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and Control of Flexible Cannulas
for Microstent Delivery
This paper presents a kinetostatic modeling framework for flexible cannulas (concentric
tubing robots) subject to tip loads. Unlike existing methods that allow fast computation of
the beam tip position, this modeling framework provides fast computation of both the tip
position and the entire shape of the deflected robot. A method for online force sensing
based on inverse kinetostatic solution is also proposed and assistive telemanipulation
control methods for microstent delivery are presented. The modeling framework uses
polynomial approximation and linear interpolation based on elliptic integral solutions to
the deflection of lightweight beams. To date, there are no systems capable of stent deliv-
ery in retinal vasculature. The modeling and control frameworks of this paper are vali-
dated experimentally on pilot studies for microstent delivery. We believe that the methods
presented in this paper open the way for robot-assisted retinal microvascular stenting
that may potentially revolutionize the treatment of blinding retinal vasculature diseases.
[DOI: 10.1115/1.4006080]

1 Introduction

Steerable cannula robots are composed of flexible tubes and
possibly guide wires. These robots provide excellent miniaturiza-
tion and support a variety of high-impact medical applications
such as drug delivery, prostate brachytherapy, catheterization, and
transcutaneous biopsy. Steerability of flexible cannulas may be
achieved in a variety of ways. For example, robotic steerable
insertion of needles was shown to be controllable by variable
insertion speed and axial rotation of a needle inside the tissue [1],
by controlled insertion coupled with a variable duty cycle spin-
ning of a beveled tip needle [2], and by changing the boundary
conditions of the needles during transcutaneous biopsy [3]. If,
however, one wishes to actively control a steerable cannula, the
design includes multiple concentric NiTi tubes with preshaped
segments. By stacking these segments in a concentric manner, an
equilibrium 3D shape may be achieved and controlled either by
changing the insertion of one tube inside another or by rotating
one tube with respect to another. Early examples of this approach
were presented in Ref. [4] for a hand-held biopsy device with one
preshaped sheath and a flexible needle. More complex designs
were almost simultaneously explored by Sears and Dupont [5] and
Webster et al. [6] using stacked concentric NiTi tubes with pre-
shaped circular segments. In the past 5 years there have been sev-
eral works on statics modeling [7,8], vibration [9], inverse
kinematics [10], insertion path planning [11,12], image guidance
[13], and telemanipulation [14].

Though kinematics and equilibrium conformations of concen-
tric tubing robots (CTRs) have been presented [1,5,6,10], a fast
solution to the statics and updated kinematics has not been pre-
sented. Xu and Simaan[15] used elliptic integrals as an extension
of the work [16] to model the statics of continuum robots with
multiple flexible backbones. Due to its cumbersome formulation,
use of elliptic integrals is not common in actual practices, and nu-
merical approaches have been proposed to approximate deflec-
tions of a cantilever beam.

Finite element analysis [17,18] was useful for modeling and
simulating large deformation of cantilever beams under different

loading conditions. Extended Lagrangian optimization method
[19] was used to solve equilibrium shapes of linear flexible
objects, but the iterative solution required a computation time of
17.6 s. Other works such as homotopy analysis method [20] and
shooting method [21] also suffer from iterative computations and
therefore are not appropriate for real-time control. Pseudo-rigid-
body model (PRBM) [22] was proposed to approximate the
motion of the tip of a flexible beam with pseudo rigid bodies con-
nected by imaginary torsional spring joints. The work [23]
extended the PRBM model to 3R and solved large deflection prob-
lems. Although PRBM has simple expressions and does not
require iteration, the solution only gives the deflected tip coordi-
nates but not the shape of the entire beam. Fertis [24] presented an
iterative solution method using pseudo-linear beam models to
solve for the beam shape, which is not suitable for real-time con-
trol of robots, either.

The approach presented in this paper is based on an understand-
ing of the elliptic integral solution to the deflection of a beam. The
fundamental observation behind our work is that a given beam
with a known length and a known direction of a tip force and a
desired tip deflection angle assumes a single shape as determined
by the elliptic integral solution. Further, the magnitude of the
force is not independent from the direction of the force and the
equilibrium beam tip angle. Based on this observation, the prob-
lem of solving the beam shape and a framework for force sensing
are derived using an interpolation approach that is easy to pro-
gram for robot control.

The approach presented here is essentially similar to using a
lookup table but has the added advantage of being based on an
understanding of the underlying mechanics of the beam rather
than using brute force precomputation of equilibrium beam
shapes.

In Ref. [25], we simplified the structure of a tubing robot as
rigid body links connected by imaginary revolute joints. The
derived Jacobian treated the whole robotic system as rigid and did
not take the flexibility of the CTR into account. In this paper, the
actual deflection of the flexible beam is considered while we for-
mulate the Jacobian for the CTR. Webster and Dupont derived the
Jacobian of CTR for no-load case [8,10]. The result was good
enough for applications where the effects of the loads were negli-
gible. However, for our potential application in ophthalmic sur-
gery, due to the slenderness of the tube components, contact
forces between the robot and the environment will generate
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significant deflection. Therefore, the robot deflection due to exter-
nal loads will be formulated into our Jacobian derivation.

The contribution of this paper is twofold. First, the paper
presents an analysis method for the computation of the shape of
CTR with loads at the tip. The method lends itself to real-time
control applications. Second, the paper presents an algorithm for
force sensing capabilities by monitoring the tip deflection and
position of a CTR. A motivating novel application for microvas-
cular surgery is presented with explanation on the planned surgi-
cal setup.

Section 2 presents the clinical motivation behind this work, the
corresponding theoretical problem statements, and the assump-
tions; Sec. 3 presents normalized flexible beam modeling; Sec. 4
presents the Jacobian formulation and control strategies for differ-
ent applications; Sec. 5 presents the statics of the robot and its
potential use as a force sensor; Sec. 6 presents the experimental
results followed by Sec. 7 of conclusions.

