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Abstract fixed geometry platformssariable geometry parallel robots

can change the geometry of their base/moving platforms. In
In this paper, we address the stiffness synthesis problem of vari-  the present study we focus on variable geometry robots that
able geometry double planar parallel robots. For a desired stiffness  can change their geometry to accommodate task-based re-
matrix, the free geometrical variables are calculated as a solution  quirements of stiffness and we present a solution for double
of a corresponding polynomial system. Snce in practice the set of  planar (DP) variable geometry robdts.
free geometrical variables might be deficient, the suggested solution Various methods of adding redundancy were suggested in
addresses also the case where not all stiffness matrix elementsare  the literature to enhance robot performances. Actuation re-
attainable. This is done through the use of Grébner basesthat de-  dundancy (antagonistic actuation) was used in stiffness mod-
termine the solvability of the stiffness synthesis polynomial systems  ulation of parallel manipulators and synthesis of RCC (Re-
and by transforming these systems into corresponding eigenvalue  mote Center of Complience) devices to control their stiffness
problems using multiplication tables. This method is demonstrated  and compliance center (Yi, Freeman, and Tesar 1989; Yi and
on anovel variable geometry double planar six-degrees-of-freedom  Freeman 1992; Kim, Lee, and Yi 1997; Kock and Schumacher
robot having six free geometric variables. A solution of the double  1998). However, for robots with actuators having high stiff-
planar stiffness synthesis problemis obtained through decomposing  ness values or non-back-drivable actuators, the contribution
itsstiffnessmatrixintermsof thestiffnessmatricesof itsplanar units.  of the antagonistic actuation to the overall stiffness is dimin-
An example of this procedure is presented in which synthesizing six  ished unless large antagonistic forces are used (Yi and Free-
elements of the robot’s stiffness matrix is obtained symbolicallyand ~ man 1993). Furthermore, stiffness modulation is affected by
validated numerically yielding 384 real solutions. higher-order singularities (Yi and Freeman 1993; Simaan and

KEY WORDS—parallel robot, double planar robot, re_Shﬁ?naen:nzziggsr).edundancy of robots was used by Merlet
configurable, stiffness synthesis, Grobner bases : . '
g y Preng, and Daney (2000) to design a six-degrees-of-freedom

(6-DoF) Stewart—Gough robot as a five-axis milling machine.
1. Introduction The robot’s one extra DoF was used to include a desired tra-

jectory inside the workspace of the robot and to ensure that
Robots are designed to perform various tasks that involtke robot path is singularity-free. Investigations focusing on
complex manipulations and interactions with their environstiffness/compliance characteristics include the works of Pat-
ment. Consequently, the performance of fixed geometry (noterson and Lipkin (1990, 1993) who classified robot compli-
redundant) robots is compromised for some tasks, e.g., a fixadce matrices based on their eigenscrews and twist compli-
geometry robot performing a task involving contact with thent axes and discussed the relations among twist compliant
environment has stiffness characteristics determined by ages and wrench compliant axes. Loncaric (1985) and Huang
inverse kinematics solution rather than by the task specificand Schimmels (1998a) characterized the space of realizable
tions. In contrast tfixed geometry parallel robots, using rigid ~ stiffness matrices using only simple springs. Other works fo-
cused on stiffness synthesis of systems of springs. Huang

*Mr. Simaan is currently affiliated with CISST at Johns-Hopkins Universityand Schimmels (1998b) and Roberts (1999) determined the
The International Journal of Robotics Research
Vol. 22, No. 9, September 2003, pp. 757-775, 1. The method was also applied for special cases of Stewart—-Gough robots
©2002 Sage Publications and is a subject of a future publication.
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minimal number of simple springs for realizing a stiffness
matrix while Ciblak and Lipkin (1999) discussed the lim-
its on the minimal number of linear and torsional springs for
achieving a general rank-r stiffness matrix. Huang and Schim-
mels (1998a, 1998b), Roberts (1999), and Ciblak and Lipkin
(1999) presented synthesis algorithms using Cholesky decom-
position of the desired stiffness matrix to compute the required
springs for obtaining a desired stiffness of a system of two
rigid bodies connected by springs. These algorithms consid-
ered the general synthesis problem and assumed no limitation
on the geometry of the springs (connection points and spring
constants). Yw

The present investigation differs from the above-
mentioned works. It suggests a method to synthesize a re-
quired stiffness with given actuator stiffness. Moreover, since
in practice only alimited number of variable geometry param-
eters are available, the present investigation offers a scheme 5= - prismatic
to determine which set of stiffness matrix elements can be
synthesized. Fig. 1. Planar robot with variable geometry base.

One promising method to overcome the robot-to-task fit-
ness problem is the use of variable geometry parallel robots.
However, currently there are only a small number of works ) )
that address this approach. Among these works are the wdf State the task-based stiffness synthesis problem. In Sec-
of Zhiming and Song (1998), who investigated the design aon 4 We decompose the stiffness of the DP robot in such a
pects of modular Stewart-Gough platforms with workspac‘@ay as to allow the decornposmon.of. the s.tn‘fness synthe§|s
and joint limits considerations, and the work of Zhiming androPlem of the DP robot into two similar stiffness synthesis
Zhenqun (1999) who presented an algorithm for identifyin roblem§ for each of its planar pnlts. In Sectlon 5 we present
the parameters of the joint locations on the base in a modiie solution algorlth_m for the stiffness synthesis problems of
lar Stewart-Gough platform. The recent work of Du Pless@e 3-DoF planar units and the complete DP robot. In Section 6

and Snyman (2002) presented an algorithm for changing iiie present a numerical example of the algorithm validating

geometry of a planar 3-DoF manufacturing robot. Their afhe theoretical results.

gorithm is based on minimizing an objective function defined

by the overall maximal magnitude of the actuator forces fd2. Variable Geometry 6-DoF Double Planar
a given desired path. These forces were updated by the Robot

verse dynamics model of the robot. The optimization was

constrained with given limits on the length of the actuators.2-1. Variable Geometry Planar Robot

Recently, Simaan and Shoham (2002) investigated a vaFiigure 1 shows the variable geometry robot presented in
able geometry planar 3-DoF robot for stiffness synthesis pu&imaan and Shoham (2002) for stiffness synthesis. This robot
poses. This robot can change the geometry of its base platfohais a triangular moving platform connected to a circular base
to accommodate the required stiffness characteristics specliigthree kinematic chains composed of an active slider on the
to each task. It has been shown, via polynomial formulatiogircular base, a passive revolute joint, an active prismatic joint,
of the stiffness matrix in terms of the free geometry paramand another passive revolute joint on the moving platform.
eters, that for a given set of variable geometry parameters The sliders on the circular base control the geometry of
not all stiffness matrix terms are attainable, and a solution gie base platform and the prismatic actuators are the active
the task-based stiffness synthesis problem through the usgaifts that manipulate the moving platform. This introduces a
Grobner bases was presented. kinematic redundancy of three in this 3-DoF planar robot.

In the present investigation we utilize the results of above-
mentioned work for the stiffness synthesis of a 6-DoF robgf
composed of two variable geometry 3-DoF planar units. The
aim of the synthesis is to obtain a specific stiffness for a giverigure 2 shows the variable geometry DP robot based on two
position/orientation of the robot's moving platform. similar planar units as in Figure 1. These planar units consti-

The following section of this work presents the architectute a variation over thBouble Circular-Triangular (DCT)
tures of the planar 3-DoF variable geometry units—one levebhot presented in Simaan, Glozman, and Shoham (1998) and
out of two—that composes the DP 6-DoF robot. In Section Brodsky, Glozman, and Shoham (1998), which, in its turn, is

Variable
geometry
base

Xw

QO = revolute

2. Variable Geometry Double Planar Robot
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Gripper (end effector) @ Lead screw s Center point of the spline joint
Lead-screw nut Linear spline joint X0, Y0,Zo World Coordinate System (WCS)
Upper universal joint @ Lower universal joint ﬁg’ §7g, ig Gripper Coordinate System (GCS)
Upper moving platform Lower moving platform Xy Vo 2y Upper platform-attached

coordinate System

ONONOIOOXC,

Prismatic joint (active) g  Center point of the X b> y b> 2 b Lower platform-attached
gripper coordinate System
Slider (active) n  Center point of the nut q Universal joints’ inclination angle

Fig. 2. The DP variable geometry robot.

