulmonary
nodules during video-assisted thoracoscopic surgery. Kaneko
et al. 24 used stroboscopic imaging of pneumatically excited
tissue for the same application. More recently, Liu et al. 30

and Althoefer et al. 5 used various instrumented rolling
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mechanical probes for measuring the normal stiffness of
tissue and for segmentation of underlying hard nodules.
Application of these works may be prohibited during MIS
in deep surgical fields due to mechanical space constraints
and additional time required for introduction of specialized
instrumentation.

Estimation of mechanical impedance parameters of
unknown environments dovetails with palpation schemes
to provide a method for developing digital models of
environments with varying stiffness properties. Love and
Book 32 presented a recursive least-squares algorithm
for estimating one-dimensional environmental impedance
parameters based on force data.∗ Kikuuwe and Yoshikawa 27

extended the impedance estimation methods to allow
three-dimensional tensor estimates and segmentation of
contact events. Erickson et al. 16 presented an offline
signal processing algorithm and compared it to three
online methods for estimation of decoupled impedance
parameters. Yamamoto et al. 49 compared impedance
estimation algorithms in the context of teleoperated and
autonomous one-dimensional impedance probing.

Significant progress was made by all these works;
however, three major limitations remain unaddressed in
applying shape, impedance, and contact estimation in the
context of MIS. First, due to size constraints, minimally
invasive surgical techniques in deep surgical sites including
single port access surgery (SPAS)3 and natural orifice
translumenal endoscopic surgery (NOTES)23,38 significantly
limit the use of extraneous hardware such as tactile sensors,
rolling elements, ultrasound probes, and other specialized
modalities. Second, previous work did not investigate
methods for automated shape and impedance exploration
in unknown flexible environments. Third, previous work is
limited to surface exploration and no attempts were made to
identify constraints applied on a tool embedded in flexible
media.

2.2. Research approach and contribution
The aforementioned limitations stem from serious
technological and algorithmic challenges. We choose to
overcome the first challenge of mechanical bulk and limited
instrumentation by using force sensing data originating
directly from the intracavitary robot end effectors. Robotic
systems for minimally invasive surgery in deep surgical
sites rely on deployable structures possessing local dexterity
which is decoupled from gross motions at the insertion
point into a body cavity or orifice. Integrated wrench
sensing capability in surgical slaves has been an area of
active research in the medical robotics community. Seibold
et al. 40 describe a dedicated force-torque sensor at the end
effector of a surgical instrument based on a Stewart-Gough
platform with flexure hinges. Tavakoli et al. 43 , Tholey and
Desai 45 , Trejos et al. 46 proposed wrench sensing on manual
or remotely operated minimally invasive instrumentation
with incorporated stain gauges mounted along the inserted
length. Xu and Simaan 48 demonstrated wrench estimation

∗ We refer to one-dimensional stiffness or impedance estimation as
extraction of one component of a stiffness or impedance tensor in
a specified direction.

for surgical continuum robotics through intrinsic actuation
force measurements. The proposed algorithms rely on force
sensing at, or in close proximity to, the operation point of
the robotic end effector. Thus, the algorithms, by design, do
not require estimation of the effects of force reactions at the
insertion point of the robotic system into the body cavity or
at points displaced from the immediate surgical field.

Flexible media present a difficult challenge unmet by
current exploration algorithms for robotic systems. The
second limitation of estimating the shape and stiffness of
flexible environments stems from the contradictory demands
of the shape and stiffness estimation tasks. While accurate
shape estimation in flexible environments requires minimal
forces of interaction, precise stiffness estimation requires a
certain level of force interaction to ensure a good signal
to noise ratio. The third limitation of estimating constraints
applied to a tool embedded in a flexible media stems from
the difficulty in estimating the spatial stiffness matrix as
opposed to estimating components of stiffness as is typically
done in works focused on mechanical probing or stiffness
imaging. These challenges were met by designing algorithms
for first estimating the shape and subsequently estimating the
impedance of the environment. The algorithms for estimating
shape and stiffness require a balance between accuracy,
time to scan completion, and memory requirements. We
therefore devised a method for recursively adapting the
scan resolution in a manner that is driven by the local
neighborhood of explored stiffness matrices. The use of
stiffness matrices provides geometric understanding that
is not present in alternate techniques such as mechanical
probing in a given direction or rolling contact stiffness
imaging. We use this information by investigating the
singular value decomposition of the local stiffness matrices
and inferring directions of least and maximal resistance in
order to guide movement of a deeply embedded surgical tool
inside flexible anisotropic tissue.

The contribution of this paper is in presenting algorithms
that expand autonomous robotic exploration procedures
toward application in flexible, unstructured environments,
such as an MIS operating field, with minimal sensing
hardware requirements. Our approach utilizes surgical
instruments with integrated wrench sensing capabilities
as an exploration probe for characterizing both the
shape and stiffness of an organ without the need for
additional specialized sensors. The algorithms presented
herein allow autonomous exploration and characterization
of shape and mechanical impedance of intraoperative
viscera while taking into account deep feature exploration
in scenarios where the surgical tool is embedded inside
a cleft within flexible tissue. A staged exploration is
presented utilizing a hybrid force-motion control structure
for shape exploration and a recursive estimation algorithm
for mechanical impedance. A recursive algorithm for multi-
resolution surface exploration is proposed based on local
impedance estimates and stiffness contrasts. Finally, an
algorithm for autonomous exploration of compliant anatomic
features through stiffness segmentation is proposed. The
algorithms presented constitute essential tools for enabling
smart surgical devices capable of automated exploration and
intraoperative modification of surgical plans.
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3. Modeling Assumptions and Problem Statement
As described above, the proposed algorithms rely on force
sensing at, or in close proximity to, the operation point of
the robotic end effector. It is assumed that the surgical slave
has an integrated wrench sensing capability. The algorithm
evaluation uses an experimental platform with a six degree of
freedom force/moment sensor as a means for development
and evaluation of new algorithms for shape, stiffness, and
constraint exploration within flexible environments.