2 Clinical Motivation and Problem Statement

2.1 Clinical Motivation. In ophthalmic surgery, two sur-
geons coordinate to perform surgical procedures, Fig. 1(a). The
main surgeon sits superior to the patient’s head and performs most
of the surgical tasks including manipulation of the surgical instru-
ments and the light source. The assistant surgeon sits beside the
patient’s head to provide irrigation and removal of fluids and to
adjust the placement of external visualization lenses. Three inci-
sions are typically made in the sclera to provide access to the vit-
reous body for an irrigation tube, a surgical instrument, and a light
source, Fig. 1(b). The surgeons operate using a microscope while
visualizing the retina through a dilated iris. Because the visual
field does not contain the entire retinal surface, procedures often
require tilting the eye under the microscope in order to view the
peripheral areas of the retina.

The limitations of the current ophthalmic surgical setup include
the lack of distal dexterity inside the eye, limited ability to per-
form precise coordinated bimanual operations, lack of precise sta-
bilization, and manipulation of the eye itself under the
microscope. In addition to the requirement for high precision,
ophthalmic surgeons also face challenges stemming from deficient
depth perception and the lack of force feedback. Only highly
experienced surgeons can perform demanding retinal procedures
such as membrane peeling.

In Ref. [25], we proposed a dual-arm system for robotic assis-
tance in ophthalmic surgery, Fig. 2. This system is intended to
address the challenges of precision, lack of intraocular dexterity,
ocular manipulation, and bimanual coordination. Each arm of this
system is composed of a six degrees-of-freedom (DoF) Stewart
platform [26] and a 2-DoF intra-organ dexterity robot (IODR) on
top of the parallel robot. The Stewart platform provides precise
positioning of the IODR, while the IODR, designed as a CTR, is
used to provide intra-ocular dexterity. Each individual arm is
designed to perform dexterous operations such as retinal mem-
brane peeling; the two arms can also be coordinated to tilt the eye

for visualization and perform complex manipulations and opera-
tions simultaneously.

Despite previous works on retinal surgery, surgeons have not
been able to perform microvascular stenting on the retina. This
procedure has the potential to revolutionize ophthalmic surgery
just as stenting did for cardiac applications. The motivation for
microvascular stenting stems from the need for surgical treatment
of vascular obstructions that lead to blindness in the case of cen-
tral retinal vein occlusion (CRVO) and branch retinal vein occlu-
sion (BRVO) [27–30]. Though pharmaceutical treatment may be
able to resolve some obstruction, surgical treatment is needed for
cases involving buckling of vasculature walls in vein-artery
crossings.

To address these challenges, we propose a CTR as shown in
Fig. 3. This modified design of the IODR can be customized as a
surgical knife, a drug delivery tube, or controllable surgical for-
ceps. In order to achieve successful control of this robot, there is a
need for fast control and modeling algorithms that account for
bending of the guide wire. In addition, this design has the poten-
tial to fill the gap of no force feedback in ophthalmic surgery
when coupled with a kinetostatic modeling framework.

One potential application of the proposed robot shown in Fig. 3
is for drug delivery and cannulation. In this case, the flexible

Fig. 1 A typical surgical setup for ophthalmic surgery

Fig. 2 A proposed dual-arm robotic system for ophthalmic
surgery

Fig. 3 Proposed concentric tubing robot for cannulation
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needle is made from a NiTi tube with a sharp tip for puncturing
blood vessels. The precurved tube is used to adjust the approach
angle of the cannula with respect to the retina. Another applica-
tion is the surgical treatment of CRVO/BRVO—an obstruction to
outflow of blood that leads to blindness. In this case, a stent-
pushing tube is added between the precurved tube and the flexible
needle, as shown in Fig. 4. The stent-pushing tube is used for
pushing the stent axially along the guide wire inside the blood
vessel. For the stenting application, the tubing robot has three
DoFs. The work flow of a stent delivery procedure is as shown in
Fig. 5.

2.2 Problem Statement and Simplifying Assumptions.
Successful control of the CTR for ophthalmic surgical applica-
tions depends on the solution of three basic problems:

Problem 1. Given the dimensions and material properties of an
elastic beam, find a kinetostatic model that may be calculated fast
enough for control purposes. The deflected shape of the beam sub-
ject to a known load is sought.

Problem 2. Derive an explicit expression for the deflection Ja-
cobian of the CTR at a given configuration.

Problem 3. Given the location and orientation of the deflected
beam tip, find a fast solution to the applied force at the tip of the
beam.

The solution to problem 1 provides an effective method for
controlling flexible CTR subject to load. Though other works
have presented fast solutions to the location and orientation of the
beam tip, accurate control of CTR subject to external loads
requires knowledge of their deflected shape. This solution contrib-
utes to providing a modeling framework for problem 2 that is
essential for resolved-rate control. The solution to problem 3 pro-
vides a fast force feedback algorithm for CTR.

Several simplifying assumptions are made in order to facilitate
solutions to problems 1–3:

Assumption 1. The only force applied to the needle is applied
at the tip and there is no moment applied.

Assumption 2. Our CTR design satisfies the conditions for dom-
inating tube pairs as defined in Ref. [5]. The equilibrium shape of
an unloaded dominating tube pair conforms to the shape of the
dominating tube.

Assumption 3. The CTR has bounded deflections.
Assumption 4. Gravity effects are negligible.

Assumption 5. The CTR interacts with the retina such that the
bending of the guide wire is in the same plane of the angle adjust-
ment tube.