a variation over théouble Triangular Robot presented by supported on a universal joint on the upper moving platform
Daniali, Zsombar-Murray, and Angeles (1993). and passes through a passive linear spline coupling supported
The two planar units of the DP robot control the positioron a universal joint on the lower moving platform. Changing
and orientation of their moving platforms by changing théhe planar positions of the upper and lower moving platforms
lengths of their prismatic joints and the location of the slidersontrols the four DoFs of the line passing through their cen-
on their circular bases. In total, the DP robot has twelve coters while controlling their rotations controls the displacement
trollable parameters: the six prismatic actuator lengths and taing the line and the orientation of the end effector about the
six locations of the sliders on their circular bases. All jointéine. The inverse kinematics of this robot is presented in detail

in this robot, other than the prismatic joints and the sliders an Appendix A.

the circular bases, are passive joints. The objective of this paper is to determine the locations of
The end effector of the DP robot is a gripper connected the six redundant sliders in order to achieve a desired stiffness

a screw body that passes through the centers of the moviggal for the DP robot.

platforms of the planar units. The screw body mates with a nut
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3. Stiffness Synthesiswith a Limited Number of

Variable Geometry Parameters <
y |,-=a,»é1+b,-é2 l=1,2,3

1)
Since in the DP robot only six parameters are redundant and &=1[10 0" &=[0 1 0
their freedom lies in two planes, not any required stiffness is
attainable. Stiffness synthesis with a limited number of varivhere the symboh indicates a unit vectog, andé; are unit
able geometry parameters, as in our case, calls for theoretiegttors along,, andy, respectlvely,l is a unit vector anng
analysis that determines which terms of the stiffness matrtke ith prismatic actuator, ang. b, are the projections of,
are controlled by the free geometrical parameters. In this pan & andé,. To make sure that the vectdris a unit vector,
per the stiffness of the DP robot is formulated as a lineahe coordinates; andb; (i = 1,2,3) must fulfill
combination of the stiffnesses of its planar units. This allows
us to decompose the stiffness synthesis problem of the DP a’+b>—1=0. 2
robot into two similar stiffness synthesis problems dealing
with finding the required locations of the sliders for each of The geometry of the moving platform used for this exam-
the two planar units. ple approximates an equilateral triangle with a characteristic

The stiffness matrices of the planar units are formulatedimension h. The three revolute joints in the platform coordi-
(see Section 4) as polynomials in the free geometric variabldte system (PCS), see Figure 1, are given by
thus, different stiffness synthesis problems correspond to dif-
ferent systems of polynomials in these variables. The solubil- P, =[-5h —3h0I" P, =[0,6h 0"
ity of these polynomial systems was investigated in Simaan P, = [5h, —3h, 0]".
and Shoham (2002). This paper elaborates on the solution
method and extends the solution procedure of the stiffne$hese vectors are transformed to the world coordinate system
synthesis problem presented therein to the 6-DoF DP robofWCS) by a rotation transformatioR, given by the param-
To solve the stiffness synthesis polynomial systems, tteters representing the tangent of half the moving platform’s

method of multiplication table eigenvalues (Stetter 1993) itation angle:
used. This method was explained in Simaan and Shoham

3)

(2002) and it is briefly described in Appendix B. Further de- 1-7 5 !
tails of this method can be found in Méller and Stetter (1995) 1412 1+
and Cox, Little, and O’Shea (1998). R= o ! 1;t2 ol (4)
1412 1412
0 0 1

The Jacobian of the planar robot in Figure 1, with its sliders
locked on the circular base, is given in eq. (5). The rows of

4. Robot Stiffness Formulation this Jacobian are the Pliicker line coordinates of the three axes
of the prismatic actuators (Merlet 1989, 2000):

4.1. Polynomial Formulation for the Stiffness of the th 4 302N 7
Planar Units a by 0 00 (101+, ST )al

1412 112

+ (_5(lft2)h _6th ) bl
In this section, the stiffness matrices of the planar units of the

DP robot are formulated as a function of the variable geome- a b, 0 0 O —6% — % . (5
try parameters of its base platform, i.e., the slider positions on
the circular bases. For any given desired gripper position and az b3 0 0 O ( 101+[2 3%:2)“) as
orientation, the inverse kinematics of the DP robot is solved
and the corresponding positions and orientations of the planar (5(11 oh + 1‘1’:}) by
units’ moving platforms are found (see Appendix A). Once -
this solution is obtained, the only free geometric parameters Since in this paper we study the effect of stiffness mod-
that remain undetermined are the slider locations of the pldication/synthesis using a limited number of free geometric
nar units. These locations are derived from stiffness synthes@riables and a given set of actuators, we focus on the effect
requirements. of geometry change instead of changing the stiffness coef-
The unitvectors direction®,i=1, 2, 3) along the prismatic ficients of each actuator, as was done in previous works on
actuator axes are the only free parameters that can be cetiffness control (Mason and Salisbury 1985). Accordingly, a
trolled by moving the sliders on the circular bases (Figure Eimplifying assumption is made that the sliders on the circular
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platform have a mechanical means to lock rigidly on the ciprismatic actuators in Figure 1. The vector of actuator speeds
cular base once the desired geometry of the base is obtairfedthe DP robot is defined bg:

or that the stiffness coefficients of the sliders are considerably . R

larger than the stiffness coefficients of the prismatic actuators. q=[a,. a;] - (©)

The three active prismatic actuators are assumed to be idejkingJ to denote the Jacobian of the DP parallel robot allows
cal, having stiffness coefficieng KThis stiffness coefficientis |5 to write its instantaneous inverse kinematics:

either determined by the control law and transmission prop-

erties of each actuator or it is determined by the mechanical q = JXx,. (10)
properties of the actuator for the case of non-back-driva
actuators. In this paper we assume non-back-drivable ac
tors with fixed stiffness coefficientykand that there is no
preload on the robot. In accordance with all these assump- Gy = X = AKX, q, =%, =JAX, (12)
tions, the 6x 6 stiffness matrix is symmetric and is given .

by K = kaJ7J, (Gosselin 1990; Tsai 1999) and the reduce&'here‘]b and J, are the Jacobians of the lower and upper

planar 3x 3 stiffness matrix is then constructed by takingflanar units given in eq. (5) aml, andA, are 3x 6 matrices

. : 0 be formulated in the following subsection.
only the stiffness elements in the, xy, x6, yy, y8, and6o . o
dirgctions AV AT Yy According to the definition in egs. (9) and (10), the Jaco-

bian of the DP robot is given by
4.2. Formulation of the Stiffness of the Double Planar Robot 3 [ JA, }

In this section we combine the stiffness of the planar units to JLA,
obtain the stiffness of the DP robot. This is used in Section 5 . _— . .
to determine which of the stiffness matrix elements can be> 9 the deflnltlon Qf the stiffness matrices of the plangr
controlled by the robot's redundant geometry variables. units, we obtain the st'lffness of the DP robot as a combination

Referring to Figure 2, the letters “s” and “n” indicate the()ftheg’>< 3reduced s_t|f.fness matricés, andK ;, of the upper
center points of the spline joint and the nut, respectively, Whil‘%nd lower planar units:
the letter “g” represents the gripper center point and the letters K =kJ"J=ATK,A, +ATK,A,. (13)
“u” and “b” represent the upper and lower planar platforms.

.Throughput this paper, the Iette'r.s “v" apd)"‘ are used 43 Formul ating A, and A,
to indicate linear and angular velocities while the letters “s”,
“n”, and “g”, whenever used as subscripts, indicate a properfihe explicit expressions for matricés, andA, in eq. (13)
associated with the linear spline, the nut and the gripper, rare formulated herein based on velocity constraint analysis of
spectively. Also, the letters “u” and “b” are used as subscript§€ planar units. These equations stem from the fact that the
to indicate properties associated with the upper and the lowyt and the spline have no velocity componentin the direction
moving platforms, respectively. Using this symbol convenof Z, (Figure 2), since they are constrained by the upper and
tion, v, indicates the linear velocity of the spline center poinlower moving platforms to planar motions.
while w, indicates the angular velocity vector of the gripper Letr; (i, j =1, 2, 3) indicate the elements of the rotation
andw,, indicates the component of this vector alongitkexis ~ matrix from the gripper coordinate system (GCS) to the WCS.
of the WCS. The symbols,, X, andx, are respectively used The unit vectog, in Figure 2 is given by the third column of
to indicate the generalized velocities of the gripper and tHBis matrix, eq. (14), whil&, is given by[0, 0, 1]":
upper and lower moving platforms of the planar units. These 2. = [ris 12 Faol" (14)
generalized velocities are defined in egs. (6)—(8) (all vectors ¢ T L Tes fes
are column vectors expressed in the WCS unless otherwié respectively define the vectors from the gripper center to

?llene instantaneous inverse kinematics of the upper and lower
lflﬁléving platforms are given by