Throughout our work, it is assumed that a human operator,
e.g., the surgeon directing the procedure, defines an area
of exploration analogous to an area of the MIS operating
site. The robot controller then autonomously performs a
staged exploration process. The mechanical properties of
the explored medium are modeled as linear. While this
assumption is incorrect for large deflections of tissue,
for small deflections of the tissue (on the order of less
than 1 mm), the assumption of local linearization is a
reasonable simplification. This linear representation provides
a first-order approximation of the time-varying, nonlinear
characteristics of biologic tissue.19 The result is sufficient
for creating a real-time model useful for identification of
impedance contrast in the exploration region. Areas of
rapidly changing stiffness can then be pursued further by
definitive clinical metrics for diagnosis, such as biopsy,
or for online control as demonstrated below. Further, the
goal of our work is not to obtain a calibrated mechanical
imaging modality, but to demonstrate methods that guide the
exploration of shape while discovering features with different
perceived impedance using stiffness contrasts. Finally, it
is assumed throughout the work the that interaction of
the exploration does not cause significant gross motion of
the explored media. In the context of minimally invasive
surgery, this assumption is practically implemented without
additional tooling or control methods for abdominal viscera
that are well supported by connective tissue and perivisceral
fat such as the liver, spleen, and kidneys. For mobilized
structures such as blood vessels, bowels, and stomach, a
bimanual approach may be implemented to support the
tissue while exploring. This is similar to the routine methods
of tissue stabilization implemented during suturing and
dissection.

We address the following problems in this investigation:

Problem 1. Shape exploration and estimation in an
unknown flexible environment. Given a target exploration sur-
face defined by the area, AE = {([xmin, xmax], [ymin, ymax])},
define an exploration algorithm to safely explore and estimate
the shape of a flexible environment.

Problem 2. Impedance exploration for surface stiffness
contrasts. For the given exploration area, AE , define an
algorithm for estimating the three dimensional impedance
parameters of the flexible environment and an adaptive
exploration algorithm for estimating the mechanical
impedance over the given area.

Problem 3. Exploration of deep features. Given a tool
embedded in a fissure or a cleft within a flexible medium,
define a method to guide exploration along the natural
boundaries.

4. Algorithms for Exploration and Estimation

4.1. Nomenclature
The nomenclature used throughout the text is provided in
Table 1 with a brief description. Further details are specified
in the text where necessary.

4.2. Problem 1: Shape exploration and estimation
The shape exploration algorithm provides surface geometry
estimate of the defined exploration region. The algorithm
proposed herein performs a “blind” exploration, which can
expand and augment a vision-based surface model. The robot
end effector (EE) is tracked along the exploration surface
using a hybrid force-motion control structure with inverse
dynamics compensation, shown in Fig. 1, motivated by the
work of Khatib 26 and Featherstone et al. 17

The control structure requires decomposing desired
motion and force trajectories into wrenches and twists
that correspond to the constraint type using the projection
matrices

� = N
(
NTN

)−1
NT = I − �̄,

�̄ = T
(
TTT

)−1
TT = I − �, (1)

where N is a 6 × r matrix of linearly independent constraint
wrench screws, r is the number of linearly independent
constraints, and T is a 6 × (6 − r) matrix of linearly
independent twist screws. The columns of the constraint
wrench screws, N, are given in ray line coordinates with force
preceding moment, while the columns of the appropriate
twists, T, are expressed in axial line coordinates with linear
velocity preceding angular velocity.37

For surface scanning operations in a rigid environment,
the space of controlled wrenches can be determined based
on the estimation algorithms for the normal direction (e.g.,
Fedele et al. 18 , Yoshikawa and Sudou 50). Let unit vectors
û, v̂, ŵ represent, respectively, the orthogonal directions in
a coordinate frame defined with the ŵ-axis lying along the
local normal to the surface. Matrices N and T are then given
by the orthogonal directions of the local tangent frame

N =
[

ŵ
0

]
, T =

[
û v̂ 0 0 0
0 0 û v̂ ŵ

]
. (2)

In contrast to rigid environments, shape exploration
in compliant environments suffers a fundamental tradeoff
between accuracy of the surface normal and surface position
estimates. To best approximate the surface position, the
surface deflection must be minimized. Hence, the interaction
force between the robot and surface ideally must be
minimized. Conversely, in order to estimate the local
surface normal using the sensed force, the interaction force
with the surface must be large enough to overcome signal-
to-noise limitations of the force sensor and must therefore
deform the surface.

In order to compensate for this trade-off during shape
estimation with a hybrid controller requiring surface normal
estimates, we use a simplified approach by specifying the
direction of the controlled wrench as a constant in a local
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Table I. Nomenclature for the exploration and estimation algorithms.

Symbol Dimension Description

r Scalar Number of linearly independent constraints at the operation point of a robotic end effector
N R

6×r Matrix of linearly independent constraint screws
T R

6×(6−r) Matrix of linearly independent twist screws
� R

6×6 Constraint projection matrix
�̄ R

6×6 Motion projection matrix
û, v̂, ŵ R

3 Unit basis vectors of an arbitrary coordinate frame
a, b, φ Scalar Parameters defining prolate cycloid motion
n Scalar Dimension of the unknown environment parameters
T Scalar Sample period
k Scalar Sample number
fk R

3 Force sensor measurement at time kT

pk R
3 Position of EE at time kT , pk = [ xk yk zk ]T

K, B, M R
3×3 Impedance matrices of the compliant environment: Stiffness K, Damping B, and Mass M.

zk R
3 Force history vector at time kT , zk = fk + 2fk−1 + fk−2

ϕk R
9 Position history vector at time kT , ϕk = [ pT

k pT
k−1 pT

k−2 ]T

hk R
3×n Augmented coefficient matrix for the recursive estimator at time kT

x, x̂k R
n Model parameter vector: actual and estimate at time kT

vk R
3 Measurement noise at time kT

Zk R
3k Stacked measured output at time kT , Zk = [ zT

1 zT
2 · · · zT

k ]T

Hk R
3k×n Input matrix at time kT , Hk = [ hT

1 hT
2 · · · hT

k ]T

Vk R
3k Stacked measured noise at time kT , Vk = [ vT

1 vT
2 · · · vT

k ]T

wk R
3×3 A diagonal weight matrix given by the inverse of the covariance of the sensor noise.

Wk R
3k×3k A block diagonal weight matrix composed of the weight matrices for the discrete time steps 1 . . . k.

Wk = diag
(

w1 w2 · · · wk

)
V Scalar Volume of an estimated stiffness ellipsoid
σi Scalar i th singular values of an arbitrary matrix
cm Scalar Scaling constant for the volume of a stiffness ellipsoid
AE R

2×2 Maxima and minima of the target exploration area AE = {([xmin, xmax] , [ymin, ymax])}
stepmin, Scalar Minimum and maximum stepsize respectively for the kernel search algorithm

stepmax

ε Scalar Threshold for recursion during the kernel search algorithm
μp, μc Scalar Scaling factors for the predictor motion and corrector motions of the deep feature exploration algorithm
εf Scalar Threshold for force error during the corrector phase of the deep feature exploration algorithm

frame perpendicular to a global a priori estimate of the
average normal direction. This estimate can be provided
by preoperative imaging, intraoperative visualization or
operator estimation. While this allows stable control in
the unknown flexible environment, the use of a constant
direction limits the algorithm to exploration of specified
surface areas with small curvature over the search space.
Despite the limitations imposed by the the constant direction,
the algorithm is demonstratively effective for exploring small
surface areas of a surgical site such as a limited patch or lobe
as will be shown in the experimental section.