Assumption 1 is justified in the case of ophthalmic surgery
since the moments of interaction with the retina are negligible. In
fact, most interactions involve point contact with the tip of surgi-
cal instruments. Assumption 2 is justified by our component selec-
tion for this CTR. The precurved NiTi tube has an OD of 0.55
mm and ID of 0.25 mm. For a drug delivery application, the inner
tube has an OD of 0.2 mm and ID 0.1 mm. For a microstenting
application, the needle/guide wire has a diameter of 0.07 mm. The
stiffness ratios for both applications are calculated as 58 and 62,
respectively. Hence, our robot is considered as dominating stiff-
ness tube pairs. Assumption 3 is justified since the maximal
deflection of a flexible surgical tool inside the limited workspace
of the eyeball is expected to be always less than 60 deg. This guar-
antees that the cantilever beam is deflected only within a relatively
small range. Assumption 4 is correct for small guide wires/beams
that exhibit negligible deflection when placed horizontally.
Finally, assumption 5 is justified since we assume that the external
robot adjusting the CTR has sufficient DoF for meeting this
condition.

3 Normalized Kinematic Modeling
of a Cantilever Beam

A cantilever beam has one end clamped to the base and the
other end free of constraints. Elliptic integral solutions for the
shape of a beam subject to tip load have been presented by Howell
[22]. The solutions from Ref. [22] have been summarized in Ap-
pendix for completeness.

3.1 Polynomial Approximation of Beam Deflection.
Polynomial functions are proposed to be used for approximating
the shape of a deflected cantilever beam. The same example as
shown in Ref. [22] is used as a reference for this simulation.
Assume a flexible beam is 100 mm long, with Young’s modulus E
of 71.7 GPa and moment of inertia I of 7:85� 10�13m4. While
subject to a tip load P in the y direction, the beam deflects to 1
rad, Fig. 6. Note that throughout this paper, the direction of the
applied force is defined by nF such that nFP denotes its horizontal
component. For this specific example, nF ¼ 0. Note that in our
derivation, only the force direction nF but not the magnitude P is
given.

According to the elliptic integral solution, the beam end point is
deflected to (73.8 mm, 61.0 mm) and the applied force is 17.4 N.
With known beam end position and tangent direction, the use of a
third-order polynomial is proposed to approximate the shape of
the deflected cantilever beam. Define a third-order polynomial as

y ¼ c3x
3 þ c2x

2 þ c1xþ c0 (1)

Fig. 4 Potential application of a concentric tubing robot as a
microvascular stenting unit for retinal surgery

Fig. 5 Flowchart of stent delivery procedure using the pro-
posed tubing robot

Fig. 6 Cantilever beam subject to a force applied at the distal
tip
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Applying the boundary conditions (2) and (3) of beam ends posi-
tion and orientation, we solve for the coefficients c0 � c3 as in
Eq. (4).

yjx¼0 ¼ 0 and yjx¼0:0738 ¼ 0:061 (2)

dy

dx

����
x¼0

¼ 0 and
dy

dx

����
x¼0:0738

¼ tanð1Þ (3)

c3 ¼ �0:1759; c2 ¼ 1:2495; c1 ¼ c0 ¼ 0 (4)

The solved third-order polynomial is plotted in the same frame
with the elliptic integral solution of the beam shape as shown in
Fig. 7, for comparison.

The position error, normalized by the beam length, is calculated
for all corresponding points along the beam shapes given by the
elliptic integral solution and the polynomial approximation. This
normalized error is less than 1% for the example in Fig. 7. Given
the third-order polynomial equation, curve integrations of Eqs. (5)
and (6) were utilized to find the beam end point coordinates. In
Eqs. (5) and (6), hðsÞ denotes the intermediate deflection angle
along the beam and is calculated from Eq. (7); L denotes the beam
length.

xðsÞ ¼
ðs
0

cosðhðsÞÞds (5)

yðsÞ ¼
ðs
0

sinðhðsÞÞds (6)

hðsÞ ¼ tan�1 dy

dx

� �
where x ¼ f�1ðsÞ (7)

In Eq. (7), x ¼ f�1ðsÞ represents that given an intermediate beam
length s, the x-coordinate of the corresponding beam point is to be
solved through the inverse function of the curve integration along
the third-order polynomial. Once having all the intermediate
deflection angles hðsÞ along the beam, the beam end point position
can be obtained via integration. The numerical solution of the
beam end point using curve integration was calculated to be (74.3
mm, 61.1 mm). A normalized position error of 0.5% is observed
between the solutions by polynomial approximation and by ellip-
tic integral (normalization was carried out with respect to beam
length). This modeling accuracy of polynomial approximation is
as good as using PRBM model [22] but provides a fast computa-
tion of all points along the deflected beam rather than only the tip
position of the beam.

3.2 Length Preserving Shape Interpolation. Given two ref-
erence beam shapes characterized by functions h1ðsÞ and h2ðsÞ,

any interpolated shape hðs; tÞ such that for t¼ 0, hðs; tÞ¼ h1ðsÞ,
and for t¼ 1, hðs; tÞ¼ h2ðsÞ is length-preserving sinceÐ L
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðhðsÞÞ þ sin2ðhðsÞÞ

q
ds ¼ L. This length-preserving inter-

polation is to be used for creating an interpolated map for the
equilibrium shapes of the beam subject to known load directions
and tip deflection angles.

This approach lends itself for online computation of beam
shapes subject to tip loading. The method uses the reference poly-
nomials obtained from elliptic integral solutions as in the preced-
ing section. Four reference polynomials (beam shapes) are
presolved using elliptic integrals for a combination of two tip
deflection angles with two force directions at the beam tip. Linear
interpolation is carried out on the beam deflection angle and the
applied force direction to solve for the target beam shape.