(12)

specified): the nut and spline center pointsras andr
Xy = [Vers Veys Verr @gay @y, wgz]T (6) los = =12y Vo =—1,2, (15)
wherel, andl, respectively indicate the distances between the
% = [vm - éu]T @) g;lgi)r;]):r center and the center points of the nut and the linear
Based on the generalized velocity, in eq. (6), the angular
Xy = [vsxs Vs éb]T . (8) Vvelocity matrix of the gripper is give b2, :
The actuator speeds of the upper planar platform and lower 0 —w.
planar platform are respectively indicateddyandc,. These Q=] . 0 -0 |. (16)

vectors are 3x 1 vectors having the speeds of the active Wy Wy 0
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The angular velocity of the linear spling,, is the same as the driving yokes are rigidly connected to the moving platforms
angular velocity of the grippes,, which is rigidly attached while the lower and upper driven yokes are, respectively, the

to the screw body (Figure 2): spline body and the nut with their corresponding hinges (see
Figures A3 and A4 in Appendix A).
w; = @,. (17) Both the nut and spline center points are limited to perform

lanar motions. Accordingly, the velocity constraint equations
sed for finding the angular velocity component,of the nut
and the sliding velocity of the spline joint,, are given by

The projection of the angular velocity of the nut along th%
screw axis is indicated hy;,:

o 2, =a, (18) viZy;=0 vz, =0. (23)

Let the symbols/,, andv,, indicate the velocities of the nut By using the formulation in eq. (20) and solving eq. (23)
and the spline relative to the gripper, which is rigidly attachetpr @, anda, we obtain

to the screw. Also, lei, indicate the speed of slip in the linear Lrsswgyr13 + Lrsswg,ras + Lro,.
spline and let L be the lead of the screw (the amount of linear an = Lras
translation per turn of the screw relative to its nut). Using these
definitions,v,, is given by the slip speed along the screw + Ve — Wgylul1s + @guliras (24)
axis, z,, while the velocity of the nut relative to the gripper Lrss
is given by the relative angular velocity of the nut about the Vor + @ lr1s — @il raa
screw times the lead of the screw: a, = ——+—= sr ==, (25)
33
Vo =a,2, Vy=[L (0, —)" 2] 2,. (19) Next these expressions fay anda, are substituted in egs.

_ _ ) N ) (19)—(21) and egs. (7) and (8). Nowy andx, are expressed
Referring to Figure 2, the linear velocities of the spline angy terms of the elements of,. Noticing the relations:, =
nut center points are given by the linear velocity of the grippex, %, andx, = A, %, in eq. (11), we obtain the expression for
center point, the angular velocity matrix of the gripp(,  the elements oA, andA, by reading off the corresponding

the corresponding relative slip velocity along the screw axigefficients of the elements f. This results in the following
and their corresponding location with respect to the gripp@ipressions fo, andA,:

center point:

V, =V, +V, +Q, T 1 0 _I= Fialaras
(20) 33 V33
V, =V,, +V, +Q,I,,. Lr2 4] y2
n ng g g Van A 0 1 _E nr33+ nFo3
Since both the linear spline and the nut are each supported r]§3 £l r33+l )
on their corresponding universal joint (Figure 2), we need to 0 o —Jn JnltTedus T fulas
consider the instantaneous kinematics of these joints in order L Lrss Lrss (26)
to relate the angular velocity of their corresponding moving 22
platform with their angular velocity about the screw axis. The s na3 1,23
instantaneous kinematics of these universal joints is given by r 313
r13l, 723
) ) . ) == Lr
9}; = fbes = fb ((D; Zg) eu = JuQn. (21) r33 '
Su(Lraaras — 1,r13)
The angular velocity transmission functiofs and f,, of the Lras Jaras
U-joints, according to Wagner and Cooney (1979), are
1 0 T3 r1alsras
_ (1—sir* (B, sin’ (6)) I3 I
u — COS(@) (22) Ab = 0 1 _% lxr§3+l,r223
1 —sir? (B,) si’ (8 fs3 '3
P (By) sint (0)) 00 o Foren
cos(9) (27
. . . X A L+ Lk
whereg is the universal joint angle (angle betwegrandz), o lsra3
and g, andg, are the angles from the axes of the upper and - 13?;
lower driving yokes to the normal to the plane defineczpy s

andz,. Figure A3 (in Appendix A) shows the anghs; the "33
other angles, is defined similarly for the upper U-joint. The Joras Jforss
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SubstitutingA,, andA,, in eq. (13) yields the stiffness ma- degree. Therefore, an indirect approach using the stiffness
trix of the DP robot in the WCS. The explicit expression foldecomposition of eq. (13) is implemented. This stiffness de-
this matrix is not given for space considerations; however, omemposition gives the DP robot’s stiffness matrix in terms of
noticeable remark is in order regarding the characteristics thfe stiffness matrices of its upper and lower planar units. Us-
this matrix. ing this approach, the stiffness synthesis algorithm begins by

Huang and Schimmels (1998a) discussed the form of tldecomposing the given stiffness synthesis problem into two
stiffness matrix of a rigid body supported on simple linear asimpler stiffness synthesis problems for the planar units and,
rotational springs and showed that, if the stiffness matrix isiter, these systems are solved separately.
divided according to eq. (28), then it can be characterized by In Section 5.2 we present the stiffness synthesis problems
the nullification of the trace of its submati eq. (29): for the planar units. In Section 5.3 we present the solution to

these stiffness synthesis problems and characterize the non-
K — {[AT B} cR**: A=AT. C=C". A.Ce mgxg} solvable'stiffness synthfesis problgms for the given set _of free
B' C geometric parameters, i.e., the slider locations. In Section 5.4
(28) we presentthe method for decomposing the stiffness synthesis
problems of the DP robotinto two stiffness synthesis problems
of its planar units.
tr (KA)=2tr(B) =0 AE[O ! } (29)

I 0
5.2. Stiffness Synthesis for the Planar Units

The condition in eq. (29) stems from the fact that the axgs, .n planar 3-DoF unit has an associated 3 symmetric

of simple linear springs are Plicker line coordinates fum”in%tiffness matrix (mentioned in Section 4.1) and the slider lo-

theKleinquadric condition (Pottman 1999). For the DP robot,” _ . . :
. L . cations as three redundant parameters available for stiffness
the trace in eq. (29) has a distinct value given by . . . . ;
synthesis. Given a desired triplet of stiffness elements from
f2K, the upper triangular part of the symmetrix3 stiffness ma-
tr (KA) =2tr (B) = —2——% (30) trix, the associated problem of stiffness synthesis is finding
the required geometry of the base platform (i.e., finding
WhereKu% indicates the rotational stiffness of the upper plab;, i = 1,2,3) of the planar robot in Figure 1.
nar unit, and L is the screw lead. This is an important char- To fully synthesize the symmetric 8 3 stiffness matrix,
acteristic of the DP robot since its architecture producesal six equations in eq. (31) must be fulfilled together with
screw spring acting on its gripper, although all its actuatotbe three equations in eq. (2). Since each planar mechanism
are simple linear springs. of Figure 1 has a kinematic redundancy of order 3, only three
In the following section we present the solution of the stiffstiffness equations from eq. (31) can be simultaneously ful-
ness synthesis problem for the DP robot based on the stiffnddled. Accordingly, there arfég)=20 systems of six polyno-
decomposition according to eq. (13). The desired stiffnessials with each having a total degree of Zijnb; (i =1,2,3).
characteristics of the DP robot are decomposed into two sé&ach of these systems represents a different stiffness synthesis
of desired stiffness characteristics for its planar units, and tipgoblem in which a corresponding triplet of stiffness elements
slider locations are then calculated. of the 3x 3 stiffness matrix is being synthesized:

5. Stiffness Synthesis for the Double Planar Kij = Koesieqy =0 1=1,2.3 i =] (31)

Robot Equation (31) poses the question whether it is possible to

solve all the 20 stiffness synthesis problems, i.e., is changing
the directions of the lines in Figure 1 enough to allow control-
Theoretically, it is possible to use a direct approach for thiéng all the stiffness triplets corresponding to the 20 stiffness
stiffness synthesis by using a polynomial formulation to theynthesis problems?

stiffness of the DP robot in terms of the locations of the six

sliders of its planar units. This approach requires solving g3 Application of the Eigenvalue Method to the

system of twelve polynomials for twelve unknowns, (b;, Planar Units

i =1,2,3 for each planar unit), in which six polynomials are

in the form of eq. (2) and the other six are the equations fdn this subsection we use the method of multiplication ta-
depicting the values of the six synthesized stiffness elemeritke eigenvalues given in Appendix B to solve the stiffness
in the stiffness matrix. However, the polynomial systems asynthesis problem for the planar units. To answer the ques-
sociated with this approach are not practically solvable fdions listed in the previous subsection, the reduced Grob-
the slider locations in the general case due to their size andr bases associated with all the 20 possible systems of

5.1. General Description of the Synthesis Algorithm
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equations in the form of eq. (31) were computed. A total-
degree ordering (degree reverse lexicographical order) with | — |
a; > by > a, > b, > a; > b; was used.