When the tissue surface is scanned based on a global a
priori surface normal estimate, the estimated surface position
is affected by the error between the global and local surface
normal. Noting the hybrid controller only controls forces in
wrench space, as the exploration surface deviates from the

predefined normal, the EE impinges into or diverges from
the surface due to the uncompensated force in the motion
direction (Fig. 2). The capability of the controller to maintain
the probe position at the surface while moving in the “uphill”
direction is degraded by the increase in friction due to this
uncompensated force. As a result, surface estimates occur
below the actual surface during exploration in this direction.
For movement in the “downhill” direction, the controller
is sufficiently fast with respect to the intended exploration
motion to maintain contact with the surface. This directional
phenomenon leads to an asymmetry in the estimate of surface
position.

To compensate for bias in the surface estimation stemming
from the direction of movement, a prolate cycloid motion
is super imposed onto the overall search path to add
redundancy in the estimation data for multiple motion

+
Robot &

Environment

+

Motion Controller

Force Controller Ω

Ω̄

Fd

p pd, ˙  pd, ¨d

Fsensor

p, ṗ, p̈

Fig. 1. Hybrid force-motion control architecture.
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Fig. 2. (Colour online) Uncompensated force error in the motion
space and corresponding deformation of a compliant material
during the shape estimation.

u

v

b/a = 5
b/a = 2

Fig. 3. Prolate cycloid motions in a local tangent plane. The solid
and dashed paths represent different coverage based on the ratios
of the trochoid parameters a and b.

directions, perpendicular to the surface normal estimate, at
regular intervals. The additional local motion can be defined
in the tangential motion space by the trochoid equations

u = aφ − b sin φ, v = a − b cos φ, (3)

where u, v are the trochoid Cartesian coordinates as obtained
by a tracer point offset by b units from the center of an
imaginary circle with a radius of a units and rolling along the
û-axis. These parameters can be adjusted to control coverage
overlap as depicted in Fig. 3.

The cycloid motion provides variance in the deformation of
the flexible media and subsequent force in the motion space
that allows intelligent use of a filter to better approximate the
surface position. Though other scan patterns are possible and
may result in better averaging of induced scan errors or filter
parameters for the estimate, we evaluate this scan pattern,
with respect to a straight line raster scan, due to ease of
implementation and the overall scope of the presented work.

Data from this surface scan algorithm form a point cloud
that can be used to fit a surface through interpolation
techniques. The estimated surface can then be registered

to a larger surface such as three-dimensional vision surface
reconstruction or intraoperative radiologic imaging data.

4.3. Problem 2: Impedance parameter exploration
Environment impedance estimates provide a method for
modeling the interaction of the surgical slave with the
operating environment for use in haptic models and define
a method of anatomic segmentation based on contrasts in
stiffness between neighboring tissue types, tissue planes, and
pathologies. The impedance exploration algorithm produces
an estimate of the mass, stiffness, and damping tensors of
the robot EE interacting with the environment over the area
previously explored for shape.

While the automatic shape exploration of the previous
section is completed using continuous contact of the probe
with the tissue, impedance parameter estimation of the
tissue is carried out using digitized multi-resolution probing.
During this process, the robot tip contacts the tissue at a given
point and provides a local motion excitation in all directions
while measuring the forces of interaction with the tissue.
Once convergence of the impedance estimates is obtained,
the robot tip leaves the tissue and moves to the next sampled
point as determined by a high-level planning algorithm called
the kernel-search algorithm.

The motivation for using digitized impedance point
sampling is twofold. First, the tissue must be sampled
and excited with respect to a start contact position where
local tissue stresses are released. A continuous motion scan
produces friction that pulls the tissue in the scan direction
and corrupts impedance estimates. Second, the amount of
data, computational resources, and memory required for
continuous scan and impedance estimation are large and not
justified considering the resolution required for planning and
segmentation.

The kernel search algorithm provides a method for efficient
multi-resolution impedance exploration. The algorithm
searches the surface for features characterized by rapid
stiffness change and adapts the scan resolution around these
features to provide a better segmentation estimate while
reducing the time required to estimate the impedance over
an explored area. The algorithm requires a priori knowledge
of the surface and boundaries to be specified by an operator
or provided by the shape algorithm proposed in the previous
section. The scan algorithm is further dependent on operator-
defined parameters for the stiffness gradient threshold,
ε, and the maximal and minimal discretization stepsizes,
stepmax and stepmin, respectively. A low-level algorithm
that estimates the impedance parameters at discrete contact
points within the compliant environment is first described.
The kernel search algorithm is subsequently described in
detail.

4.3.1. Local least-squares impedance estimation. To enable
impedance estimation, we developed an algorithm based on
Kikuuwe and Yoshikawa 27 and Ljung 31 with the addition of
a method for guaranteeing that the impedance parameters,
namely the stiffness, damping, and mass matrices, are
symmetric.

During surgical interaction, the position of the robot EE
with respect to an equilibrium point and the force applied to
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the environment are related as the following:

f(t) = Kp (t) + Bṗ(t) + Mp̈(t). (4)

The unknown local impedance tensors K, B, M can be
estimated based on the time-varying input position and output
force information from the interaction. The force and position
data are obtained, respectively, from the force sensor and
from the direct kinematics of the robot.

The Laplace transform is applied to Eq. (4) to convert it to
the frequency domain

L (f(t)) = (
K + sB + s2M

)
L (p(t)) . (5)

Applying the bilinear transform to Eq. (5) results in
its discrete frequency domain representation. Applying an
inverse Z-transform produces its discrete time approximation

zk =
[

K +
(

2

T

)
B +

(
4

T 2

)
M, 2K −

(
8

T 2

)
M,

K −
(

2

T

)
B +

(
4

T 2

)
M

]
ϕk = �Tϕk. (6)

The goal of the estimation algorithm is to identify the 9 × 3
matrix � containing all of the independent parameters of K,
B, M. Equation (6) can be cast into a classic linear regression
form using the Kronecker product operator as

zk = ψT
k θ , (7)

where θ = Vec(�T) and ψk = ϕk ⊗ I3×3
†.

For a physically realizable system, the mass and stiffness
matrices should be symmetric positive definite and, assuming
a symmetric form for the damping matrix, each of the
impedance tensors of system models of Eqs. (4) through
(7) contains three redundant parameters. This corresponds to
redundant rows in θ as follows:

θ9n+2 = θ9n+4, θ9n+3 = θ9n+7, θ9n+6 = θ9n+8 (8)

for n = 0, 1, 2, where the subscripted term θ i denotes the ith
element of vector θ .