3.3 Normalized BeamModeling Using Interpolation. Given
two intervals, Eq. (8), for the beam tip deflection angle hL and the
direction nF of the applied force at the tip of a beam, an interpola-
tion function hðs; tL; tFÞ that provides the shape of the beam is
sought. Two linear interpolation parameters tL and tF are calcu-
lated from Eqs. (9) and (10) for the corresponding deflection
angles and force directions of the calculated reference beams.

hL 2 ½hLmin; hLmax� and nF 2 ½nFmin; nFmax� (8)

hL ¼ ð1� tLÞhLmin þ tLhLmax ð0 � tL � 1Þ (9)

nF ¼ ð1� tFÞnFmin þ tFnFmax ð0 � tF � 1Þ (10)

Upon calculating all tangent angles of the reference beams from
Eq. (7), the tangent angles of the target beam are interpolated as
in Eq. (11). In Eq. (11), tLmin and tFmin are equal to 0 and tLmax

and tFmax are equal to 1.

hðs; tL; tFÞ ¼ ð1� tLÞ ð1� tFÞhðs; tLmin; tFminÞþ tFhðs; tLmin; tFmaxÞ½ �
þ tL ð1� tFÞhðs; tLmax; tFminÞþ tFhðs; tLmax; tFmaxÞ½ �

(11)

Once hðs; tL; tFÞ is solved, the target beam end point coordinates
are obtained by integrating over the beam curve, as in Eqs. (5) and
(6). Note that by changing the integration limit of Eqs. (5) and (6),
this approach can quickly generate all point coordinates along the
beam.

Figure 8 shows a simulation example of the proposed algorithm.
The two interpolation intervals are selected as ½hLmin; hLmax�
¼ 0:1; 1½ � rad for the deflection angle and ½nFmin; nFmax� ¼ ½0; 1�
for the applied force direction. Hence, the applied force is within a
45 deg range.

To demonstrate our approach, assume that the tip deflection
angle of an unknown beam shape is hL¼ 0.6 rad and that the

Fig. 7 Beam shape comparison of polynomial approximation
and elliptic integral

Fig. 8 Interpolation results of a cantilever beam under speci-
fied loading conditions. Dots in the middle are interpolated
beam points, compared to the theoretical shape presented by
the middle curve
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applied force direction is nF¼ 0.5. We use the interpolation Eqs.
(9) and (10)) to find tL¼ 0.56 and tF¼ 0.5. Based on these interpo-
lation factors, Eqs. (11), (5), and (6) are used to find the points
along the unknown beam. These points are shown in Fig. 8 by star
marks. The same figure also shows the reference beams generated
off-line based on the polynomial approximation of the elliptic in-
tegral solutions. The exact beam shape based on elliptic integral
solutions is also shown for the unknown beam. From the plot, we
can see that these interpolated points agree well with the theoreti-
cal beam shape. Since in Fig. 8, all beam curves are normalized
by the length of the beam, the proposed algorithm can be used to
model cantilever beams with arbitrary lengths.

Figure 9 presents a numerical evaluation of the interpolation
errors along the target beam. Using interpolation and curve inte-
gration results in an error that is less than 1.2% compared with the
elliptic integral solution. Despite this error, the proposed approach
is able to provide a fast model for the shape of the entire deflected
beam and can be used for assistive telemanipulation control dur-
ing stent insertion. Naturally, the fast interpolation method comes
at a price of a small error. We believe that this small error is ac-
ceptable given that the user is kept in the loop during telemanipu-
lation and for a beam that is 10 mm the error is less than 105 lm.
Also, when the CTR is eventually integrated within a complete
ophthalmic surgery system, calibration and visual servoing will
mitigate these errors.

3.4 Computation Speed. We carried out simulations to com-
pare the computation speed of our proposed interpolation method
with elliptic integral solutions. The comparison was completed
under MATLABVR environment on an IntelVR PentiumVR 4 computer
with CPU speed 3.00 GHz and 2.00 G RAM. For both methods,
we recorded the computation time for fully solving the entire
beam shape by substituting Eq. (11) in Eqs. (5) and (6) for 1000
equally spaced values of hðsÞ 2 0; hL½ �. For the elliptic integral
solution, we used Eqs. (8) and (9) in Ref. [15] for the same 1000
equally spaced values of hðsÞ 2 0; hL½ �.

Twenty groups of deflection angle and force direction were
tested and reported in Table 1. For each beam tip angle, we varied

the load direction by increments of 15 deg from 0 deg to 45 deg.
From the results, we see that the interpolation method can satisfy
online control requirement of 1 kHz; however, the elliptic integral
method cannot be directly used because of the long computation
time.

4 Deflection Jacobian Formulation and Stent
Delivery Algorithm

4.1 Deflection Jacobian Formulation. As shown in Fig. 10,
the CTR of Fig. 3 has two portions: (I) precurved angle adjust-
ment tube and (II) flexible surgical needle. Portion (I) is pre-
formed in a circular shape. Portion (II) is straight and goes all the
way through the support tube and portion (I). The contact force F
is applied at the tip of portion (II).

Since our tube pair is a dominating case, we do not expect the
force applied on portion (II) to affect the shape of portion (I). hL1
is the deflection angle of portion (I) at point A, and hL2 is the
deflection angle of portion (II) at point B. The relative deflection
of portion (II) with respect to portion (I) is calculated as hL2 � hL1.
The x̂O–ŷO coordinate system is attached to the support tube such
that x̂O-direction is along the extension of the CTR. The x̂T–ŷT
coordinate system is attached to the tissue surface such that x̂T is
along and ŷT is normal to the tissue surface. Local frames are also
defined at points A and B such that x̂A and x̂B are along the tan-
gent of the tubes and ŷA and ŷB are perpendicular to the tangent.

