Spring 2012 Syllabus

Class location and time: Tuesdays and Thursdays 2:35-3:50 pm at Olin Hall 134.

Instructor

Nabil Simaan Office hours: Thursdays 16:00-18:00 or by appointment (615-343-0470 or <u>nabil.simaan@vanderbilt.edu</u>).

Course Mission

This course is for graduate students interested in theoretical kinematics and robot design and optimization. The course will cover preparatory topics for graduate research in robotics. We cover topics on parallel robots, serial robots, multi-fingered hands, robots with kinematic and actuation redundancies.

Course Requirements

The grading will be based on bi-weekly assignments, <u>class participation</u>, 1 term project and a project presentation. We will also assign several recent research papers for group and individual research study. Assignments will incorporate review of a relevant journal papers and partial reproduction/verification of their results. Other topics such as analysis of wire-actuated robots and grasp stability will be included as self-study assignments using the tools presented in class.

Individual projects will cover a research project on topics related to the course. Examples of such topics include: multi-fingered hand grasping, wire actuated robots, snake-like robots, direct kinematics of novel mechanisms, task-based optimization and analysis of mechanisms using dual numbers and quaternions, optimization and dexterity evaluation of redundant mechanisms.

6 bi-weekly assignments out of which 5 are mandatory	· 60%
1 term project	- 30%
1 term project presentation	- 10%

Textbooks

The course will mainly focus on the class notes of the instructor. Most of the topics covered are included in the following recommended text books. As an introductory course to graduate research in robotics the course will use relevant technical papers to cover some of the material. Reference [3] is the recommended text book that covers most of the material provided in class.

[1] Theoretical Kinematics by Bottema, O. and B. Roth: Dover Publications, Inc., 1979

[2] Kinematic Geometry of Mechanisms, Hunt, K.: Clarendon Press, 1978

[3] *Fundamentals of Robotic Mechanical Systems*, by Jorge Angeles, 2nd Edition (3rd edition is expected soon so check if it is available), Springer, 2003.

[4] Advanced Robotics, by Yoshihiko Nakamura, Addison-Wesley Publishing Company, 1991 (this book is not in print anymore, but I will be providing some of my own notes based on this book.).

- [5] A Mathematical Introduction to Robotic Manipulation, Murray, R., Zexiang Li, Sastry, S., 1994.
- [6] Engineering Applications of Noncommutative Harmonic Analysis, Chirikjian, G., Kyatkin, A., 2000.
- [7] Ideals, Varieties, and Algorithms, Cox, D., Springer, 1996.
- [8] Using Algebraic Geometry, Cox, D.,: Springer, 1998.
- [9] Sommese, A., Wampler, C. The numerical Solution of Systems of Polynomials Arising in Engineering and Science, , 2005
- [10] Simaan, N., *Analysis and Synthesis of Parallel Robots for Medical Applications*, M.Sc. thesis, Technion, Mechanical Engineering, Haifa, Israel, 1999 (available at http://research.vuse.vanderbilt.edu/arma/people/nabil_simaan/ms_research.shtml)
- [11] Simaan, N. Task-Based Design and Synthesis of Variable Geometry Parallel Robots, Ph.D. Dissertation, Technion, Mechanical Engineering, Haifa, Israel, 2002 (available at http://research.vuse.vanderbilt.edu/arma/people/nabil_simaan/phd_research.shtml).
- [12] Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality, J. B. Kuipers.
- [13] Visualizing Quaternions, Andrew J. Hanson.

ME392 Special Topics: Advanced Topics in Robotics and Mechanism Synthesis

- [14] Rotations, Quaternions, and Double Groups, Simon Altmann
- [15] Robot Analysis, L.-W. Tsai
- [16] Introduction to Theoretical Kinematics, J.-M. McCarthy
- [17] Foundations of Robotics, T. Yoshikawa
- [18] Dual-Number Methods in Kinematics, Statics and Dynamics, lan Fischer
- [19] Applications of Dual Numbers and Quaternion Algebra to Analysis of Spatial Mechanisms, A.-T. Yang.
- [20] Solving Polynominal Systems Using Continuation for Engineering and Scientific Problems (Classics in Applied Mathematics), Alexander Morgan