Noting this redundancy, the regression matrix θ can be
reparameterized into a 18 × 1 vector,

x̂ = [θ1, θ2, θ3, θ5, θ6, θ9, θ10, θ11, θ12, θ14, θ15, θ18, · · ·
θ19, θ20, θ21, θ23, θ24, θ27]T . (9)

Using the definition of x̂ and accounting for measurement
noise v, one casts Eq. (7) into a discrete time approximation

† Given an m × n matrix A, Vec (A) is an mn length column
vector constructed by sequentially stacking all columns of A.
Given the previously defined matrix A and a p × q matrix B,
the Kronecker product is then given by the mp × nq matrix

A ⊗ B =
⎡
⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤
⎦, Graham 20 .

for the ith time step

zi = hi x̂ + vi , (10)

where hi represents an augmented coefficient matrix given
by

hi =

⎡
⎢⎣

pT
i 01×3 pT

i−1 01×3 pT
i−2 01×3

αi β i αi−1 β i−1 αi−2 β i−2

χ i γ i χ i−1 γ i−1 χ i−2 γ i−2

⎤
⎥⎦ , (11)

and pT
i = [xi yi zi ], αi = [ 0 xi 0 ], β i = [yi zi 0 ], χ i =

[ 0 0 xi ], γ i = [ 0 yi zi ].
Given k measurements, where k � n, the individual time

steps of the regressor form can be stacked into an over-
constrained linear system of the form

Zk = Hk x̂ + Vk. (12)

When sufficient data exist, the weighted least-squares
criterion for estimation of the regression parameters is given
by

arg min
x̂

(Zk − Hk x̂)T Wk (Zk − Hk x̂), (13)

where the weight matrix, Wk , is block-diagonal with wi along
its diagonal. The optimal solution is given by

x̂k = PkHT
k WkZk, (14)

where P−1
k = HT

k WkHk . With new measurements, the
parameter estimate can be incrementally improved using
a recursive linear estimation algorithm as in Crassidis and
Junkins 9 ,

x̂k+1 = x̂k + Lk+1 (zk+1 − hk x̂k)

Lk+1 = PkhT
k+1

(
hkPkhT

k+1 + w−1
k

)−1

Pk+1 = Pk − Lk+1hk+1Pk.

(15)

Elements of the impedance matrices are obtained by linear
combinations of x̂k (see Appendix B for details). For time
step k, the estimates are given by

K̂i = 1

4
(x̂i + x̂i+6 + x̂i+12)

B̂i = 1

4
T (x̂i − x̂i+12)

M̂i = 1

16
T 2 (x̂i − x̂i+6 + x̂i+12),

(16)

where the subscript i denotes the element of the model
parameter vector and the symmetric impedance matrices
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given by

K =
⎡
⎣K1 sym

K2 K4

K3 K5 K6

⎤
⎦, B =

⎡
⎣B1 sym

B2 B4

B3 B5 B6

⎤
⎦,

M =
⎡
⎣M1 sym

M2 M4

M3 M5 M6

⎤
⎦. (17)

With an estimation method defined for individual points in
an exploration field, it is left to define a method for directing
the spacial locations for point explorations.

4.3.2. High-level kernel search algorithm. The kernel search
algorithm directs impedance exploration and focuses on
regions of rapidly changing impedance. This algorithm is an
adaption of depth-limited search strategies for uninformed
search that limit the search to a given problem space. The
approach is optimal for impedance exploration of a surface
since individual estimates are limited by the accuracy of the
local data and the extent, and resolution of the scan can
therefore be specified to a useful range by the operator.
The method, described by the pseudocode in algorithm 1,
drives the overall estimation by defining discrete locations,
termed search nodes, for impedance estimation based on
local environment parameters.

The kernel search algorithm begins with an initial path of
search nodes discretizing the area and adaptively increases
the resolution in areas of interest. The exploration proceeds
along the defined search path and at each subsequent node
the impedance parameters are estimated, GET-IMPEDANCE-
PARAMS in algorithm 1, using a local sinusoidal forcing
function and the impedance estimation algorithm of the
previous section. A scalar metric of the stiffness is calculated
based on the volume of the locally estimated stiffness

Pn-1 Pn

1 1

2

3

3

4

5 6

6

7

7

5

1

23

4 5 6

7

Fig. 4. (Colour online) Kernel Search Ordering. Node sequence is
indicated by the encircled numbers. The sequence for comparing
individual nodes (with respect to nodes palpated) given in uncircled
numbers. Scan direction from Pn−1 to Pn.

ellipsoid. The ellipsoid volume is proportional to the product
of the singular values of the stiffness matrix

V = cmσ1σ2σ3. (18)

Parameters σi (i = 1, 2, 3) denote the ith singular value
of the local stiffness matrix K. (See Nakamura 35 for details
on singular value decomposition and ellipsoid volumes.) The
constant cm depends on the dimension of the stiffness matrix
and, without loss of geometric information, is taken as cm = 1
in Eq. (18).

As each new search node is explored and entered into the
structure of explored nodes, the change in V is computed
with respect to neighboring nodes. If this change exceeds a
predefined threshold, the algorithm triggers a recursion to
increase the density of nodes around the location of rapid
stiffness change by constructing a new set of nodes, a search
kernel, at a higher resolution and adapting the search path,
ADD-KERNEL in algorithm 1.

Algorithm 1 Pseudocode for Kernel Search Algorithm
function KERNEL-SEARCH(searchParams) returns exploredNodes

initialNodes ←GENERATE-INITIAL-NODES(searchParams)
return RECURSIVE-KS(initialNodes, emptySet, stepmax, searchParams)

end function

function RECURSIVE-KS(queue, exploredNodes, stepSize, searchParams)
returns exploredNodes

for each Node in queue do
K, B, M ←GET-IMPEDANCE-PARAMS(queue.current)
exceedingPairs ←CHECK-THRESHOLDS(queue.current, exploredNodes, stepSize, searchParams)
if stepSize > stepmin then

for each Pair in exceedingPairs do
newKernel ←ADD-KERNEL(Pair,

stepSize

2 , searchParams)
exploredNodes ←RECURSIVE-KS(newKernel, exploredNodes,

stepSize

2 , searchParams)
end for

end if
end for
return exploredNodes

end function

searchParams holds the operator defined parameters of the kernel search: the search area AE , the minimum and maximum
stepsize stepmin, stepmax = 2istepmin for i = 1, 2, . . ., the threshold for recursion ε
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L

Fig. 5. (Colour online) Recursion search sequence in a local surface tangent space. (A) Palpating node Pn−1 at the current resolution
(1x). (B) Palpating node Pn at the current resolution. Threshold exceeded between points at Pn−1 and Pn. (C) Kernel implemented at
higher resolution (2x). First point in kernel palpated and neighboring function values compared. (D–F) Nodes in 2x resolution kernel
palpated and neighboring function values compared. (G) Threshold exceeded between nodes. (H) Kernel implemented at higher resolution
(4x). First point in kernel palpated. (I) Points in high resolution sequentially palpated and neighboring points compared. No differences
above threshold discovered. Algorithm returns to 2x resolution. (J, K) Points in 2x resolution palpated with neighboring function values
compared. (L) 2x kernel search complete, return to 1x resolution grid search, Pn+1.