For a single cantilever beam with force applied at the free end,
we have

xðl; tL; tFÞ ¼
ðl
0

cos hðs; tL; tFÞð Þ ds (12)

yðl; tL; tFÞ ¼
ðl
0

sin hðs; tL; tFÞð Þ ds (13)

where x and y denote the Cartesian coordinates of point B, l is the
length of the beam, and hðs; tL; tFÞ is given by Eq. (11). The rela-
tive velocity components of point B with respect to point A are
found using Leibniz integral rule while using @

@t hLð Þ ¼ 0 and
@
@t nFð Þ ¼ 0 since the Jacobian is a first-order Taylor expansion of
the beam kinematics and the external load is assumed constant at
a given time instant.

Fig. 9 Percentage error of the interpolated beam shape com-
pared to the elliptic integral solution

Table 1 Computation time comparison between interpolation and elliptic integral solutions

Beam loading and
deflection conditions

Interpolation method
Computation time (s)

Elliptic integral method
Computation time (s)

hL¼ 10 deg, nF¼ 0.0–1.0 (0 deg–45 deg) 0.000168–0.000169 1.146652–1.192039
hL¼ 20 deg, nF¼ 0.00–1.0 (0 deg–45 deg) 0.000175–0.000177 1.174579–1.219528
hL¼ 30 deg, nF¼ 0.00–1.0 (0 deg–45 deg) 0.000182–0.000184 1.184637–1.267751
hL¼ 40 deg, nF¼ 0.00–1.0 (0 deg–45 deg) 0.000185–0.000186 1.139708–1.202666
hL¼ 50 deg, nF¼ 0.00–1.0 (0 deg–45 deg) 0.000209–0.000212 1.154969–1.237972

Fig. 10 Tubing robot force diagram
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_xðl; tL; tFÞ ¼ cos hðl; tL; tFÞð Þ _l (14)

_yðl; tL; tFÞ ¼ sin hðl; tL; tFÞð Þ _l (15)

The deflection Jacobian of the cantilever beam is

_xðl; tL; tFÞ
_yðl; tL; tFÞ

� �
¼ JD _l where JD ¼ cos hðl; tL; tFÞð Þ

sin hðl; tL; tFÞð Þ
� �

(16)

For the CTR of Fig. 10, the velocity of point B is

OvB=O ¼ ORA
AvB=A þ OxA � ORA

ApB=A (17)

where AvB=A and ApB=A denote the relative velocity and position
of point B with respect to point A as described in local frame A.
ORA is the rotation matrix about the z axis with the angle of rota-
tion equal to hL1. OxA ¼ 0 0 _lI=rI

� 	
T where _lI is the extension

speed of tube portion (I) and rI is the radius of the circular pre-
curved tube. Throughout this paper, bolded lowercase letter
denotes vectors and bolded capitalized letter denotes matrix. The
velocity of point B relative to point A is

AvB=A ¼
cosðhL2 � hL1Þ
sinðhL2 � hL1Þ

0

2
4

3
5 _lII (18)

where _lII is the insertion speed of tube portion (II).
The deflection Jacobian for the CTR is derived as

OvB=O¼JCTR
_lI
_lII

� �
¼JCTR _l where

JCTR¼

�yB=A
rI

cosðhL1ÞcosðhL2�hL1Þ�sinðhL1ÞsinðhL2�hL1Þ
xB=A
rI

sinðhL1ÞcosðhL2�hL1ÞþcosðhL1ÞsinðhL2�hL1Þ
0 0

2
66664

3
77775

(19)

Using trigonometric functions to simplify Eq. (19) yields

JCTR ¼

�yB=A
rI

cosðhL2Þ
xB=A
rI

sinðhL2Þ

0 0

2
666664

3
777775 (20)

Equation (20) shows that the Jacobian of the CTR only depends
on the absolute deflection angle at point B and the relative posi-
tion of point B with respect to point A. Since tube portion (I)
assumes a circular shape and is controlled by the user, the position
of point A is known. Hence, for surgical applications, a visual
position tracker is needed to read the position and orientation of
frame B so that the Jacobian can be calculated in real time. While
visual tool tracking is not the focus of our study, other groups
have proven the feasibility of using stereo cameras for tool track-
ing in ophthalmic surgery [31].

4.2 Robot Control Algorithm. Potential applications of the
proposed CTR include drug delivery, cannulation, and microvas-
cular stenting. For these applications, the sharp tip of the CTR is
used as a needle to poke through the top surface of the blood ves-
sel. Next steps after the poking include orienting the CTR and
advancing the guide wire. A resolved-rates algorithm is presented
to address these two procedures.

The CTR is to be mounted to a carrying robot, whose end effec-
tor (EE) point coincides with point O in Fig. 10. The velocity rela-
tionship is derived as

vB ¼ vO þ xO � WRO
OpB=O þ WRO

OvB=O (21)

In Eq. (21), WRO represents the rotation matrix from the world
frame to the EE frame of the carrying robot. Assume the carrying
robot has Jacobian JR, we have

vB ¼ I3�3 03�3½ �JR _qRþ 03�3 I3�3½ �JR _qRð Þ�pB=OþWROJCTR_l

(22)

where _qR represents the joint rates of the carrying robot. Writing
Eq. (22) in matrix form results in

vB¼
I3�3 03�3½ �� pB=O�

h i
03�3 I3�3½ �


 �
JR|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J _qR

WROJCTR|fflfflfflfflffl{zfflfflfflfflffl}
J_l

2
4

3
5 _qR

_l

� �
(23)

where pB=O�
h i

denotes the cross-product matrix of pB=O.
In the procedure of orienting the CTR, the CTR tip is fixed in

position, while its orientation is adjusted to be parallel to the
blood vessel channel. Therefore, vB ¼ 0 and we have