When the reduced Grébner basis equals {1}, the system of
polynomials has no solution (Adams and Loustanau 1994). L]
Hence, the use of Grobner bases allows us to characterize the o ]
space of solvable synthesis problems of robots with a lim-

ited number of free geometric parameters. For the particular N
example of the planar units of the DP robot, it was found — — ]

that whenever bothk,, andk,, are specified then there is no

solution to the system of polynomials (Simaan and Shoham

2002b). Physically, this means that with the free geometry pa-

rameters (slider locations) it is impossible to synthesize both

k.. andk,, terms of the stiffness matrix. [ ] T [ [ ]
To determine the solvability of the stiffness synthesis prob- L

lems for the planar units, all 20 corresponding polynomial ]

systems mentioned in Section 5.2 were symbolically formuFig. 3. Solvability map for the stiffness synthesis problems

lated. These polynomial systems stem from eq. (31) for thsf the planar units.

corresponding triplets of synthesized stiffness elements and

from eq. (2) for fulfilling the unit vector constraint on the

lines of the Jacobian. Then, the corresponding reduced Grob- b2h,as

ner bases for these polynomial systems were computed. All > =

the non-solvable stiffness synthesis problems correspond to @ bsbias, byashsbs, asb.aibs, b3, byas, bobs, azbi, bab,

reduced Grébner basis = {1} since in this case the ideal is

improper, i.e.] = C[x;...x,]whereCl[x;...x,]isthering bgal, blbzbgv bzbgal] . (32)

of polynomials with variables; . .. x,, and coefficients over

the complex field” (Appendix B). Based on Hilbert's weak  £5ch variable amongus, by, as, by, as, bs) appears alone

nullstellensatz theorem (Becker and Weispfenning 1993), an 4 leading term i with the corresponding degrees of {2,

ideal has an empty variety (/) (i.e., empty solution set) if 5 5 3 5 5} eq. (32). Consequently, based on the finiteness

and only if/ = Clx,...x,]. Hence, by computing the re- y,o5rem (Adams and Loustaunau 1994), the system in egs.

duced Grébner bases and finding those that reduce t0 {1} Wg1) and (2) has a zero-dimensional variety. Also, the group
find all the stiffness synthesis problems that are unsolvableys 4| the reminders irClay, by, as, by, as, bs]/ I, denoted by

Figure 3 gives a solvability map of all 20 possible stiffness, has terms with maximal degrees of {1, 1, 1, 2, 1, 4} in

synthesis problems mentioned in Section 5.1. Each tile FePTE: by, ay, by, as, bs), respectively. Hence, the monomial ba-

sents an entry in the reduceck3® symmetric stiffness matrix ;g of Clay, by, az, by, as, bs]/I, denoted byB, is found from
of the planar unit. Light gray tiles indicate the synthesizablg, by extracting all the monomials iP that are equal to their
triplets while dark tiles indicate the non-synthesizable triplet§,n normal forms (Cox, Little, and O’Shea 1998). This pro-

of the stiffness matrix elements. _ cedure took 97 s to compute and resulted in the following
As an example, consider stiffness synthesis, gfk,,, and 48-dimensional monomial basis:

k.s elements of the stiffness matrix, i.e., all the stiffness ele-
ments in thex-direction are prescribed based on task require{ 1, bs, as, bz, az, by, a1, b3, bsas, bybs, asbs, bibs, asbs,
ments. The reduced Grdbner basis for this problem, hereafter
called G, with total degree ordering, > b, > a, > b, >
as > bs has 29 generators of degrees ranging from 1105 p2p,y, b2ay, byb2, blay, ashsbs, azashs, byasbs, asasbs,
in the free geometry variables. The symbolic computation of
this particular basis took about 16 h using Maple on a 1Ghz bsb5, bobibs, aibsbs, azbibs, azaibs, bias, byazb,,
Pentium IIl processor. Th&h column in Table 1 presents 4 5 5 s 3 5 ) )
the degrees of thigh basis polynomial in the variables corre- 910203, by, asbs, babs, azbs, b3by, byas, bibabs, arbabs) -
sponding tau, by, a,, by, as, bs. Table 1 shows that the total (33)
degree of the equations ranges from 4 to 8. Due to space con-To solve for the geometry free parameters (location of the
side_rations, this Grdbner_basis is not presented here, butdigiers) three 48< 48 multiplication tablesM 1, My, and
leading terms are shown in eq. (32). M s for fy = ay + by, fo = a, + by, and fs = as + by, are
computed together with their corresponding minimal poly-
(a5, azbs, a5, bZ, aiby, a2, biazas, axaias, by, bby, a;bs, nomials,mp 1, mp ;,, andmp ;3. These minimal polynomials

2 2 2 212 2 12
a3b3a2, b3b1a3, alb3a3, b3b2, blazbs, bzazal,

2 3 72
beas, axas, bias, a,as, bz, boby, boay, bias, azay, bg, b3a31
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Table 1. Degrees of the 29 Polynomials of G in the Variables
0 1 11 0 1 1 0

a
by
as
b,
as
b3

NNOOOO
NFEPNRFR OO
OONNOO
NONON

NEFENOR

NONOON
e

e = S

N R WR O

NP NOR

NEFRNOR

WRrRPRRPROO
WKk RPRREPO

WFROOR R
WFRrOOR R
AR NOOO
NORRRR
NORRRPR
ARLrNOOO
NP RRRR
NP RPRRRPR
R NOOO
AR NOOO
AR PP OO
AR PRPPRPROO
AR OORR
AP OORR
WRrRPRRRPR
WRrRPRRRPR

have only even degrees. Consequently, this stiffness synthesis
problem has at most 24 pairs of complex solutionsfforf,,
fs and their conjugate solutions (48 solutions in total in terms
ofa, b i =1,2,3).

Once the sums; + b; (i = 1,2,3) are known, the values of
ay, by, ay, b,, as, b; can be computed separately and the slider
locations are found. The following is the solution procedure
for (ay, b1), which is identical for &, b,), and @s, b3).

Let +C be one of the solution pairs efp,,. The corre-
sponding solutions forg, b,) are given by solving

The two solutions for +C and two solutions for —C are Fig. 4. Geometric interpretation to the solution in eq (39)

cC A C A
f0r+C (alvbl): EiEvE:FZ

C A C A
) (35) In the next subsection we solve the problem of task-based

for —C: (al,bl):—<_:F_ 4+ =2

2 22 2 stiffness synthesis of the DP robot by using the results ob-
A=4+2_C2 tained fro.m the stiffness synthesis of the variable geometry
planar units.

Figure 4 shows the corresponding four solutions. The sym-
bols Cp1, Cp2 indicate the two solutions in eq. (35)faf i .
while Cm1, Cm2 designate the other two solutionsfar. -4 Stiffness Synthesisfor the Double Planar Robot
Note that each pair of solutions is a mirror image of th
other about the unit vectox(2/2, +/2/2) with each solution
forming an anglé& according to

&he stiffness synthesis problem of the 6-DoF DP robot is
solved next. Given a desired sextuplet of stiffness parameters,
we can solve linear equations stemming from eq. (13) for the
C desired stiffness elements of the planar units. Then, we have
£ =cos* (72> (36)  to solve two similar stiffness synthesis problems of the planar
units by using the method of the previous section. Once the
Since only real solutions fou(, b,) are of interest, only solutions for ¢;, ), i = 1..3, are found for each planar unit,
the real solution pairs ofip ,, whose absolute values smallerthe slider locations are readily found.
than+/2 are substituted in eq. (35) (see eq. (36)). To define solvability of all the stiffness synthesis problems
Once this procedure is repeated for the roots:pf, and for the DP robot, we have to compute all the corresponding
mp 3, Sets of solutions ford,, b,) and @, b;) are obtained. Grobner bases of all equations depicting sextuplets of stiff-
Then all sextupletsag, by, a,, b,, as, bs) satisfying egs. (31) ness elements. There are six redundant geometric variables
are found; thus, determining the slider locations. in the DP robot and its & 6 symmetric stiffness matrix has
In this subsection we have presented a method to solve th@ independent variables since it is bound to fulfill eq. (30).
stiffness synthesis of the planar units and to determine whidtis is tantamount to computir(@o) Grobner bases, which is
combinations of the stiffness matrix terms are attainable. fractically an impossible task. However, the stiffness of the
was shown that for the robot of Figure 1, it is impossible t®P robot is given according to eq. (13); therefore, synthesiz-
concurrently fulfill requirements of Cartesian stiffness matriing sextuplets of stiffness elements is limited only to those
elements,, andk,, by only changing the slider locations. sextuplets that the planar units can attain. Accordingly, Fig-
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ure 3 depicts the solvable synthesis problems for the planar Ku,, = —LrisK. s — LK., — Kx.zl—rss.