Planned Course Schedule

Date	Subjects covered	Homework
Week 1	Introduction to the course and review of rigid body transformations (weeks 1-2):	
	Symmetry operations	
	 Rotations as symmetry operations 	
	Classification of symmetry operations	
	The trace of a general rotation matrix	
	 Euler's theorem: geometric proof of Rodriguez 	
Week 2	Rodriguez vectorial formula for rotation	H1
	 Finding the Rodriguez axis from two-point motion (three-point motion will 	
	be given in homework)	
	 Angle-axis R(n, θ) parameterization of rotations 	
	 Composition of rotations using Rodriguez formula – analytic proof to Euler's theorem. 	
	 Active and passive rotation sequences using Rodriguez vectors 	
	 Cayley's formula 	
	 Relationship between Rodriguez and Cayley's formula 	
	 From Cayley's equation to the exponential product 	
	 Linear invariants and Euler Rodriguez parameters 	
	 Parameterizations of rotations: Gibbs/Rodriguez vectors, Linear invariants, 	
	Euler parameters, Axis-angle parameters, Euler angles	
Week 3	Special methods in kinematics: quaternions and rotation vectors, (time permitting	
	we will expand this topic also in homework and projects). Examples: Inverse kinematics using rotation vectors.	
Week 4	Special methods in kinematics II:	H2
	representations of a screw.	
	 Line and point transformations, Plucker coordinates of a line. 	
	The screw and the screw transformation and the exponential	
	representation of a screw transformation.	
	Cayley's formula for screw motion,	
	dual numbers	
	dual quaternions	
	 Calculating the finite displacement screw for a specified motion of three points (to be given in HW). 	
	• Examples: Transformation verses displacement matrices: the zero-	
	reference method	
Week 5	Introduction to line geometry:	
	 homogeneous representation of points and lines 	
	Plucker line coordinates	
	Line varieties in space	

ME392 Spec	ial Topics: Advanced Topics in Robotics and Mechanism Synthesis	page 3/3
Week 6	Introduction to screw methods in kinematics and robot design	H3
	Representation of a screw	
	 Finding the line coordinates of a given screw 	
	The reciprocity principle	
	Relationship between line geometry and reciprocity	
	Examples of simple mechanisms	
	The screw systems	
Week 7	Introduction to screw methods in kinematics and robot design	
	Continued. Examples and relationship to mechanisms and robots. Simple	
	planar parallel robots.	
Week 8	Instantaneous kinematics of open and closed kinematic chains	Assignme
	 Mobility, connectivity, Grubler's formula and loop mobility criterion. 	nt of term
	 Input-output relationship in closed-loop mechanisms using auxiliary 	projects
	coordinates.	. ,
	 Derivation of the instantaneous kinematics Jacobian based on kinematic 	H4
	constraints	
	 Geometric interpretation for serial and parallel robots 	
	Applications of line geometry for singularity analysis	
Week 9	Kinetostatic analysis of serial and parallel robots	
	Alternative derivation if instantaneous kinematics Jacobian using statics	
	and virtual work principle	
	Screw-based Jacobian	
	 Stiffness mapping for parallel and serial robots 	
	Series-parallel dualities	
	 Performance measures: manipulability ellipsoid, stiffness ellipsoid, 	
	isotropy, condition number, JRAE)	
Week 10	Introduction to redundant manipulators	H5
	Singular value decomposition	
	 Solutions of over determined and under-determined linear equations 	
	Task-priority optimization	
	Obstacle avoidance, singularity avoidance	
	 Actuation redundancy and optimization of joint efforts 	
	• Singularities of actuation redundancy (time permitting we will discuss my	
	work on this topic)	
	Wire-actuated robots and stability analysis of muti-fingered hands (will be	
	discussed briefly and covered in homework).	
Week 11	Introduction to numerical and symbolic methods for solution of direct and inverse	
	kinematics problems	
	Homogenization of polynomials	
	 Root counts for polynomial systems – Bezout and BKK bounds 	
	 Introduction to homotopy continuation methods 	
Week 12	Introduction to numerical and symbolic methods for solution of direct and inverse	H6
	kinematics problems - continued	
	Introduction to the theory of elimination: the Dialytic elimination method	
	 The Sylvester and Bezout resultants, Dixon resultants, multi- 	
	homogeneous resultants (time permitting)	
	Transforming the resultant formulation to an associated generalized	
	eigenvalue problem	
Week 13		
	Research topics and presentations of student projects	
Week 14	Research topics and presentations of student projects	
Week 15	Research topics and presentations of student projects (9:00-11:00 ME conf	
	room)	1