J_l
_l ¼ �J _qR

_qR (24)

A resolved-rate control method is used until the poking needle is
parallel to the blood vessel channel x̂A ¼ x̂Tð Þ, as defined in
Eq. (25):

hL1 ¼ Atan2ðx̂T � ŷO; x̂T � x̂OÞ (25)

In the procedure of advancing the guide wire into the blood ves-
sel, vB should be only along x̂T and we have

vB � x̂Tð Þ x̂T ¼ J _qR J_l
� 	 _qR

_l

� �
(26)

Equation (26) provides the control strategy of assisted stent
deployment. During assisted-stent deployment operation mode, it
is assumed that the surgeon controls the advancement speed of
the guide wire _l, while the low-level controller of the slave robot
controls the joint speeds _qR such that insertion speed
vinsertion ¼ vB � x̂T is achieved without violating kinematic con-
straints of the incision points of the eye as specified in Ref. [25].

_qR ¼ J�1
_qR

vinsertion x̂T � J_l
_l

 �
(27)

While Eq. (27) provides a means for a resolved-rates control, it
suffers from sensitivity to kinematic and integration errors. A
closed-loop feedback using visual servoing is outside the scope of
this paper but is a possible way to overcome this drawback.

5 Force Sensing

In retinal surgery, surgeons perform highly delicate operations
on the retina without force feedback. They rely on visual cues and
experience for guarding against damage to the retina. This sensory
deficiency stems from the minute contact forces between the sur-
gical tools and the retina (on the order of 20 mN for vessel punc-
ture applications [33]). These forces are usually masked by larger
friction forces between the surgical instruments and the access
ports in the sclera. As a result, there is a need for a means to sense
the forces inside the ocular cavity, but the unavailability of such
tiny force sensors requires alternative approaches for force
sensing.

The tubing robot proposed in Fig. 3 has the potential to provide
contact force information to surgeons. In Sec. 3.3, the beam end
point coordinates were calculated using an interpolation approach
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for given force direction and deflection angle of the beam. For
force sensing, assuming the deflection angle and the beam end
point coordinates are given, a root-searching method can be used
to determine the force direction and its magnitude.

Assume that the applied force direction on the free end of the
beam satisfies Eq. (8). By using interpolation on the intermediate
deflection angles of the reference beams defined in Fig. 8, and by
integrating along the target beam curve, the entire interval of
½nFmin; nFmax� is scanned such that the value of nF that minimizes
the distance between the integrated beam end point and the
observed beam end is recorded. This value of nF is taken as the
direction of the applied force, which is further substituted into the
statics model (Eq. (A9) in the Appendix) to solve for the magnitude
of the force. A flowchart of the algorithm is described in Fig. 11.

A numerical simulation was carried out to illustrate this algo-
rithm. Figure 12 shows the simulation setup used to mimic the
ophthalmic surgical procedures. The approach angle of the tubing
robot, defined as the relative angle between the flexible
needle when it is straight and the environment, is selected as 30
deg. The deflection interval of the flexible needle is therefore
[0 deg, 30 deg]. The applied force direction interval is assumed to
be [tan(p/6), tan(p/3)]. The length of the needle is 5 mm, and the
Young’s modulus and the moment of inertia of the needle are
57.85 GPa and 1:18� 10�18m4, respectively. These parameters
are selected to simulate our target application of microstenting in
retinal surgery.

Assume the target beam end point coordinates are measured as
(4.84 mm, 1.14 mm) and that the deflection angle is 20 deg. By
minimizing the distance between the integrated beam end point

Fig. 12 Illustration of the proposed surgical setup for the
robot

Table 2 Comparison of force sensing versus theoretical
calculation

Force sensing results Theoretical results

Force direction nF¼ 1.43 (55.1 deg) nF¼ 1.50 (56.3 deg)
Force magnitude 2.44 mN 2.49 mN

Fig. 11 Flowchart of the force sensing algorithm

Fig. 13 Proposed 3-DoF tubing robot

Fig. 14 CAD model of the tubing robot and the carrying robot

Fig. 15 Experimental setup of the system
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and the observed position, optimal nF is calculated as 1.43 and the
force magnitude is calculated as 2.44 mN. These results are com-
pared with the theoretical results solved from the elliptic integrals
as in Table 2.

Table 2 shows that the force direction based on the force sens-
ing algorithm has a 1.2 deg deviation from the theoretical results
calculated from the elliptic integrals. Also, the force magnitude
differs 0.05 mN from the nominal value, yielding an error of 2%.
This error comes from the interpolation error as plotted in Fig. 9,
where by integrating along the target beam, the resulting end point
has a small offset compared with the actual beam end position.
Considering the current situation associated with ophthalmic sur-
geries where surgeons have no force feedback at all, this error is
acceptable. Moreover, the calculation time of implementing the
entire force sensing algorithm was recorded in MATLABVR as 17 ms.
It is fast enough to provide surgeons “real-time” force readings
(over 50 readings per second) during a surgery.

6 Experimental Validation

A 3-DoF tubing robot shown in Fig. 13 was used for the experi-
mental validation. All tubes of this robot were made from super-
elastic NiTi alloy according to the dimensions given in Sec. 2.2
and in Fig. 13. These dimensions were selected due to their suit-
ability to adult human retinal veins, (approximately 0.16 mm as
they exit the optic nerve head [34]). Same as in Fig. 4, this design
targets applications such as stent delivery where a stent-pushing
DoF was added to deliver the stent at the target site. For applica-
tions such as cannulation and drug delivery, a simplified 2-DoF
design as shown in Fig. 3 is used.