units and also draws the limits for the solvable stiffness syn- a I

thesis problems of the DP robot with the given redundancy. | the following section we demonstrate a numerical ex-

The unsolvable stiffness synthesis problems for the DP rObé’anle of this algorithm.

are all the stiffness synthesis problems for which one of the

corresponding stiffness synthesis problems of its planar units . . .

is unsolvable according to Figure 3. Note also that eq. (13) iséa Numerical Example: Stiffness Synthesisof the

linear combination of the two stifiness synthesis problems épouble Planar Robot

the planar units, therefore the non-solvable stiffness synthe- ) ) )

sis problems for the DP robot are only those associated with this section we demonstrate the solution of a stiffness syn-

non-solvable stiffness synthesis problems of one of its plangesis problem for the DP robot of Figure 2. The unknowns

units. are the locations of the sliders of the planar units. These lo-
The stiffness synthesis process for the DP robot is demog@tions are readily found once the solutions for the variables

strated herein for stiffness synthesis in theirection of the (@i, 1), i = 1..3, are found for each planar unit of the DP

WCS. The solutions of the equations stemming from the stiffoPot. The aim of the synthesis problem is to specify all the

ness decomposition equation (eq. (13)) for this problem afé elements of the stiffness matrix in thedirection of the

given by egs. (37)—(42) wheté, ., k., k.., k.o, k. gk, ] IS . ) ]

the vector of desired (task-based) stiffness elements of the DPTO Validate the solution we first set up an example of the

robot in thex-direction and, andK , respectively designate DP rpbot with given slider locations gnd compute its s_tlffness

the corresponding desired<3 stiffness matrices of the upper Matrix according to eq. (13). The first row of this stiffness

and lower planar units. Note that these equations show tHRtrx (the stiffness elements in thedirection) is used to set

this problem is solvable since egs. (37)—(42) do not requil the desired stiffness values for the stiffness synthesis algo-

simultaneously depicting,. . andK, . nork, . andk, . 'ithm. After solving for all possible solutions, the computed
In eqs. (37)—(42),,, i, j = 1,2,3 indicate the elements of theSolutions are expected to include also the same values used

rotation matrix R from the GCS to the WCS: for setting up the example.
Lr13K, 133+ 1rsK,, — K, gras

(42)

Ky, = 1 6.1. Setting Up The Example
Faal rsK oy + K, 112 — K, (37) The geometric properties of the DP robot used for setting up
RELAGL S ; ”l" o the numerical example are listed in Table 2. The gripper of
—h the robot is positioned ig = [-0.1, —0.1, 0.3] [m] and rotated
12K,y 4 LrssK, Py FialrasK 20 abo.ut thec—a?as of the W'CS. . ' .
Ky, , = £ 231’ ”133 Sl The inverse kinematics given in Appendix A results in the
—h (38) rotation angles of the lower and upper moving platforms and
K, ors3—risK,, —Lr5K, in the positions of the spline and the nut together with the
) universal joint angleg, and g, (see Figure A3). The corre-
’ sponding results for the required position and orientation of
(Kxﬁ + LKX,,) oz + (Kw + K“L) Fa3 this example are given in Table 3. o
Ky, = 7, Next, the angles of the prismatic actuator axed4, |5 in
| (39) Figure 1) of the upper and lower planar units are selected as
(Kiow+ LK, )ris ¢, =[30°, 240, 120] and¢, = [60°, 200, 100], respectively.
+ £ The corresponding values foy, b;, i = 1,2,3, are termed,,
andb,, for the upper planar unit ang. andb,, for the lower
K - —1, 713K, 133 — 123K, + K, pTa3 planar unit:
—b + 1 (40) for upper planar unita,; = cos(¢.;)
— _ 2
+ r23l"r13K—*‘-)‘_l Iif;lnrla + K.l b,, = sin(¢,;)
for lower planar unit:a,; = cos(¢,;) (43)
K = 113K, — Ky alss — r1al, 23Ky o — 113K, 733 )
Uxyy — _ln + lx bu’. = SIFI((P;,,)
N K., + 13K, +1LriK,, — LK, , =123
_ln + ls

(41)

The resulting reduced 3 3 stiffness matricek, andK, for
the upper and lower platforms are
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Table 2. Numerical Parameters Used for Setting Up the Numerical Example

Upper platform height 0.2 Charactersitic dimension of lower moving 0.02

(Z, in Figure Al) [m] platform [m] (see eq. (3))

Homing height [m] 0.3 Characteristic dimension of upper moving 0.02
platform [m] (see eq. (3))

Radius of lower base circle [m] 0.3 Actuator stiffness of lower planar uynit k 1 x 1¢°
[Nm™]

Radius of upper base circle [m] 0.3 Actuator stiffness of upper planar ynit k 1 x 10°
[Nm™]

Screw lead (m per rotation) 0.02

respectively, are used here as an input to the stiffness synthesis
algorithm. For each planar unit, three minimal polynomials,
mp 1, mp o, andmp 5, are obtained using the procedure of
Section 5.3. Table 4 lists all distinct real solutionsmgs ;,

mp s, andmp ;5 for the upper and lower planar units.

© 1163175911 583364351 —1495557226 Next, all the real solutions foqz,-, b;, i = 1,2,3 that are
K,=| 5833964351 1836821089 —86.24677281 smaller thany/2 are found by using eq. (34) (see eq. (36)).

1495557226 —86.24677281 2367426309 From these paired sets the sextuplets#,, a,, b,, as, bs] that
- (44) fulfill the stiffness equations, of each planar unit, are saved.

For the upper planar unit, this results in 48 real solutions for
The resulting stiffness matrix of the DP robot is given by @, b, i = 1,2,3 while for the lower planar unit, eight real

K.=|[4330127019 17500000 —5084097143

1250000000 4330127019 249577993
| 2495777993 —5084097143 392457238

solutions fora,,, b,,, i = 1,2,3 are found. Figures 5 and 6
2413175911  10164M137 136598936 present the geometry of the upper and lower planar units for
1016409137 3586821089 —7235298440 the solutions given numerically in Appendix C. The three
1365989936 —7235298440 .6150181290 10 actuators in Figure 1 are distinguished in these figures by
2834951789 748303025 231752923 circular, hexagram, and square symbols, respectively. The so-
—4163992352 —2310675538 2180®3549 lutions corresponding to the angles used to set up the example
—3306317483 —4443898975 —1156270068 are encircled. The time for the numerical computation of the

eigenvalues took about 500 s for each planar unit.

Appendix C presents all real solutions for the upper and
lower planar units, respectively. All computations were car-
ried out with 64 digit accuracy. The values fat [b;, a,, b,,

3005333637 —5474412144 —6114035530 as, bs] are presented as angles of the prismatic actuators in
—5474412144 905655994 660474634 Appendix C f,-, i =1,2,3in Figure 1) in the-y plane. Any
—6114035531 660074636 878349878 solution for the upper planar unit can be used with any so-

(45)  |ution for the lower planar units; hence Appendix C presents
all 384 real solutions for the stiffness synthesis problem of

IThte glemter?tsdof f[hedflrs;[ rowfof :E'S st'glffffness ma’g:x "?‘“?hF DP robot of this example. Highlighted rows in Appendix
selected as the desired vaiues Tor the Stliness syntnesis a represent the solutions corresponding to the values of the

gonthm. Using the algquthm In Section 6.2, eqs. (37)_(42)actuator angles used for setting up the numerical example.
results in the desired stiffness elements of the upper and lower

units that are (as they should be) equal to the elements of the _
first rows ofK, andK, of eq (45), respectively. 7. Conclusions

2834951789 —4163992352 —3306317483
7483793025 —2310675538 —4443898975
2317552923 218093547 —1156270068

A solution for the stiffness synthesis problem of DP variable
geometry parallel robots is presented in this investigation.
This solution uses Grébner bases and applies multiplication
The three desired stiffness elements for the upper and lowables that transform the solution of the stiffness synthesis
planar platforms that are given by the first rowgfandK,, polynomial equations into an eigenvalue problem. Since in

6.2. Solving for the Geometric Parameters of the Upper and
Lower Platforms
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Table 3. Results of the I nver se Kinematics of the Double Planar Robot

n = position of the nut [-0.1, -0.0636,0 .2-6] B, = lower U-joint angle (see Fig- 0.0
ure A3 in Appendix A)

Bu =upper U-jointangle (see Fig- —65.8384
ure A3 in Appendix A)

0,, = relative rotation between -115.5120
screw and nut

s = position of the spline [-0.1,0.0092, 0.-5]
6, = rotation of lower moving platform 00

6, = upper moving platform rotation -114.1616
The number of four digits after the decimal points is only for numerical purposes.