The search kernel defines the geometric structure of nodes
added to the overall grid of search locations in increasing
levels of resolution. Figure 4 depicts the structure of the
nodes in the added kernel and the sequence of exploration and
comparison to ensure coverage at the increased resolution.
The search kernel is implemented to adapt the current grid
with an area of higher resolution by inserting the kernel
at double the current resolution of the local nodes. Thus,
the resolution increases by a factor of two in a small area
surrounding the detected region of high stiffness contrast.

Search kernels are added to the overall plan recursively.
Initially, a global discretization of the exploration area is
generated based on a predefined maximal grid size. The initial
scan path is generated by rasterizing this grid of nodes. The
discretization and path generation functions are completed by
GENERATE-INITIAL-NODES in algorithm 1. The exploration
proceeds along this search path until the stiffness contrast
threshold between explored nodes is exceeded, CHECK-
THRESHOLDS in algorithm 1. With this detection, the search
path is updated by the addition of a higher resolution set
of search nodes in a last-in-first-out manner. The process of
inserting kernels at higher resolution around areas of high
contrast can continue recursively until the predefined highest
resolution of the grid spacing, stepmin, is reached.

The recursive queue of search nodes forces the exploration
to return to the previous level of resolution and the algorithm
proceeds until all initial nodes have been searched, thus
ensuring coverage at the minimal resolution. The recursive
sequence for increasing the scan resolution is depicted in
Fig. 5.

The adaptive structure improves the efficiency of a discrete
search over the exploration area. The constraints of exposure
to the surgical site in MIS applications confine the total area
of exploration to be small with respect to the robot size
and speed. Thus, the time requirement for the exploration
is predominantly characterized by the time to estimate the
impedance parameters at a given location as opposed to

the time to move throughout the area and between points.
Efficiency in the exploration is thereby improved by limiting
the density of explored points to regions with large changes
in the underlying impedance parameters.

A closed-form analytic expression for the time complexity
of the kernel search algorithm is unavailable due to its
adaptive structure. The upper and lower bounds of the
search space are specified by the predefined maximum and
minimum resolutions. To quantify the efficiency of applying
the kernel search, the algorithm was tested empirically on a
simulated exploration region using the Matlab R© computing
environment. A search area was generated with an underlying
stiffness criterion function, Eq. (18), defined at each node
such that the stiffness varied randomly from a constant value
over the area. The random variations of all criterion values
were drawn from a normal distribution with zero mean.
Individual simulations with a given threshold for recursion,
ε, and minimal stepsize, stepmin, were run such that the
simulated area was searched with a range of predefined search
parameters. Results for a representative range of exploration
parameters are presented in Fig. 6. The abscissa of the figure,
Rg , is the ratio of discrete gradients, calculated between
search nodes at the highest resolution, that exceeds the
threshold, to the total number of node pairs. Rg thus serves
as a metric for the variability of impedances in the search
space relative to the threshold for recursion. The ordinate
of the figure, Rs , is the ratio of nodes palpated to the total
number of nodes at the highest resolution and thus serves as
a metric for the time requirement of the search relative to an
exhaustive search at the highest resolution.

The analysis displays both the advantages and limitations
of the discrete sampling algorithm. As expected, the ratio of
search nodes is bounded at the minimal resolution, Rs � 1,
for search parameters with a low threshold for recursion
and at the maximal resolution, Rs = 1, for a high threshold
for recursion. The results suggest the algorithm allows for
improvement in the time required for completion at the
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Fig. 6. (Colour online) Empirical evaluation of Kernel search
algorithm efficiency. Abscissa: Rg , Ratio of discrete gradients
above the threshold for recursion to the total of discrete gradients
defined for the search area. Ordinate: Rs , Ratio of nodes palpated
during exploration with the kernel search algorithm to number of
nodes at the maximum resolution.

expense of possibly missing areas of interest with contrast
below the threshold for recursion.

4.4. Problem 3: Exploration of deep features within
a flexible environment
During surgery, instruments often interact with a cleft or
fissure inside or between tissue features that define a natural
three-dimensional anatomical constraint. Physical examples
of application scenarios pertinent to MIS include exploring
along dissection planes in a given tissue or between tissue
types and through potential spaces such as tracking along the
epicardial or pleural space. The premise behind the algorithm
for deep feature exploration is that the geometry of the cleft
and the tool are directly related to the perceived localized
constraints applied by the tissue on a tool. A small local
perturbation of the tool position and a judicious use of the
impedance estimation algorithm result in a stiffness tensor
that characterizes the local constraint applied by the tissue
on the instrument.

Assume that a local exploration at point p inside a cleft
results in a stiffness matrix K (p). The stiffness ellipsoid

EK = {�f : �fT�f = �pTKTK�p|�pT�p = 1
}

(19)

provides the perceived constraint forces for any pose
perturbation within the unit deflections sphere �pT�p =
1. The singular value decomposition K = U�VT provides
right singular vectors V[i] = �p̂i

‡, left singular vectors
U[i] = �f̂i , and singular values σi , for i = 1 . . . m such that
K�p̂i = σi�f̂i . Hence, the motion direction of least restraint,
�p̂min, corresponds to the direction V[i] associated with the
largest compliance (e.g., smallest singular value, σmin, of
K (p)).

Using this local information for �p̂min, a predictor-
corrector algorithm is defined for autonomous exploration of
natural constraints. Pseudocode for the procedure is given in
algorithm 2. The algorithm drives the robot a set distance, μp,
along the predicted trajectory defined by �p̂min under force-
monitored position control. Correction, to account for errors
in the estimation of stiffness and to reduce local deformation
in the tissue as a result of friction, is then applied by switching
to admittance force control (see, for instance, Siciliano and
Khatib 41) allowing the position to be adjusted until the forces
equilibrate or fall below a threshold εf . The algorithm repeats
the cycle until a specified exploration distance is met or an
end condition is satisfied.