The control unit of the tubing robot consists of three coaxially
aligned linear actuators and a Cartesian XYZ stage, Fig. 14. The
tubing robot EE as noted in Fig. 14 is observed under a digital
microscope, as shown in Fig. 13.

6.1 Robot Coordinated Motion. For testing robot coordi-
nated motion, an experimental setup was designed as shown in
Fig. 15. A digital microscope was placed sideways to the tubing
robot to measure its deflection. Two 3-DoF joysticks were used to
control the XYZ stage and the tubing robot, respectively. In the
experiment, the microscope acquired real-time images of the tub-
ing robot and MATLAB

VR
image processing toolbox were used to

quantify the guide wire deflection angle during operation. By
using MATLAB

VR
xPC target toolbox with user datagram protocol

(UDP) communication, the calculated deflection angle was sent to
the target control machine for online update of the Jacobian for-
mulation. The low-level position control loop was implemented
using 1 KHz control frequency. The frequency of image acquisi-
tion, segmentation, deflection angle calculation, and UDP commu-
nication was 10 Hz.

As elaborated in Sec. 4.2, in a stent delivery procedure, two
successive steps were needed to first adjust the tubing robot EE

Fig. 16 Control architecture used for the stenting experiment

Fig. 17 Experimental image sequence to orient the tubing robot while maintaining its EE
point position in the air
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orientation and then advance the guide wire. This experiment was
designed to demonstrate the ability of the robot to orient the tub-
ing robot while maintaining its EE position in the air. The Jaco-
bian formulation and direct kinematics were based on the
interpolation method proposed in Sec. 3.

Figure 16 shows the control architecture for assistive stent
deployment based on the formulation of Sec. 4. The insertion of
the stent was carried out using the two operation modes discussed
in Sec. 4.2 (operation mode I: orienting the guide wire while
maintaining its tip position, and operation mode II: advancing the
guide wire to the target site). In operation mode I, the user was
able to adjust the angle of the guide wire using a 3-DoF analogue
joystick (P3 AmericaVR Model 822) and velocity control. The XYZ
stage was controlled using PID position control based on position
feedback from the stenting unit and the XYZ stage. This feedback
was used for updating the Jacobian of the robot based on the angle
measurement via UDP communication. A desired reference tip
position was given to the controller corresponding to each opera-
tion mode.

Figures 17(a)–17(k) show the experimental results as the angle
adjustment tube was extended out from the support tube. Each
image was taken by advancing the angle adjustment tube 0.5 mm.
Throughout this experiment, the deflection angle of the guide wire
was calculated and sent to the target control machine for online
update of the Jacobian formulation. In Fig. 17, the stains on the
microscope lens can be used as references for the robot EE tip
position. The robot tip maximal error was measured as 0.5 mm.

In our actual Jacobian implementation for Eq. (24), we added a
compensation matrix as in Eq. (28). This matrix corrected the

Fig. 18 Stent delivery experimental setup with artificial blood
vessel channel created in agar

Fig. 19 Experimental image sequence for microstent delivery in agar-based blood vessel
channel model
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required motion from the XYZ stage along the x-axis to compen-
sate for an observed deviation of the guide wire from the angle at
the tip of the angle adjustment tube. This deviation is not
accounted for in our idealized kinematic model, which assumes
perfect alignment between the guide wire and the tip of the angle
adjustment tube. Without the use of correction factors as in
Eq. (28), the tip movement errors were close to 1.5 mm.

This compensation matrix was selected based on the series of
experiments quantifying the tip error during tip movement as in
Fig. 17. The correction parameters were easily found by the trial
and error method based on the observation that the bore size of
the angle adjustment tube was bigger than the outer diameter of
the inner tube pair. This difference caused the inner tube pair to
lean against the outer wall of the angle adjustment tube, Fig.
17(e). This resulted in a slight decrease in the actual angle of the
guide wire. We note that this compensation matrix is equivalent to
calibrating the robot parameter using a least squares approach
based on vision feedback. With this implementation using Eq.
(28), the position error of the robot tip lies within 0.5 mm. We
note that the Velmex UnislideVR linear slides used for the construc-
tion of the Cartesian XYZ stage had backlash of up to 0.2 mm. In
future system implementation, a closed loop vision feedback will
be used along with a precise parallel robot that will replace the
Cartesian XYZ stage. All of these modifications are expected to
further improve system performance.

J0 _l ¼
0:75 0 0

0 1 0

0 0 1

2
4

3
5J_l (28)

6.2 Stent Deployment. In this experiment, the tubing robot
was used to deliver a stent at a target surgical site within an artifi-
cial blood vessel. The mockup stent was made from the same
NiTi tube as the stent pushing tube, which had an OD of 0.2 mm
and an ID of 0.1 mm. Mockup blood vessel channels of 1 mm di-
ameter were created in agar, a material regularly used for artificial
micro blood vessels, [35]. Figure 18 shows the experimental
setup. The angle adjustment tube and the stent pushing tube were
retracted into the support tube at their home configurations. The
initial length of the guide wire that extended outside of the support
tube was 5 mm. The microstent was pre-assembled to the guide
wire. In a real application, the environment of the robot with

Fig. 20 Experimental setup for force sensing verification: (a) optical tracker tracing posi-
tion and orientation of a cantilever beam tip and (b) loading setup to the cantilever beam
tip

Table 3 Force sensing data compared to theoretical values

Sensed force
direction (deg)

Actual force
direction (deg)

Sensed force
magnitude (mN)

Actual load
magnitude (mN)

1 13.6 15.0 117.3 118
2 24.1 21.3 115.8 118
3 28.9 30.0 117.1 118
4 35.6 37.5 119.2 118
5 36.4 44.0 116.2 118
6 19.6 16.8 116.1 118
7 22.4 24.3 119.0 118
8 31.6 33.8 119.4 118
9 36.0 41.3 117.7 118
10 46.2 47.2 117.9 118
11 23.2 15.7 114.1 118
12 24.3 24.3 117.9 118
13 33.1 33.4 119.5 118
14 37.2 41.0 118.6 118
15 44.9 48.0 117.0 118

Fig. 21 Force sensing error plot
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respect to the tissue inside the eye is similar. The robot
approaches the tissue surface at a determined angle and then
delivers the stent.