A (A)A
& it

Fig. 5. Geometry of the lower planar unit for all eight solutions of the stiffness synthesis example of the DP robot. The
encircled solution corresponds to the data used for setting up the numerical example.

Table 4. Real Solutions of mpy,, mps,, and mp ;5 for the Upper Planar Unit and L ower Planar Unit

Results for Upper Planar Unit Results for Lower Planar Unit

G G G G G G
+0.20894173  +£0.96642204  +0.36602540 +1.3636051 +0.29022483  +£0.81115957
+0.22517095 +1.0048748 +0.56625616 +1.1215331 +0.8328858
+0.99510127 +1.0509660 +0.94629300 +1.2703051 +1.1445878
+1.3659867 +1.3660254 +1.0324865 +1.2817127 +1.3356068
+1.3660254 +1.3926714 +1.2881221 +1.3525921 +1.3615997

+1.3986934 +1.3613936
+1.4003424 +1.3660254
+1.3961726

All numerical computations in this work were made with 64 digits, but results are truncated to eight significant decimal

digits for presentation purposes.
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Fig. 6. Geometry of the upper planar unit for all 48 solutions of the stiffness synthesis example of the DP robot. The encircled
solution corresponds to the data used for setting up the numerical example.

practice the number of actuators is deficient for synthesizirthat synthesizes the stiffness matrix elements of the DP robot
the complete stiffness matrix, we take advantage of Grobnierthe X-direction that was shown to have 384 real solutions.
bases to characterize the space of solvable stiffness synthesis

problems for a given set of variable geometry parameters. The

effectiveness of this method was demonstrated on a novel Xppendix A: Inver se Kinematics of the Double
variable geometry robot which has six free geometry variablgs| gnar Robot

and can control at most six elements of its stiffness matrix.

Due to the special structgre of the DP robot it is pgssiblpigure A1 shows a schematic view of the gripper in four po-
to decompose the problem into two stiffness synthesis probitions. The upright position of the screw body is considered
lems of its upper and lower planar platforms that have thrgge home position (position 1 in Figure Al). In this position,
free geometry variables each. The solution of the stiffnegge moving platforms of the two planar units are at the centers
synthesis of the planar units was shown to have at most gtheir circular bases and their PCS are parallel to the WCS.
solutions. For each planar unit it was shown, for example, th@the fourth position represents a general position of the grip-
it is impossible to control both two element,, and K, per. Subscript h in Figure Al indicates all the properties at the
of the stiffness matrix by only changing the locations of thg,gme position and the lettegsn, s respectively indicate the

sliders on the circ.ular base. (_Zomposing the sollvable Setspﬂfsitions of the gripper, the nut, and the spline center points
elements of the stiffness matrix of the planar units draws thg the WcCS.

limits of the solvable sets of the stiffness matrix elements for 14 reach any desired configuration from the home posi-
the 6-DoF DP robot. This method was verified by an exampigyn the motion is conceptually decomposed into three parts.
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£y

Driving
£ yoke

Fig. A1l. Motion from the home position to a general giver
position.

>

8 Driving

voke T

Fig. A2. Cross-section of the spline joint. Driven ¥
yvoke =
Ve
Fig. A4. Upper moving platform, universal joint, screw body

The first part (transition from position 1 to position 2) is rota- .
tion about the center point of the nut at home positignin and gripper.

Figure A1, such that the desired orientation of the gripper is

reached and the corresponding rotation of the lower platform

is determined by the inverse kinematics of the lower U-joint

(eq. (A3)). To maintain the axial position of the screw body-direction of the WCS (see Figure 2) respectivlyis given
relative to the nut, the upper moving platform is rotated in they the third column of R,, the rotation matrix from the GCS
same amount as the lower moving platform. Next, parallé WCS. The parametric locus of all points along the screw
translation of both the upper and lower moving platforms igxis is indicated by in eq. (A1) where; < 9t is the position
performed until the desired position of the screw axis is olparameter along the screw axis:

tained (position 3, Figure Al). Finally, only the upper moving N

platform is rotated in order to move the end effector axially on l=g9-¢2. (A1)

the screw to the desired axial position (position 4, Figure Alyne nut and spline center points (pointands) are found by
Apartfromthe GCS and WCS, we introduce an upper PC3ypstituting in eq. (A1} = z, andz = 0, respectively:
lower PCS, and nut-attached coordinate system (NCS). The
detalls of these systems are given in Figures A2—A4 and are g2\ . 02—z, \ .
explained in the subsequent paragraphs. At the home position S~ 9~ <2T20> Z, N=9- (T) 2. (A2)
all these coordinate systems are parallel to the WCS. ¢ ¢

Let the symboh indicate a unit vector. Accordingly, 1&t Figure A2 introduces the geometry of the spline supported
andz, indicate the unit vectors along the screw axis and thay the lower U-joint. The direction from the center point to
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the groove of the spline is parallel %, thex-direction of the whereR
GCS (Figures Al and A2). Figure A3 gives the geometry of

.¢., IS the rotation matrix by an angjeaboutz,:

the U-joint connecting the spline to the lower platform. The ¢ —s, 0
“driving yoke” of this universal joint is rigidly connected to Rev=1|s ¢ O0f. (A7)
the lower moving platform and the lower PCS is indicated by 0 0 1

subscriptb such that itsc-direction,X,, is along the pivot of _ . _ .

the driving yoke and itg-direction is always parallel tg, 1 ne unit vecto, is obtained by normalizing the vector pro-
(Figure A3). The driven yoke of this U-joint is the spline withduced by projecting, on thex, — yo plane and, is found
its hinge always parallel t§,, the y-direction of the GCS. from the cross product g, with 2,. The directed angle from
The geometry of the upper U-joint fixed to the upper moving 1 %« is given by

platform is identical when the spline of the lower U-joint is oTe oTo

replaced with the nut of the upper joint. However, since the “= Atan2(xuyb, %)« €0, 21). (A8)

nut can rotate about the screw, the NCS is defined with ifSy ,, indicate the number of complete revolutions made by
z-direction alongz, and y-direction perpendicular &, and o serew relative to the nut. The total rotation angleof

along the axis of the driven yoke (sgeandy, in Figure Ad). e moving platform relative to its orientation at the home

The_x-direction of the upper PCS,, is along the pivot of the position is given by eq. (A9) and explained in Figure A5
driving yoke connected to the upper moving platform.

The angle betweefy andz, is labeled (Figures A3 and 6, = 6, — (2n, + B)sign(a,.) (A9)
A4). The rotation angle of the lower moving platform rela-
tive to the home position is given by the direction’gfin  whereg is related tax and the sign ofi,,:
theX, — ¥, plane. Since the structure of the U-joint depicts
perpendicularity of, to %,, the direction o, is given by B = n(sign(a,) + 1) — signa,)a. (A10)

0, = AaNAy,/y) — /2, (A3) Equatipns (A2), (A3) and (A9) complete the inverse position
analysis of the DP robot.

where (.1, y,2) indicate the projections df, on theX, — ¥,

plane. This solution is one of two possible solutions to thAppendix B: TheEigenvalueM ethod for Solving
inverse kinematics of the U-joint and it corresponds to thp0|ynomia| Systems

geometry in Figure A3.