5. Experimental Validation
To demonstrate the validity of the proposed algorithms,
experiments were conducted to verify shape and impedance
parameter estimates and to demonstrate exploration of deep
features within tissue. To facilitate the interpretation of the
results, visualizations of the surface estimation, and deep
feature exploration are provided in multimedia extensions 1
and 2. (See Appendix A for instructions for online access
and Table A1 for a description of the extensions.)

The experimental setup consisted of a system for
simultaneous dynamic position control and force sensing
as specified in the modeling assumptions, Section 3, and
displayed in Fig. 7. A Cartesian robot was equipped with a

‡ A[i] represents the ith column of matrix A.

Algorithm 2 Pseudocode for Deep Feature Exploration Algorithm
procedure DEEP-FEATURE-EXPLORE(pstart , completionCriteria)

pcurrent ← pstart

while false←EXPLORATION-COMPLETE(pstart , completionCriteria) do
K ←PALPATE-POINT

U�VT = K
�pmin ← Vi : arg min

i

σi

pcurrent ← pcurrent + μp�pmin comment: Predictor Step
while ‖fsensor‖ > εf do

pcurrent ← pcurrent + μc
fsensor

‖fsensor‖ comment: Corrector Step
end while

end while
end procedure
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Fig. 7. (Colour online) (a) Overall experimental platform. (b) Force/torque sensor and probe interacting with an embedded feature phantom.

Fig. 8. (Colour online) Explanted bovine kidney tissue for shape
estimation algorithm. Bounds for the shape estimation algorithm
are highlighted.

Nano17 SI-25-0.25 6-axis force/torque sensor (ATI Industrial
Automation, Apex, NC) and a 6.5 mm diameter spherical
probe approximating the EE size of instruments common
to the minimally invasive surgical environment. Centralized
computed torque control (see Spong et al. 42 for details) of
the Cartesian robot was implemented in a real-time system
running at 1 kHz. The force/torque signal was sampled at
5 kHz and a 40-point moving average filter was applied to
reduce noise while minimizing phase shifts of the signal.
The resolution of the force sensing obtained was 0.01 N after
downsampling to the computed torque control frequency
and applying an additional 30-point moving average filter.
Table II summarizes the experimental conditions and
results of the individual experiments demonstrating shape,
impedance, and deep feature exploration. The details of
the experimental conditions are provided explicitly in the
following sections.

5.1. Shape estimation results
A bovine kidney was explored for validating the shape
estimation algorithm. The tissue sample was fixed into
the work volume of the Cartesian robot such that gross

rigid body motion of the kidney was effectively eliminated
when subjected to the forces applied by the EE during
the exploration experiment (less than 0.15 N) (Fig. 8).
Throughout the experiment, the tissue was intermittently
bathed in water to slow desiccation. Ground truth shape was
measured manually using a portable coordinate measurement
system (MicroScribe MLX, Immersion Corporation, San
Jose CA). The coordinate measurement system has a
dimensional accuracy of less than 0.13 mm though the
surface measurement accuracy is limited by the ability of
the operator to estimate probe contact.

An area of the surface was explored consecutively using,
first, a prolate cycloid motion and, second, a straight
raster scan to evaluate estimation accuracy with these scan
approaches. The prolate cycloid scan parameters, Eq. (3),
were defined as a = 1

π
mm and b = 2 mm to augment a

global raster pattern with a scan line spacing of 2 mm in
a plane defined by the a priori surface normal used as the
control input for the constraint wrench screw, Eq. 2. The
mean error between the a priori estimate and the normals to
the mesh of the ground truth data was 19◦ with a standard
deviation of 8◦ and a maximum error of 38◦. The scan
parameters were chosen empirically to balance the time of
exploration and exploration redundancy. The straight-line
raster scan motion used identical alignment and raster line
spacing. In both of the exploration tasks, the magnitude
of the desired force of the hybrid controller (Fig. 1) was
set slightly above the resolution of the force controller
at 0.075 N.

During the exploration, the robot controller recorded the
location of the EE at 1 kHz, and the data were used to generate
a point cloud over the explored region. The cycloid scan data
were subsequently filtered to remove points associated with
force error in the motion space greater than a threshold of
0.02 N. The raster scan data showed limited force variation

Table II. Summary of experimental conditions.

Algorithm Exploration media Experimental results

Shape exploration Ex-vivo bovine kidney tissue Figs. 9, 10
Surface impedance exploration Inorganic rapid-prototyped phantom Fig. 11

(Kernel search)
Deep feature exploration Inorganic foam phantom, ex-vivo bovine Figs. 12, 13

kidney tissue
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Fig. 9. (Colour online) Shape estimates for kidney lobe with hybrid force-motion controller. (a) Surface estimates using a prolate cycloid
(white) and a straight-line raster scan (gray). The raster path is highlighted for a section of the scan. (b) Cross sections of the estimates
at locations marked in (a) corresponding to Y = 95, 100, 105 mm with respect to the origin defined by the ground truth data. Solid line:
cycloid scan estimate. Dashed line: straight raster scan estimate, Diamond-marked line: ground truth.

in the motion space during individual raster lines, hence
the point data were not filtered using a threshold on the
associated force measurements. The point cloud data for
each scan was smoothed and a surface was generated in
the Matlab R© computing environment using the open source
surface fitting algorithm “gridfit,” D’Errico 12 , Fig. 9(a). The
overall raster scan path is highlighted over a section of
the surface by the heavy path line. Figure 9(b) presents
cross sections of the estimated surface correlated with the
section planes in Figure 9(a). Because the straight-line
raster scan does not have a mechanism to compensate for
bias due to the direction of motion, large oscillatory errors
appear in the final estimated surface due to the biased
local surface estimates between neighboring scan lines. In
this investigation, the implementation of the cycloid motion
allowed a 7.5% reduction in the maximum estimation error.

The error in the surface estimate as compared to the ground
truth data is presented in Fig. 10. Results show a maximum
estimation error in prediction of the surface to be less than
±2.5 mm. These errors are comparable to existing clinically
deployed computer-assisted navigation systems and robotic
assistive systems using image-based registration techniques,
Baert et al. 8 , Labadie et al. 28

5.2. Surface impedance estimation results
To validate the impedance exploration algorithm in a
controlled environment with known stiffness features, a
stiffness contrast phantom was manufactured by a multi-
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Fig. 10. (Colour online) Error in surface shape estimate for prolate
cycloid scan.

material rapid prototyping process to yield nonrectilinear
stiffness features. The process yielded a phantom of uniform
thickness and hardness of Shore A 41 and Shore A 27,
respectively, ASTM 7, which could be supported in the test
fixture of the experimental setup. A 16 × 16 mm area of
the phantom was selected in order to cover both hard and
soft sections. The surface impedance estimation algorithm
of Section 4.3 was then run to test the success of autonomous
stiffness exploration. The sinusoidal palpation parameters for
the impedance estimation were specified with a peak-to-peak
amplitude of 0.1 mm and a frequency of 0.8 Hz, 0.9 Hz, and
1.0 Hz, respectively, in the û, v̂, ŵ frames of the EE. The
nonaligned frequencies were chosen to assure independence
in the contributions to the force signal from motion in
the orthogonal directions. The threshold for recursion was
specified during the exploration at ε = 90 N/mm3.