Figure 19 shows the stent delivery process. Figure 19(a) is
identical to Fig. 18 and shows the initial setup. Figures 19(b)
and 19(c) show the robot poking through the top surface of the
blood vessel using velocity control of the XYZ stage. Figure
19(d) shows that the EE tip is already inside the blood vessel
and the tubing robot is starting the angle adjustment using oper-
ation mode I. Figures 19(d)–19(f) show the angle adjustment
process by extending the angle adjustment tube. This process is
similar to the experiment A as illustrated in Fig. 17. Figure
19(g) shows the extension of the stent pushing tube to deliver
the stent (operation mode II). Figure 19(i) shows that the stent
has been delivered to the target site and Fig. 19(j) shows the re-
traction of the stent pushing tube. Figures 19(k) and 19(l) show
the retraction process of the tubing robot from the blood vessel.
It includes retracting the angle adjustment tube and raising the
height of the entire tubing robot. At the end of this process, the
stent remained inside the blood vessel after the guide wire was
retracted.

6.3 Force Sensing Verification. As proposed in Sec. 5, the
tubing robot can be used as a mechanical force sensor such that
the contact force between the environment and the robot tip can
be calculated. In this subsection, a force sensing experiment was
designed for a larger-scale cantilever beam while subject to a
force load applied at the tip. The reason for using a scaled-up
beam was to allow us to measure the forces at the tip using an
existing electronic scale in our lab. A setup with sub milliNewton
resolution was required for the thin guide wire in Fig. 19 and it
was not readily available.

Figure 20(a) shows the experimental setup where an optical
tracker was used to record the position and orientation of the tub-
ing robot tip. Figure 20(b) shows that the robot tip was loaded
with weights via a thread and a frictionless pulley.

We selected a 100 mm long NiTi tube as the cantilever beam,
with ID 0.76 mm and OD 0.89 mm. The Young’s modulus of this
specific tube was 57.85 GPa. As shown in Fig. 20(b), one marker
was attached to the beam tip to record the position and deflection
of the beam. A second marker was attached to the thread to record
the loading force direction. By changing the position of the pulley,
we were able to adjust the loading directions. Fifteen experiments
were performed by changing the loading direction between 0 deg
and 50 deg.

From Table 3, we see that although the sensed force direction
differed from the theoretical readings by a maximum of 7.6 deg in
experiment trial #5, the sensed force magnitude error was always
less than 4% compared to our nominal value of 118 mN (12 g)
(Fig. 21). Therefore, the feasibility of using the tubing robot as a
mechanical force sensor for ophthalmic surgical procedures is
verified.

7 Conclusion

This paper presented a unified framework for modeling large
deflections of cantilever beams using polynomial approximation
and linear interpolation. This modeling method did not require
time-consuming iterative computation and was able to generate
the entire beam shape for real-time control purposes. The model-
ing framework was extended to formulate the Jacobian of a
novel tubing robot while subject to external loads at the tip. The
robot was designed for assisting challenging ophthalmic surgical
procedures such as retinal vascular stenting, for which two con-
trol modes were defined. The modeling method was further uti-
lized for an online algorithm to sense the contact force between
the robot and the tissue. Experimental results justified the Jaco-
bian formulation, stent delivery operation, and force sensing
algorithm. The methodology presented in this paper has the

potential of enabling ophthalmic surgeons to perform demanding
procedures while monitoring the applied force for safe
operations.
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Appendix

A load applied to the free distal end generates nonlinear beam
deflection, which is governed by the Bernoulli–Euler equation

M ¼ EI
dh
ds

¼ EI

d2y

dx2

1þ dy

dx

� �2
 !3=2

(A1)

Howell [22] derived the elliptic integral solutions for the tip
position of the deflected beam. Given a beam with a length l sub-
ject to a tip load as in Fig. 6, the tip coordinates (a,b) are given by

b

l
¼ 1

ag5=2
g F tð Þ � F c; tð Þ þ 2 E c; tð Þ � E tð Þð Þ½ �
þn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g gþ kð Þp

cos cð Þ
� �

a

l
¼ 1

ag5=2
�ng F tð Þ � F c; tð Þ þ 2 E c; tð Þ � E tð Þð Þ½ �
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g gþ kð Þp
cos cð Þ

� � (A2)

where F(t) and E(t) are the elliptic integrals of the first and second
kind. Parameters g, a, c, k, and t are given by

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
(A3)

k ¼ sinðhLÞ � n cosðhLÞ (A4)

a ¼ 1
. ffiffiffi

2
p ðhL

0

dh
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k� sinðhÞ þ n cosðhÞ
p

(A5)

c ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� nð Þ= gþ kð Þ

p
 �
(A6)

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ kð Þ=2g

p
(A7)

Based on the functional dependence in Eqs. (A3)–(A7), we note that

t ¼ t g nð Þ; k hLð Þð Þ c ¼ c n; g nð Þ; k hLð Þð Þ a ¼ a hL; t; nð Þ (A8)

So given a beam tip deflection angle hL and a force direction n,
the force magnitude can be solved from the following equation:

P ¼ a2
EI

l2
(A9)

This demonstrates that for a given beam tip angle and a force
direction, the force magnitude is determined.
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