Once the lower and upper moving platforms are rotated h¥et C|x,..x, ] represent theing of polynomials with vari-
6, and translated to pointsandsgiven by eq. (A2), the desired gplesy, ... x,,, and coefficients over the complex field,
orientation of the gripper is achieved such that the desiregyt glsos = {(P1, P2s - PulP1s P2..pn € Clx1..x,]} be a sys-
gripper positiong, lies alongz, . In this position, homothetic tem of n polynomials with a corresponding zero-dimensional
edges of the upper and lower platforms are paralleand  |deal7 =< pi, ps, ... py >, 1 C Clxi1...x,]. Thevariety
parallel toy,. To achieve the desired positigpwhatremains v (1) of solution is defined by all the m-tuples of . ... x,,

is rotating only the upper moving platform (and thus the nWych thatp, = p, = ... p, = 0,i.e.,V({I) = {[x1...x,] €
about the screw) in order to produce the desired axial motiopy |, = p, = ... p, = 0}. We seek all the solutions &f

a,,, of the screw relative to the nut. The axial motion is given The 0rigina| System of po'ynomia' equationS, can

by be replaced by another minimal set of polynomials,=
{g:...g:}, calledstandard basis (or Grébner basis) of the
a, =19 —=nl = 19, — |l (A4)  ideal I via the use of Buchberger's algorithm (Buchberger
1965), which is not reviewed here due to lack of space. Ques-
Since the axial motion,,, is achieved by rotating the nut andyjons regarding ideal-membership of a given polynomidl,to
notthe screw, the corresponding required rotation angle of tag|ypility of S, and finiteness of the dimension 6f(7) are

nut aboutz,, is given by readily answered when using this basis (Heck 1997). Also,
if G is computed with a lexographic ordering, it results in a
Oy = =27 (an/L) (an/ | anl) (AS)  system of polynomials with a consecutively eliminated num-

o ) ber of variables as in the result of the Gauss—Jordan elimina-
where L indicates the lead of the right-handed screw thregn method for linear equations. However, this elimination

in mm per revolution. . method is unfavorable for large systems because of the com-
Rotatingy, aboutz, in an angle ofy = 6,,, definesy,  pytation effort associated with this ordering (Cox, Little, and
corresponding to the desired orientation of the nut O’Shea 1998).

It is said that two polynomialg andg, f, ¢ € C[x;..x,,],

¥, ="R,R,[0.1,0" (A6) arecongruent, f = ¢ mod I, if f-g € I. In such a case
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Sign(a,,)<0

Fig. A5. Relations betweeg, «, 6,, andg, for sign@,,) = £1.

they have the sammrmal formwhen reduced with respectto  To define this matrix representation, we recall the mono-
G and, therefore, are associated with equal cdgéts- [ f]. mial basis B forC[x, ..., x,]/I and we define for each
A coset[ f] of a polynomialf € C[x;..x,] is defined as the polynomial f € C[x, ... ,x,] a multiplication tableM ,,
subgroup ofC[x;..x,,] in which all its elements have the sameas given in the following definition.

normal form with respectt6,[f]1 = f+1 = {f+h|h € I}.
The totality of cosets of the polynomials @[x;..x,,] is the
quotientring ofC[x;..x,,] modulo! indicated byC[x;..x,,1/1,
i.e.,Clxy.x, /I ={f +1|f € Clx1..x,]}.

The definition of a coset of a polynomiaf €
Clxy, ..., x,] associateg with the coset of all polynomials
in C[xy, ..., x,] having the same normal form with respect to fb=M;b mod I (B3)
anideal I. One interesting property of normal forms is that the
normal form of any polynomiaf € C[xy, ..., x,] is always ) i,
a complex combination of monomials ov€lixi, . .. , x,]. form with respect to_the Grobner basisof fb; for eac_h el_e-
These monomials are called thasis monomials (Cox, Lit- ment of the m(_)nomla_ll basis;,, i =1... s, as acombination
tle, and O’Shea 1998) or, simply, thenomial basisand are  ©f the monomial basis elements i

DerINITION 1. Multiplication table Let I be an ideal over
Clx1, ..., x,], G its Grobner basis, ardl= [b,, ... , b,]" be

a vector of the monomial basis elements of its quotient ring
C[xa,...,x,]/1. Every polynomialf € C[xy,...,x,] has

an associated multiplication takiié, such that

From the above definition, it is possible to write the normal

indicated byB = {b, . ,l_;s}. This means thgt the normal ny (fb) = Z“ e | ¢ e C,b; € B. (B4)
form of every polynomial inC[x,, ..., x,] is given by the ' i=1
complex combinatiory";_, ¢;b; wherec; € C andb;, € B. Equation (B4) defines thigh column of the matri ; as the
This is expressed by the congruence relation in the followingector of coefficients = [c1, ... , ¢,] .
equation: The key point behind the method of the multiplication table
. eigenvalues is eq. (B3), which implies the following
f=Zi:lc,-b,- mod I | ¢ €C, b eB Fb-Mb e 1 (85)
V feClxy, ..., x,l (B1) Therefore, for all the pointsa € V(I), of the solution set
. . V (I), all polynomials inl vanish; hence we can write
Consider now another polynomiagl € C[x,...,x,] and
define the following linear mapping of cosets: fb—M;b =0 V aeV(). (B6)
W, Clxy, xal/I — Clx, L xal/1, Equa'Fion_ (B6)indicat§sth_at, forgllthe poirts V(I),Wher_w
substituting these points ifi and in the vector of monomial
W, ([fD=Ipfl. p,feClxy,..., x,l (B2) basis elementdy, all s equations in eq. (B6) vanish simulta-
neously. This defines the eigenvalue problem:

This mapping constitutes an endomorphism (Méller 1998),

and has a matrix representation and eigenvalues. (M, - f1)b=0 (B7)



Simaan and Shoham / Stiffness Synthesis of a Variable Geometry 773

Table C-1: All 48 real solutions for prismatic actuators’ angles T, ,, T of the upper planar unit
306.5037827 216.5037827 240.0000000, 270.2799935 180.2799936 240.0000000 210.0000001  240.0000000  300.0000000,
306.5037827 216.5037827 59.99999998 270.2799935 180.2799936 59.99999998 210.0000001  240.0000000  120.0000000!
306.5037827 36.50378270 240.0000000 270.2799935 2799934890 240.0000000 210.0000001  59.99999998  300.0000000;
306.5037827 36.50378270 59.99999998 270.2799935 2799934890 59.99999998 210.0000001  59.99999998  120.0000000)
126.5037826  216.5037827 240.0000000! 9027999346 180.2799936 240.0000000! 29.99999999  240.0000000  300.0000000!
126.5037826  216.5037827  59.99999998 90.27999346 180.2799936 59.99999998 29.99999999  240.0000000  120.0000000,
1265037826 36.50378270  240.0000000 9027999346 2799934890  240.0000000, 29.99999999  59.99999998  300.0000000!
126.5037826  36.50378270 59.99999998 9027999346 2799934890 59.99999998 29.99999999  59.99999998  120.0000000,
305.8383803  240.0000000 215.8383803 240.0000000 271.8929528 181.8929528 59.99999998 271.8929528 181.8929528
305.8383803 240.0000000 35.83838027, 240.0000000 271.8929528 1.892952769) 59.99999998 271.8929528 1.892952769
305.8383803  59.99999998 215.8383803 240.0000000 91.89295273 181.8929528 59.99999998 91.89295273 181.8929528
305.8383803  59.99999998  35.83838027 240.0000000 91.89295273  1.892952760! 59.99999998 91.89295273 1.892952769
125.8383802  240.0000000 215.8383803 240.0000000 183.0000317 273.0000316, 59.99999998  183.0000317 273.0000316
125.8383802  240.0000000 35.83838027 240.0000000 183.0000317 93.00003159) 59.99999998  183.0000317 93.00003159
125.8383802  59.99999998 215.8383803 240.0000000 3.000031618 273.0000316 59.99999998  3.000031618 273.0000316
125.8383802  59.99999998  35.83838027 240.0000000 3.000031618  93.00003159 59.99999998  3.000031618 93.00003159
All 8 real solutions for prismatic actuators’ angles T, T,, T; of the lower planar unit
§240.0000000  200.0000001  280.0000000g 5999999998 200.0000001 280.0000000g
§240.ooooooo 200.0000001 99.99999999ﬁ | 59.99999998 200.0000001 99.99999999%
§240.0000000 19.99999999 280.0000000H 59.99999998  19.99999999  280.0000000}
£240.0000000 19.99999999 99.99999999 59.99999998 19.99999999  99.99999999

Equation (B7) is the basis for the method of multiplicatiortation is kept to a minimum by using it only for eigenvalue
table eigenvalues in the following theorem (Cox, Little, andomputation. Also, unlike sequential elimination, the solution
O’Shea 1998). of each variable; is independent of the other variablgsand,
thus, it is unaffected by computation errorsxin Addition-

LHE?REM L Letl  Clxy, .. ‘d’l\;m].be a zero-dm;_ensmn;all ally, by using Grébner bases the solvability of the system of
aeal. I.‘etf < C[.xl’ o> ¥n] @NAM it corresponding mut- polynomial equations is determined and it is unaffected by
tiplication table inC[xy, ... , x,]/I. The eigenvalues of M

the term order used for the computation@®fwhich allows

are the correspon_ding \:]alut;asf)ff?r al ]Ehe ﬁoints (;]de(I)f. sing more efficient term orders such as total degree order
Theorem 1 defines the basic form for the method o muECox, Little, and O'Shea 1998).

tiplication table eigenvalues. Accordingly, in order to solve

polynomial system itC[x, ... , x, ] we have to compute all

multiplication tabledM ; wheref = x;,i =1,2,...m, and

find all their eigenvalues. Then by substituting in the polyncAppendix C

mial system it is possible to find all the solution vectors in

V(). Table C1 presents all 384 solutions to the problem of stiffness
This method has several advantages over standard sequgmthesis of the DP robot presented in the numerical exam-

tial elimination by resultants mentioned in Raghavan and Rofile of Section 6. The highlighted solutions correspond to the

(1995) and Neilsen and Roth (1999). The numerical compihitial data used to set up this example.