Results of the kernel search algorithm and the stiffness
estimation algorithm show a clear differentiation of material
stiffness normal to the material and minimal changes in
the properties in the ellipsoids parallel to the exploration
surface. Figure 11(a) displays the results of the estimate
in the direction normal to the material. The algorithm
successfully detected the spatially varying impedance and
thus demonstrates a clear ability to differentiate stiffness
contrast. Figure 11(b) shows planar cross sections of the
stiffness ellipsoids together with their major and minor axes.
The numbers by each ellipsoid designate the node order
explored by the kernel search algorithm. The figure depicts
the ability to adaptively increase the scan resolution when
stiffness contrasts exceed the threshold for recursion. The
kernel search algorithm limited the total search nodes to
85% of the total nodes at the maximum resolution and thus
demonstrates the benefits for exploration effort and time
saving.

An important limitation in estimating the impedance
parameters occurs parallel to the surface. In this plane,
the ellipsoid estimates were sensitive to the excitation
parameters. This sensitivity can be attributed to two
unmodeled factors in the environment interaction. As
the robot EE moves with respect to the environment in
the sinusoidal forcing function defined for the estimation
algorithm, the contact area of the interaction varies and may
be significantly different depending on the relative stiffness of
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Fig. 11. (Colour online) Results of an impedance scan on an inorganic model. In both subfigures, the geometry of the underlying stiffness
regions is denoted by the shaded regions. The light region corresponds to a region of Shore A41 and the dark region corresponds to Shore
A27. (a) Kzz component of the stiffness tensor across the region of exploration. (b) Scan path and stiffness ellipsoids in plane of the
explored surface. The search nodes are numbered by the order with which they were explored. The cross section of the stiffness ellipsoid
in the plane at each explored node is displayed.

the environment and the threshold for interaction force with
the tissue. Additionally, the tangential friction interaction
is unmodeled in the EE-environment interaction, Eq. (4),
and slip between the EE is assumed to be negligible. These
effects are minimized by judicious choice of the excitation
parameters of the low-level estimation algorithm in a way that
minimizes environment deflections while ensuring a good
signal to noise ratio for force measurements and minimizing
the likelihood of tangential slip.

5.3. Deep feature exploration
Two experiments were carried out to evaluate the proposed
algorithm for deep feature exploration. The first experiment
used a foam phantom with an artificially-made sinusoidal
cut. The second experiment used a bovine kidney with a
naturally-occurring fissure. The inorganic material allows
evaluation of the accuracy of our algorithm in guiding a probe
to follow an artificial cut representing a cleft. This media

provides a controlled environment in which the accuracy
of our proposed algorithms can be quantitatively evaluated
without significant contamination of results by errors in
estimation of the ground truth shape of a cleft in real tissue.
The experiment on bovine kidneys as shown in Section
8 qualitatively validates the success of our algorithm on
explanted tissue. As in the previous section, the sinusoidal
palpation parameters were specified with a peak-to-peak
amplitude of 0.1 mm and a frequency of 0.8 Hz, 0.9 Hz, and
1.0 Hz, respectively, in the û, v̂, ŵ frames of the EE.

5.3.1. Exploration in an inorganic phantom. A phantom
material of packing foam with hardness suitable for
containing computers and eliminating vibration was selected
due to a qualitative similarity to tissue stiffness. The
uncompressed density of the foam was 28.3 kg/m3. Given
a 1 mm step indentation of the probe, the foam exhibited
nonlinear stress relaxation with peak force of 0.22 N relaxing
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Fig. 12. (Colour online) Results of deep feature exploration in an inorganic phantom. (a) Exploration feature in foam phantom. The material
is pulled away on one side to show the seam. (b) Exploration path and the estimated stiffness ellipsoids during exploration in the foam
phantom model. (c) Results of deep feature exploration in an inorganic phantom.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 14 Apr 2012 IP address: 128.59.62.83

14 Algorithms for autonomous exploration and estimation in compliant environments

to an equilibrium force of 0.15N with a time constant of 0.5 s.
A sinusoidal seam was cut into the material as shown in
Fig. 12(a). In the figure, the material is pulled away from
one side to demonstrate the edge. This figure was also used
for offline segmentation of the feature for comparison to the
path explored by the robot.

The EE of the robot was inserted into the seam under
force-monitored position control by a master command,
similar to a surgeon initializing a robot to a given start
position, (pstart in algorithm 2). The exploration algorithm
then guided the robot autonomously along the length of
the seam. For this demonstration, the motion of the EE
was constrained to be parallel to the surface of the foam
phantom. The stiffness ellipsoid estimates and the manually-
segmented seam prescribing the ideal path in the plane of
motion are displayed in Fig. 12(b). The experiment clearly
demonstrates the efficacy of using the stiffness estimates
for path planning. The error in the robot exploration path
with respect to the segmented seam, Fig. 12(c), was less
than 1.5 mm for all exploration points along the feature.
Noting the force sensor used in the experimental apparatus
was not optimal for the low force requirements of MIS,
improvement in the sensitivity range, as demonstrated by the
surgical instrumentation with integrated force sensing, will
allow further improvement of the accuracy of exploration.

5.3.2. Exploration in ex-vivo bovine kidney. Analogous to
the experiment with an inorganic material, the EE was
positioned at a start point under master control at the
beginning of a naturally-occurring seam in the tissue. The
algorithm then guided the robot to autonomously explore
the seam. Because the tissue had local hysteresis and was
visually modified by the interaction, a representative ideal
path could not be segmented. A representation of the EE at
three points along the overall path is displayed in Fig. 13
with an overlay showing the stiffness ellipsoids for the entire
exploration. Each ellipsoid shows the estimate of the local
constraint in the plane of motion. The direction of the least
resistance of the constraint is estimated as the minor axis of
the stiffness ellipsoid.