774 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / September 2003

Acknowledgment actively adjustable stiffness characteristics| EEE In-

ternational Conference on Roboticsand Automation, pp.
This research was partially supported by the Israeli Ministry 2663-2670.

of Science under the French-Israel program. Kock, S., and Schumacher, W. 1998. A parallel x-y manipu-
lator with actuation redundancy for high-speed and active-
References stiffness applications. IhEEE International Conference

on Robotics and Automation, Vol. 2, pp. 2295-2300.
Adams, W., and Loustanau, Ph. 199 Introduction to Loncaric, J. 1985Geometrical Analysisof Compliant Mecha-
Grobner Bases, Graduate Studies in Mathematics, Vol. 3, nhismsin Robotics, Ph.D. Dissertation, Harvard University.

American Mathematical Society. Mason, M., and Salisbury, K. 198Robot Hands and the
Becker, T., and Weispfenning, V. 199&rdbner Bases: Mechanics of Manipulation, MIT Press, Cambridge, MA.

A Computational Approach to Commutative Algebra, Merlet, J.-P. 1989. Singular configurations of parallel manip-

Springer-Verlag, Berlin. ulators and grassmann geometnternational Journal of

Brodsky, V., Glozman, D., and Shoham, M. 1998. Dou- Robotics Research 8(5):45-56. _
ble Circular-Triangular Six-Degrees-of-Freedom ParaMerlet, J.-P. 2000.Parallel Robots, Kluwer Academic,

lel Robot. In J. Lenarcic and M.L. Husty, edARK— Dordrecht.

Advances in Robot Kinematics. Kluwer Academic, Dor- Merlet, J.-P., Preng, M.-W., and Daney, D. 2000. Optimal

drecht, pp. 155-164. trajectory planning of a 5-axis machine-tool based on a 6-
Buchberger, B. 1965An Algorithm for Finding a Basis for axis parallel manipulator. In J. Lenarcic and M.M. Stanisic,

Residue Class Ring of a Zero-Dimensional Polynomial eds.,Advances in Robot Kinematics, Kluwer Academic,

Ideals. Ph.D. thesis, University of Innsbruck, Institute for ~Dordrecht, pp. 315-322.

Mathematics (in German). Moller, H. M. 1998. Grobner bases and numerical analysis.

Ciblak, N., and Lipkin, H. 1999. Synthesis of Cartesian stiff- In B. Buchberger and F. Winkler, ed&bner Basesand
ness for robotic applications. Proceedings of the |IEEE Applications, Lecture Note Series 251, London Mathemat-

International Conference on Robotics and Automation, ical Society, pp. 159-178.

\Vol. 3, pp. 2147-2152. Moller, H. M., and Stetter, H. J. 1995. Multivariate polynomial
Cox, D, Little, J., and O’Shea, D. 1998sing Algebraic Ge- equations with multiple zeros solved by matrix eigenprob-

ometry, Graduate Texts in Mathematics, No. 185, Springer- lems.Numerical Mathematics 70:311-329.

Verlag, Berlin. Neilsen, J., and Roth, B. 1999. On the kinematic analysis

Daniali, M.H.R., Zsombar-Murray, P.J., and Angeles, J. 1993. of robotic mechanismsnternational Journal of Robotics
The kinematics of a three DoF planar and spherical double Research 18(12):1147-1160. o
triangular parallel manipulators. In J. Angeles, P. Kovac§atterson, T., and Lipkin, H. 1990. A classification of
and G. Hommel, edsGomputational Kinematics, Kluwer robot complianceASVIE Journal of Mechanical Design
Academic, Dordrecht, pp. 153-164. 115:581-584.

Du Plessis, L. J., and Snyman, J. A. 2002. Design and opfatterson, T., and Lipkin, H. 1993. Structure of robot compli-
mum operation of a reconfigurable planar Gough—Stewart ance ASME Journal of Mechanical Design 115:576-580.
machining platform. In H. Neugebauer, eBrpceedings  Pottman, H., Peternell, M., and Ravani, B. 1999. An introduc-

of PSK2002: Development Methods and Application Ex- tion to line geometry with application€omputer-Aided
perience of Parallel Kinematics, pp. 729-749. Design 31:3-16.

Gosselin, C. 1990. Stiffness mapping for parallel maniplRaghavan, M., and Roth, B. 1995. Solving polynomial sys-
lators. |IEEE Transactions on Robotics and Automation tems for the kinematic analysis and synthesis of mech-
6(3):377-383. anisms and robot manipulator§tansactions of ASME,

Heck, A. 1997. Bird's-eye view of Grobner basé&iclear Special 50th Anniversary Design Issue 117:71-79.
Instruments and Methods in Physics Research A 389:16— Roberts, G. R. 1999. Minimal realization of a spatial stiffness
21. matrix with simple springs connected in paralltEE

Huang, S., and Schimmels, J. 1998a. The bounds and real-Transactionson Roboticsand Automation 15(5):953-958.
ization of spatial stiffnesses achieved with simple spring8imaan, N., Glozman, D., and Shoham, M. 1998. Design con-
connected in parallel EEE Transactions on Robotics and siderations of new six-degrees-of-freedom parallel robots.
Automation 14(3):466—475. In Proceedings of the |EEE International Conference on

Huang, S., and Schimmels, J. 1998b. Achieving an arbitrary Roboticsand Automation, Vol. 2, pp. 1327-1333.
spatial stiffness with springs connected in parallelrnal ~ Simaan, N., and Shoham M. 2002. Stiffness synthesis of a
of Mechanical Design 120:520-526. variable geometry planar robot. In J. Lenar and F. Thomas,

Kim, W.-K., Lee, J.-Y., and Yi, B.-J. 1997. Analysis for ~ €ds.Advancesin Robot Kinematics: Theory and Applica-

a planar 3 degree-of-freedom parallel mechanism with tions, Kluwer Academic, Dordrecht, pp. 463-472.



Simaan and Shoham / Stiffness Synthesis of a Variable Geometry 775

Simaan, N., and Shoham M. 2003. Geometric interpretation age systems. IiProceedings of the IEEE International
of the derivatives of parallel robot’'s Jacobian matrix with  Conference on Robotics and Automation, pp. 1340—-1345.
application to stiffness controASME Journal of Mechan-  Yi, B., and Freeman, R. A. 1992. Synthesis of actively

ical Design 125:33-42. adjustable springs by antagonistic redundant actuation.

Stetter, H. J. 1993. Multivariate polynomial equations as ma- ASME Journal of Dynamic Systems, Measurement and
trix eigenproblems. IrContributions in Numerical Math- Control 114:454—-461.
ematics, World Scientific Series in Applicable Analysis Vi, B. J., and Freeman, R. A. 1993. Geometric characteristics
(WSS AA), Vol. 2, pp. 355—-371. of antagonistic stiffness in redundantly actuated mecha-

Tsai, L.-W. 1999 Robot Analysis—The Mechanics of Serial nisms. InProceedings of the IEEE International Confer-
and Parallel Manipulators, Wiley, New York. ence on Robotics and Automation, pp. 654—661.

Wagner, E. R., and Cooney, C. E. 1997. Cardan Hooke univethiming, J., and Song, Ph. 1998. Design of a reconfig-
saljoint. InUniversal Joint and Driveshaft Design Manual, urable platform manipulatodournal of Robotic Systems
Advances in Engineering Series, No 7, SAE publication, 15(6):341-346.
pp. 39-43. Zhiming, J., and Zhenqun, L. 1999. Identification of place-

Yi, B., Freeman, R. A., and Tesar, D. 1989. Open-loop stiff- ment parameters for modular platform manipulatdosr-
ness control of overconstrained mechanisms/robotic link- nal of Robotic Systems 16(4):227-236.