The environment-EE interaction was critical to the
performance in both the kidney and the inorganic foam
experiments. The algorithm was developed under the
assumption that the geometry of contact with the seam
affects the perceived stiffness ellipsoid and the corrector
step ensures that environment strain is minimized after the
predictor step. The algorithm relies upon the relative lubricity
of the media with respect to the robot EE and could lead
to scenarios in which the algorithm cycles in place. If the
predictor step moves the probe along the seam, but the probe
does not slip with respect to the tissue, the corrector step
may return the probe to the same position as the previous
cycle, thus inhibiting exploration motion along the feature.
The influence of lubricity can be visualized in Fig. 13 for
x = 8 − 10 mm as apparent by the closely packed ellipsoids
corresponding to large motions during the corrector step
relative to sections of the path where friction was minimal.
A possible solution to this problem would be increasing the
prediction movement stepsize to break the friction with the
tissue when cycling occurs during an exploration process.

Fig. 13. (Colour online) Overlay of the exploration procedure at
search nodes along the path defined by the anatomy. The upper
overlay depicts the robot EE at three locations along an exploration
path. The lower plot specifies the estimated stiffness ellipsoids in the
plane of exploration along the search path. Ellipsoids corresponding
to the instances in the upper photo are highlighted.

The overall experimental results demonstrate success
of the algorithm for exploration in a highly unstructured
environment. Singular value decomposition provides a
clear methodology for estimating directions of minimal
resistance to motion. The application of these local cues
is sufficient for guiding exploration in naturally occurring
anatomic constraints and, we believe, may be used for
constructing local assistive telemanipulation virtual fixtures
to aid surgeons in tasks of dissection along sensitive anatomy.

6. Conclusions
Three main challenges have been described in applying
shape, impedance, and contact estimation in the context
of minimally invasive surgery. These challenges include
limitations in the size and specificity of instrumentation
for deep site MIS, lack of frameworks for stiffness and
shape exploration in flexible environments, and the lack
of frameworks for constraint estimation during interaction
of tools deeply embedded in flexible media. This paper
makes a first step toward addressing these challenges by
presenting a collection of algorithms that constitute an
enabling technology for future generations of intelligent
surgical robots to autonomously explore and acquire local
environment properties of an MIS surgical sites.

The paper first presented a hybrid force-motion control
algorithm for shape estimation and investigated the effects
of the local scan pattern on the surface estimate. It was
shown that a surface estimate based on data from a
simplistic Cartesian raster scan pattern is corrupted as a
result of frictional drag forces between the end effector probe
and the flexible environment. A cycloid scan pattern was
proposed with the aim of minimizing the effects of frictional
drag forces on the surface estimate. Experiments showed
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that the proposed cycloid scan significantly improves the
surface estimate accuracy compared to Cartesian raster scan
patterns.

As opposed to other approaches of unidirectional
mechanical probing and stiffness imaging, this paper applied
least-squares impedance estimation algorithms for inferring
geometric data in order to guide exploration interaction
environment interaction of surgical tools. An investigation
into the structure of the least squares impedance estimation
problem revealed a method for reducing the size of the
data used during the recursive estimation process. Using this
approach, a surgical tool can introduce a local perturbation
to the tissue and obtain a local estimate of the impedance
tensors.

Given the local estimates of impedance parameters, a high-
level kernel search algorithm is presented as a means for
autonomous surface exploration. This high-level algorithm
guided the impedance parameter estimation of a surgical tool
exploring the impedance of surface features. Experiments on
a rapid-prototyped part with known geometry and stiffness
demonstrated the utility of using tensor estimates of the
impedance parameters for adapting the search space. It was
shown that an appropriately set kernel search algorithm is a
valid method for segmenting features with different stiffness
within a flexible object.

The work finally presented a novel algorithm for exploring
the shape of a cleft or fissure within an organ or
along interconnecting tissue between adjacent organs. This
algorithm for exploring deep features is based on a predictor-
corrector strategy that utilizes local estimates of the stiffness
tensor to guide the exploration motion. The algorithm was
first evaluated on a foam specimen with an artificially
generated cleft with a known geometry. The autonomous
exploration successfully followed the geometry of the
cleft with an accuracy of better than 1.5 mm. Subsequent
validation on an explanted bovine kidney demonstrates
the utility for autonomous exploration of an anatomical
constraint.

We believe that the results and algorithms presented in
this paper support the online acquisition of mechanical
environment parameters and show the utility of mechanical
in-vivo exploration of anatomy. Though the validation
experiments successfully demonstrated the utility of our
proposed algorithms, they also highlight limitations of our
present work. An important limitation of the algorithms is
the completion time for exploration that is only partially
addressed by the adaptive search. To further improve on
the execution and make these techniques applicable to
time-critical applications, the investigated algorithms can be
combined with continuous estimation techniques that provide
fast gross information quickly and can then be expanded with
discrete techniques. Combination of these algorithms will be
the subject of future investigation.
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Appendix A. Multimedia Extensions
Multimedia extensions can be accessed online at
http://research.vuse.vanderbilt.edu/arma/Media/

compliant-algorithms.shtml

Table A1. Multimedia extensions with description of material.

Extension Type Description

1 Video Demonstration of shape exploration
with cycloid motion

2 Video Demonstration of deep feature
exploration

Appendix B. Impedance Tensor Elements from the
Model Parameter Vector
Given a model parameter vector estimate, x̂, the impedance
matrices can be reconstructed by algebraic manipulation
of Eqs. (6)–(9). Noting the redundant parameters in the
original parameter vector, θ = Vec(�T), given by (9), x̂ can
be expanded to yield

θ = [x̂1, x̂2, x̂3, x̂2, x̂4, x̂5, x̂3, x̂5, x̂6, x̂7, x̂8, x̂9, x̂8, x̂10, · · ·
x̂11, x̂9, x̂11, x̂12, x̂13, x̂14, x̂15, x̂14, x̂16, x̂17, x̂15, x̂17, x̂18]

(B1)

where the subscripted variable, x̂i , denotes the ith element
of the model parameter vector estimate, x̂. By reversing
the vector operator, the matrix, �, can be reconstructed
as

�T =

⎡
⎢⎣

x̂1 x̂2 x̂3 x̂7 x̂8 x̂9 x̂13 x̂14 x̂15

x̂2 x̂4 x̂5 x̂8 x̂10 x̂11 x̂14 x̂16 x̂17

x̂3 x̂5 x̂6 x̂9 x̂11 x̂12 x̂15 x̂17 x̂18

⎤
⎥⎦

= [A1, A2, A3]. (B2)
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Noting from (1), the matrix represents a linear combinations
of the impedance parameters where

A1 = K + 2

T
B + 4

T 2
M, A2 = 2K − 8

T 2
M,

A3 = K − 2

T
B + 4

T 2
M. (B3)

It can be easily verified that

K = 1

4
(A1 + A2 + A3) , B = T

4
(A1 − A3),

M = T 2

16
(A1 − A2 + A3). (B4)
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